
A Search Method to Support Temporal Transcriptome Analysis 

Guenter Tuscha, Shahrzad Eslamianb 

a Health Informatics and Bioinformatics Program, School of Computing and Information Systems,  

Grand Valley State University, Allendale, MI, USA,  
 b Blue Cross Blue Shield of Michigan, Detroit, MI, USA 

 

 

Abstract 

Recently, there has been an increasing interest in mining time 

series databases with a focus on data representation. We propose 

a hybrid statistical and temporal logic model to yield search 

pattern that can be used for pattern matching and database 

search to identify novel and common patterns in temporal 

expression experiments. The method accounts for various 

challenges that can be found in publicly available gene 

expression databases. 
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Introduction 

Public gene expression databases make enormous amounts of 

transcriptomic data available to researchers through the Internet. 

The most popular databases are GEO (Gene Expression Omni-

bus) at the NCBI and ArrayExpress at the EBI. NCBI GEO con-

tains more than 105,000 series of gene-expression data collected 

from over 2.7 million samples and over 19,000 platforms (as of 

November 2018) and ArrayExpress over 2.3 million assays and 

some 71,500 experiments. Researchers attempt to translate the 

wealth of information captured in these rapidly growing biomed-

ical and genomic databases into actionable data for health care or 

prevention, however the proper treatment of temporal data re-

mains a challenge.  

Biologists typically rely on statistical measures to determine 

trends. Time-course experiments allow them to study the dynam-

ics of transcriptomic changes in cells exposed to different stimuli 

by investigating pathways or "curated gene sets". Those can be 

found in the Gene Ontology (http://www.geneontology.org), a 

framework defining concepts to describe gene function and their 

relationships, and the Kyoto Encyclopedia of Genes and Ge-

nomes (http://www.genome.jp/kegg/), a database integrating in-

formation on genomic and systemic function.  

Traditional approaches to find gene pattern across studies are 

clustering and meta-analysis. Clustering approaches typically are 

based on GLM and splines to model profiles [1], while a meta-

analysis attempts to either analyzing pooled data sets or aggre-

gating p-values (see, e.g., [2]. One popular clustering approach 

for temporal data is statistical model-based clustering as 

describes for instance in [1] assumes that data is generated from 

a mixture model of probability distributions or spline 

approximations of the data. The mixture parameters can be 

estimated by maximum likelihood estimation.  

A different approach used to model complex time pattern in pa-

tient records is Knowledge Based Temporal Abstraction (KBTA) 

to transform the raw data into a qualitative representation of tem-

poral change based on time intervals, not discrete temporal data. 

KBTA is the task of summarizing large amounts of time-oriented 

data using domain-specific knowledge. For KBTA genomic 

clustering see [2]. 

The goal of our study is to enable the user to compare his/her own 

data to public datasets, regardless of the platform used.  

Methods 

Finding patterns of interest in time series databases (Query by 

Content) can be described as follows: Given query time series 

and some similarity measure, find the most similar time series in 

a given database. The two primary difficulties in this kind of sim-

ilarity search are time complexity and defining a similarity meas-

ure.  

Time complexity refers to efficiently finding a sub pattern in a 

larger pattern sequence. The approach in this paper is based on 

temporal logic. Finding sequential patterns in a database is im-

plemented through Horn-like rules that can be expressed in terms 

of Web Ontology Language (OWL) concepts and that can reason 

about OWL individuals. A query is represented in a logical clause 

structure and a pattern matcher is used to search for complex se-

quence patterns of interest in a given database. This could include 

logical interdependencies between the elements of a sequential 

pattern including potential constraints as combining individual 

profiles in pathway or integrative genomics, e.g., genome-wide 

microarray expression signatures.  

With our approach there are some similarities between clustering 

and database search. A database search for similar temporal pat-

tern can be viewed as finding a temporal cluster that includes the 

query sequence. The key difference is here the variety of data 

sources. While clustering is typically applied to data from one 

experiment and one single platform, the queries under consider-

ation here might include data from different, for example, Affy-

metrix platforms. While genes from different species can be com-

pared using ortholog databases like PANTHER (pantherdb.org), 

the data (expression profiles) itself most likely won’t fit the same 

statistical model due to different measurement techniques. The 

problem exacerbates if we compare profiles stemming from dif-

ferent manufacturers like Ilumina, or even microarray and next 

generation sequence data. 

For our method, in order to increase the signal-to-noise ratio, the 

first step is signal averaging, i.e., averaging a set of replicate 

measurements of gene expression values. After averaging and 

piecewise linear approximation, temporal modeling through 

KBTA allows for conversion of expression values into an inter-

val-based qualitative representation in a similar way as the well-

known SAX method [4]. Change in the proposed method is de-

termined by statistical significance of the paired t-test in consec-

utive time points. If the difference is significant, the interval is 

labeled as increasing or decreasing depending on the direction of 

change. Therefore, for the proposed method the p-values and the 

direction of the change inform the temporal abstraction. Time 
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points in temporal gene expression data are not standardized but 

change from experiment to experiment. If a biological signal is 

present, it is assumed not to depend on the interval length. Our 

method allows to compare studies independently from time 

points or scaling in the time axis or amplitude.  

Since gene expression studies measure up to 40K genes or gene 

products on a single array with very few replicates two issues are 

critical for our implementation, first, to increase the power of the 

statistical tests (paired t-test) by empirical Bayes methods, and 

second, p-value adjustment. A moderated t-statistic shrinks the 

polled variance by borrowing information across all genes of the 

particular chip. Since a multitude of genes has to be tested for 

differential expression on the same data set, the p-value has to be 

adjusted. We use the False Discovery Rate. 

The voom transformation RNA-seq data to be handled the same 

way as microarray data.  

Implementation 

Most of the data are preprocessed and stored in a MySQL data-

base for performance reasons. Our plan is to migrate to an 

Apache Hadoop environment using Apache Hive when the num-

bers of the available time series data increases significantly. As 

of November 2018, we found in NCBI GEO 4357 microarray 

data sets (or 21,320 arrays) and 323 RNA-seq datasets (or 15,539 

arrays). We use the GDS format with annotation files, which are 

normalized, and then extract the data matrix for microarray data. 

For high throughput sequencing RNA-seq studies data are pre-

processed and normalized using standard procedures. We use R 

Bioconductor (BioC - bioconductor.org) with limma throughout 

and additionally the voom transformation for RNA-seq data. The 

necessary databases are accessed using standard BioC tools like 

GEOmetadb. This implementation has been integrated into the 

SPOT web application via HTML, JavaScript and PHP that feeds 

into Protégé. For modelling complex time patterns, we use Pro-

tégé (http://protege.stanford.edu) with the help of Allen’s tem-

poral logic as has been described in an earlier publication. We 

used as an example a microarray study with differentially ex-

pressed genes grouped into three peak clusters.  

Discussion and Conclusions 

Our model differs from statistical model-based clustering as it 

only assumes the general linear model, but does not model the 

time courses explicitly. This approach allows to cluster gene 

expression profiles that stem from different platforms, even 

microarray and nextgen sequencing RNA-seq data sets while still 

taking the temporal information into account. Our approach also 

borrows from KBTA. One of the weaknesses of the KBTA 

approach is that arbitrary (“knowledge based”) thresholds have 

to be determined. In our application thresholds would need to be 

determined for each platform, manufacturer and technology. The 

key advantage of our approach is that it implicitly estimates the 

thresholds from the data itself and uses statistical significance to 

generate biologically meaningful clusters. The temporal 

relationship is represented by comparing the means in each pair 

of groups.  

Due to the complexity of the transcriptome and the limited 

knowledge so far, there are two main approaches to evaluate  

the feasibility of our method. The first is to rely on existing  

across platform studies especially with known homologous genes 

and use the results and determine some form of recall and 

precision. The second is to perform a simulation study and 

generate artificial gene expression sets with realistic features. 

There are a variety of cautionary points: Besides limma, there are 

other common algorithms to determine significance in time-

series gene expression data, as for instance SAM, EDGE or 

BETR. Typically, a p-value is assigned to an entire gene set or 

time series, often incorporating a sophisticated weighting 

schema [4-7] Our approach could be adapted. 

If a microarray study or RNA-seq study finds significant gene 

expression changes, those typically are verified through fluores-

cent, one-step reverse transcription-polymerase chain reaction 

(RT-PCR) or quantitative polymerase chain reaction (qPCR). 

Since so far there are several viable alternative approaches (esp. 

for RNA-seq data), each study potentially uses a different method 

to identify differentially expressed genes and similarly for clus-

tering the gene sets as for example STEM, GQL [4-7] or Time-

Clust [2], the significant genes that our algorithm finds, may not 

be verified. One solution could be implementing different stand-

ard pipelines and giving the user the choice. Given, that we de-

scribe an exploratory and not modelling approach, we face the 

same challenges as other search tools in bioinformatics in terms 

of how to implement biological knowledge in a computer system. 

We will compare ours to those published results and continue to 

evaluate our program on a representative set of sample studies.  
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