
Implementation of a HL7-CQL Engine

Georg FETTEa,b,1, Mathias KASPARb, Leon LIMANa, Maximilian ERTLb,
Jonathan KREBSa, Stefan STÖRKb and Frank PUPPEa
a University of Würzburg, Chair of Computer Science 6

b
 University Hospital of Würzburg, Comprehensive Heart Failure Center

Abstract. The Clinical Quality Language (CQL) is a useful tool for defining
search requests for data stores containing FHIR data. Unfortunately, there are only
few execution engines that are able to evaluate CQL queries. As FHIR data
represents a graph structure, the authors pursue the approach of storing all data
contained in a FHIR server in the graph database Neo4J and to translate CQL
queries into Neo4J’s query language Cypher. The query results returned by the
graph database are retranslated into their FHIR representation and returned to the
querying user. The approach has been positively tested on publicly available FHIR
servers with a handcrafted set of example CQL queries.

Keywords. FHIR, query engine, graph database, Neo4J

1. Introduction

In recent years FHIR (Fast Healthcare Interoperability Resources) has become a
widespread standard, not only for the exchange, but also for the storage of healthcare
data. FHIR data storage servers are allowed to implement arbitrary technical storage
layers, but the data access interface is clearly defined by the FHIR standard itself. The
most common way to request data from a FHIR server is via FHIR search operations,
which are part of the FHIR-REST-API. The FHIR search allows querying through
resources of a server, filtered by parameters supplied in conjunction with the search
operation. Although this search modality suffices for many simple request use cases,
the expressiveness of FHIR search is limited in several aspects [1] (e.g. example 2 in
Table 3 is not expressible in FHIR search). A more expressive approach to query FHIR
data is possible by using the query language CQL (Clinical Quality Language;
https://cql.hl7.org). CQL, like FHIR, is an HL7 standard. Its latest release (1 DSTU3)
has been classified by maturity level 4 and is already in use in multiple prototype
projects. Unfortunately, due to its novelty, execution engines for CQL are rare. To the
best knowledge of the authors, only one CQL execution engine is publicly available
(https://github.com/cqframework/clinical_quality_language).

CQL is a functional query language. A CQL script is defined as a so-called library,
in which, besides the actual queries, also meta-information related to the queries can be

1 Corresponding author: Georg Fette, Comprehensive Heart Failure Center (CHFC) Würzburg,

University and University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany; E-
Mail: georg.fette@uni-wuerzburg.de

Using the Graph Database Neo4J

German Medical Data Sciences: Shaping Change – Creative Solutions for Innovative Medicine
R. Röhrig et al. (Eds.)

© 2019 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI190804

46

defined. The main functional elements in a CQL library are the statements. Each
statement can be seen as an individual query. Usually, a statement defines the data
sources that should be addressed by the query (e.g. [Observation] B), how the elements
of the queried sources are constrained (e.g. B.value = ‘x’), how the data sources relate
to each other (e.g. [Patient] A with [Observation] B such that B.subject = A), and
which elements of potential matches have to be returned as results (e.g. Return Tuple
{id:A.id, value:B.value}). CQL provides a rich repertoire of operators (e.g. comparison,
logical, arithmetic, list access, aggregation). These query definition paradigms are also
essential to another field of computer science, namely graph databases and their query
paradigms [2]. In order to investigate the applicability of graph databases and their
query techniques, the authors implemented a CQL engine by using the graph database
Neo4J as data sink and Neo4J’s query language Cypher as the tool to express CQL
queries.

2. Methods

In order to render a given FHIR server searchable using CQL the authors used the
following approach. A Neo4J database server (Community Edition 3.5.3) was set up on
a common desktop computer. All data from the FHIR server was exported to the file
system into .csv files. The exported data was imported into the Neo4J database. All
CQL queries to be executed were translated into Cypher and executed by the Neo4J
server. The returned Neo4J data was retranslated into its FHIR representation and
returned to the querying user. In the following chapters each of those steps will be
explained in more detail and illustrated with the example resource from Figure 1.

Figure 1. Example Patient resource encoded in JSON format.

In order to obtain the list of all profiles that are potentially hosted on the FHIR
server, it is queried via FHIR search for all StructureDefinition resources. From each
StructureDefinition the snapshot part is parsed for the initialization of all necessary .csv
files into which the profile’s resource data will get exported. To initialize the .csv files
of FHIR’s general-purpose complex types (Duration, Range, etc.), their
StructureDefinitions were downloaded from the official FHIR website and processed in
the same manner. Every profile is initialized with an individual .csv file. The columns
in each .csv file store the primitive data type fields of the root layer of the respective
profile. All BackboneElement fields within a profile’s root layer are exported into
individual .csv files, again with all primitive data type fields stored in the columns of
their .csv files, and so on. The containments of BackboneElements within a parent
profile or a different BackboneElement are stored in relationship .csv files that contain
two columns for the IDs of the containers and their child structures. As
BackboneElements in FHIR resources seldom contain an explicit ID, those IDs are
generated as UIDs by the export process. All Reference resources are as well exported
as relationship .csv files, containing the IDs of the referencing structures and those of
their referenced resources. The actual resource data export requests all resources of

{ “resourceType”: “Patient”, “id”: “1438266”,
 “birthDate”: “2002-02-24”, “name”: [{ “given”: [“John”] }],
 “contact”: [{ “name": [{ “given”: [“Mary”] }] }] }

G. Fette et al. / Implementation of a HL7-CQL Engine Using the Graph Database Neo4J 47

each profile via FHIR search without any further parametrization. If the FHIR server
uses result paging, the URLs of all successive results are repeatedly followed until all
resources have been processed. All fields of type Reference that reference the type ANY
instead of a list of specific profiles were omitted, because untyped relations
complicated the later import into Neo4J. Table 1 depicts the contents of the .csv files
that are produced when processing the example from Figure 1.
Table 1. Contents of .csv files generated by the export process

Patient_nodes.csv
:LABEL Patient:ID(Patient-ID) birthDate
Patient 1438266 2002-02-24

HumanName_nodes.csv
:LABEL Patient:ID(HumandName-ID) given:string[]

HumanName 9aae43-eb86-4b01 John
HumanName 778e97-9e48-3ab2 Mary

Patient_contact_nodes.csv
:LABEL Patient_contact:ID(Patient_contact-ID)

Patient_contact e82707-1625-de8a
Patient_to_HumanName_NAME_relations.csv

:TYPE :START_ID(Patient-ID) :END_ID(HumanName-ID)
NAME 1438266 9aae43-eb86-4b01

Patient_to_Patient_contact_CONTACT_relations.csv
:TYPE :START_ID(Patient-ID) :END_ID(Contact-ID)

CONTACT 1438266 e82707-1625-de8a
Patient_contact_to_HumanName_NAME_relations.csv

:TYPE :START_ID(Patient_contact-ID) :END_ID(HumanName-ID)
NAME e82707-1625-de8a 778e97-9e48-3ab2

All exported FHIR data is imported into the Neo4J database with a single call to

the Neo4J import tool. All profile resources, all BackboneElement resources and all
complex type resources are instantiated as individual Neo4J nodes. All containment
relationships between profile or BackboneElement resources and contained
BackboneElement or complex type resources as well as Reference resources are
instantiated as Neo4J relationships. To supply all node and relationship .csv files to the
import tool via the command line call, all parameters are written to a parameter file,
which is given as the sole parameter for the import tool command call. The import tool
is additionally parameterized to ignore relationships to resources that are not contained
in the exported data. Figure 2 shows a screenshot of the Neo4J browser displaying the
example from Figure 1 after import.

Figure 2. Screenshot of the Neo4J-browser displaying nodes after import of the example data from Figure 1.

The grammar of CQL is very similar to that of Cypher. A CQL query String is
parsed and translated to a logical model [3, 4] containing all data elements, their paths
and all constraints and operations applied on the data elements. The logical model is
then used to generate the Cypher query. As CQL and Cypher differ in their supply of
operators, the translator contains a list of one-to-one mappings between equivalent
operators. For some operators (e.g. temporal operators) the authors implemented
special mappings that perform more complex transformations. If a query contains

G. Fette et al. / Implementation of a HL7-CQL Engine Using the Graph Database Neo4J48

operators which are neither contained in the list of directly mappable operators nor in
the list of operators with special implementations, the query was not translatable.

The CQL query Strings are parsed using a parser from the cql-to-elm project
(https://github.com/cqframework/clinical_quality_language). The main parser from that
project requires a data model file in order to perform type checking on the data
elements contained in the CQL query. To avoid having to develop a generator for those
model files, the authors decided to use the antlr4 parser from the CQL-project instead
of the main parser.

For all Neo4J nodes returned by a Cypher query, the desired JSON String
representing the original FHIR resource can be reconstructed from the property data of
each returned node and the additional data of the nodes connected to that node via
resource-internal relationships. The necessary relationships types that have to be
resolved to reach all resource-internal nodes can be obtained from the
StructureDefinition of the corresponding profile. As an additional caching mechanism,
all Neo4J nodes representing profile resource roots receive an additional String
property containing the resource’s original JSON-String. This can be used instead of
having to reconstruct the resource using all necessary node properties and having to
resolve relationships.

3. Results

Using the approach described above, the authors indexed several publicly available
FHIR server endpoints. Table 2 shows some information about the tested FHIR servers
and their indexing process.

 Table 2. Test FHIR servers that were indexed using the presented approach.

FHIR Server base URL

E
xp

or
t t

im
e

/ m
in

ut
es

im
po

rt
 ti

m
e

/ s
ec

on
ds

N
eo

4J
 d

b
si

ze
 /

M
B

N
od

e
co

un
t

/ 1
 0

00

R
el

at
io

n
co

un
t /

 1
 0

00

Pr
op

er
ty

co

un
t /

 1
 0

00

http://hapi.fhir.org/baseDstu3 50 15 257 1 490 1 292 3 145
http://vonk.fire.ly 12 10 69 358 390 818
http://test.fhir.org/r3 4 3 9 41 38 134

In the current state of the project the translator is capable of translating CQL

queries with the following attributes: The CQL query may contain an arbitrary amount
of arbitrary data sources. All data model element paths in the query can have arbitrary
length. Data model elements can be constrained with arbitrary logical comparators.
Multiple sources can be concatenated and their relationships can be constrained.
Operators can be translated, when they exist with the same interface and the same
semantics in both query languages or when they can be substituted by a combination of
Cypher operators. During the implementation of the translator the following Cypher
operators were detected missing: Cypher does not support CQL’s arithmetic operators
log (not to be confused with Cypher’s log operator), truncate, ceiling and div. Cypher
does not support CQL’s String operators Combine, ReplaceMatches and SplitOn

G. Fette et al. / Implementation of a HL7-CQL Engine Using the Graph Database Neo4J 49

Matches. Cypher does not allow an equivalent syntactical representation of CQL’s list
operators first/last parametrized with a sort by. The translation of first/last can be
substituted with Cypher’s max/min operators, if the path, which is accessed from the
result of the list operator, is the same that has been used to sort the list (see example 3
in Table 3). The pattern could as well be translated with an additional nested Cypher
query, but this approach has not yet been pursued.

The translation process for CQL queries to be executed on the Neo4J indices was
tested with a list of handcrafted CQL statements, from which some are listed in Table 3.
The automatic translation of each CQL statement into Cypher had to be equal to a
predefined desired Cypher String.

 Table 3. Example CQL queries and their corresponding Cypher queries.

No. CQL query Cypher query
1 [Encounter] A where A.length > 120

days
match (A:Encounter)-[:LENGTH]->(B:Duration) where
B.value > 120 and B.unit = 'days' return A

2 [Observation] A with [Medication
Administration] B such that A.subject =
B.subject and A.valueString = 'blue' and
B.effectiveDateTime > @2014

match (A:Observation)-[:SUBJECT]->(B), (C:
MedicationAdministration)-[:SUBJECT]->(D) where B
= D and A.valueString = 'blue' and C.effective
DateTime > datetime('2014') return A

3 [Patient] A with [EpisodeOfCare] B
such that B.patient = A and Last(B O
sort by period.end).period.end < @2014

match (A:Patient), (B:EpisodeOfCare)-[:PATIENT]->
(C), (B)-[:PERIOD]->(D) with max(D.end) as E, A, B,
C where C = A and E < datetime ('2014') return A

4. Discussion

FHIR data represents a graph structure, so what could be more appropriate than storing
and querying FHIR data using a graph database? Neo4J is one of the most popular
graph databases and it is a mature solution, in existence for more than 12 years and still
actively developed. The reliability of the underlying Neo4J query engine has been
proven in a multitude of projects.

For the evaluation of a CQL query the implementation guide of the CQL
documentation proposes to evaluate all sources of a query and subsequently to filter the
preliminary results by all constraints contained in the query. In the Neo4J database the
resolution of sources and potentially additional constraints can be evaluated jointly,
thus possibly enhancing query performance. No query speed evaluations have yet been
performed, but it would be interesting to compare the query speed of the Neo4J
approach with alternative CQL engine implementations. The current version of the
engine implementation represents a snapshot of work in progress, covering only a
portion of the full extent of CQL. There are still many CQL expressions that cannot yet
be translated. It has to be analyzed up to which extend and depth this can be performed
for arbitrary CQL statements using the language elements provided by Cypher. Some
shortcomings of Cypher have already been addressed above.

The approach of translating a query into another query under preservation of the
query’s semantics is related to the research field of query rewriting [5]. In the presented
approach the authors followed a more engineering oriented approach compared to the
existing literature tackling query rewriting. Therefore, the inclusion of ideas from the
field of query rewriting could be fruitful.

Currently, the export and import process has to be a full indexation of the whole
data content of a FHIR server. Because full indexation is time consuming, it would be

G. Fette et al. / Implementation of a HL7-CQL Engine Using the Graph Database Neo4J50

desireable to have a delta export and import, processing selectively only that part of the
data, with timestamps after the last update run [6]. Such a delta update could be run in
fixed time intervals in order to keep the Neo4J database synchronized with its source
FHIR server. A problem with the current export approach is that delete operations on
the FHIR server could be undetectable, because deleted resources are unrequestable via
FHIR search. The delete part of the delta could possibly be infered via requests to the
_history part of the FHIR search API.

The export process, which is currently implemented using FHIR search, could be
changed to a different FHIR access mode called Bulk Data API. This API was specified
at the beginning of 2018 and is already implemented on several publicly available
FHIR servers. Bulk exports might be a faster method to export FHIR resource data than
FHIR search. However, not every FHIR server must necessarily implement the Bulk
Data API; if absent, the regular FHIR search has to be used.

Neo4J contains a Duration data type, which is not yet used during indexing. The
translation of example 1 from Table 3, in which the unit of the duration is currently
explicitly compared via a String compare, could be processed using Cypher language
elements that are more similar to the duration representation used in CQL.

5. Conclusion

An approach was presented to implement a CQL query engine by creating a Neo4J
graph database index on top of an existing FHIR server and letting all queries be
performed by the Neo4J server’s Cypher query engine, which can be used by
translating all CQL queries into Cypher queries. The approach is easily applicable on a
FHIR server without modifications of existing structures. For various handcrafted test
CQL queries the approach proved well feasible.

An implementation of the presented approach in Java is available at
https://gitlab2.informatik.uni-wuerzburg.de/gef18bg/FHIR_Neo4J_Indexer.

Acknowledgements

This research was funded by the German Federal Ministry of Education and Research
(Comprehensive Heart Failure Center Würzburg, grants #01EO1004 and #01EO1504).

References

[1] Zautke A, Evaluation of Methods for Querying, Filtering and Aggregating Complex Health Care Data
with regard to their Applicability in FHIR, Master Thesis, (2018).

[2] Robinson I, Webber J, Eifrem E, Graph Databases, O’Reilly Media Inc., Sebastopol USA, (2013).
[3] Fette G, Kaspar M, Liman L, et al. Query Translation Between openEHR and i2b2. Stud Health Technol

Inform.;258, 16-20 (2019).
[4] Fette G, Kaspar M, Liman L, et al, Query Translation Between AQL and CQL, To appear in: MedInfo

Conference (2019).
[5] Calvanese D, De Giacomo G, Lenzerini M, et al, What is query rewriting? In Proceedings of the 7th

International Workshop on Knowledge, Representation meets Databases, 17-27 (2000).
[6] Lindsay BG, Haas LM, Mohan C, Pirahesh H, Wilms PF, A snapshot differential refresh algorithm. In:

SIGMOD Conference, 53–60 (1986).

G. Fette et al. / Implementation of a HL7-CQL Engine Using the Graph Database Neo4J 51

