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Abstract 

Detection of difficult for understanding words is a crucial task 

for ensuring the proper understanding of medical texts such as 

diagnoses and drug instructions. We propose to combine 

supervised machine learning algorithms using various features 

with word embeddings which contain context information of 

words. Data in French are manually cross-annotated by seven 

annotators. On the basis of these data, we propose cross-

validation scenarios in order to test the generalization ability 

of models to detect the difficulty of medical words. On data 

provided by seven annotators, we show that the models are 

generalizable from one annotator to another. 
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Introduction 

Specialized areas, such as medical area, convey and use 
technical words, or terms, which are typically related to 
knowledge developed within these areas. In the medical area, 
this specific knowledge often corresponds to fundamental 
medical notions related to disorders, procedures, treatments, 
human anatomy, etc. For instance, technical terms like 
blepharospasm (abnormal contraction or twitch of the eyelid), 
alexithymia (inability to identify and describe emotions in the 
self), appendicectomy (surgical removal of the vermiform 
appendix from intestine), or lombalgia (low back pain) are 
frequently used in the medical area texts. Patients and their 
relatives usually have some difficulties in the understanding 
and using of such terms: they show indeed poor health literacy. 
Some existing studies stressed the difficulty in understanding 
medical notions and terms by non-expert users, and its impact 
on a successful healthcare process [1,2]. Yet, it is not 
uncommon that patients and their relatives must face very 
technical health documents and information. Examples of this 
kind are frequent and usually the non-expert users are at loss in 
such situations: understanding of information on drug intake 
[3,4], of clinical documents [5], of clinical brochures or 
informed consents [6], of information provided for patients by 
different websites [7,8], and communication between patients 
and medical staff [9,10]. These observations provide the 
motivation to our work: we address the needs of non-
specialized users facing health information and propose to 
predict the readability of medical words. 

In what follows, we first present some related work and 
introduce the material used as well as the proposed method. We 

then present and discuss the results. Finally, we conclude with 
some directions for future work. 

Related Work 

For studying the readability of medical documents, researchers 
usually exploit readability measures. Among these measures, it 
is possible to distinguish classical and computational 
readability measures [11]. Classical measures usually rely on 
number of letters and/or of syllables a word contains and on 
linear regression models [12,13], while computational 
readability measures may involve vector models and a great 
variability of features, among which the following have been 
used for processing the biomedical documents: combination of 
classical readability formulas with medical terminologies [14]; 
n-grams of characters [15], stylistic [16] or discursive [17] 
features, lexicon [18], morphological features [19], 
combinations of different features [5]. 

At a more fine-grained level, the readability of words has been 
addressed much less frequently. In the general language, some 
research actions are often performed as part of the NLP 
challenges, such as the SemEval NLP 
(www.cs.york.ac.uk/semeval-2012) challenge held in 2012. 
This challenge proposed the following task: for a short text and 
a target word, several possible substitutions satisfying the 
context have also been proposed. The objective was to rate and 
to order the substitutions according to their degree of simplicity 
[20]. The participants applied rule-based and/or machine 
learning systems. Combinations of various features, designed 
to detect the simplicity of words, have been used, such as: 
lexicon from spoken corpus and from Wikipedia, Google n-
grams, WordNet [21]; word length, number of syllables, latent 
semantic analysis, mutual information and word frequency[22]; 
Wikipedia frequency, word length, n-grams of characters and 
of words, random indexing and syntactic complexity of 
documents [23]; n-grams and frequency from Wikipedia, 
Google n-grams [24]; WordNet and word frequency [25]. The 
best systems reached up to 0.60 Top-rank and 0.575 Recall. 
Another work has been done on scholar texts in French written 
for children with the purpose to differentiate between the texts 
from various scholar levels and to test various features suitable 
for that [26]. This system reached up to 0.62 classification 
accuracy. 

In the medical area, we can mention three experiments: manual 
rating of medical words [27], automatic rating of medical words 
on the basis of their presence in different vocabularies [28], and 
exploitation of machine learning approach with various features 
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[29]. This last experiment achieved up to 0.85 F-measure on 
individual annotations. 

Another issue is to know what are the most suitable data for the 
analysis of text readability. These data have indeed crucial 
impact on models created and on their usability. Several 
approaches have been proposed: 

• exploitation of expert judgment, who have an idea on 
needs of population aimed in the study [30]. The main 
limitation is that experts may have difficulties to 
figure out what are the real needs of population; 

• exploitation of text books created for population 
according to their readability levels, such as school 
books [26]. The main limitation is that such books are 
usually created by experts using theoretical basis and 
observations; 

• exploitation of crowdsourcing involving large 
population [30]. The main limitation is that the 
population involved is uncontrolled and unknown; 

• exploitation of eye-tracking methods for a more 
finegrained analysis of reading difficulties [31,32]. 
The main limitation is that only short text spans can 
be used; 

• manual annotation by human annotators [33]. In this 
case, the annotators represent the population, they are 
part of the controlled population, they can perform 
more complicated tasks than in case of 
crowdsourcing, although they are usually less many 
than in crowdsourcing experiments. 

Related to this issue is the question on generalizability of data 
and of models generated from these data. For instance, it has 
been observed that data from experts are difficult to generalize 
over the population [30]. 

We propose to study the generalizability of the automatic 
categorization models for a stronger distinction of readability 
of medical words and distinction of words which may present 
understanding difficulties to non-experts users. The medical 
data processed are in French. Seven human annotators 
participated in creation of the reference data. 

Material 

The source terms are obtained from Snomed Int [34], which is 
the most extensive terminology in French, such as available 
from the ASIP SANTE website 
(esante.gouv.fr/services/referentiels/referentiels-d-

interoperabilite/snomed-35vf). Snomed contains 151,104 
medical terms organized in eleven axes such as disorders, 
procedures, chemical products, living organisms, anatomy, 
social status. For our purpose, we use five axes: disorders, 
abnormalities, procedures, functions, and anatomy. The 
assumption is that studying the understanding of these terms is 
important because they are related to main medical notions and 
laymen must face then frequently. The 104,649 selected terms 
are lemmatized and tokenized into words resulting in 29,641 
unique words. 

The set of 29,641 unique words was annotated by seven French 
speakers, 25 to 65-year-old, without medical training and 
without specific medical problems. The annotators are expected 
to represent the average knowledge of medical words among 
the population as a whole. The annotators are presented with 
the list of terms and asked to assign each term to one of the three 
categories: 

• I can understand the word; 

• I am not sure about the meaning of the word; 

• I cannot understand the word. 

The assumption is that terms, which are not understandable by 
the annotators, are also difficult to understand by patients. The 
annotators were asked not to use dictionaries during the 
annotation process. Further to the annotation process, the most 
frequent category is I cannot understand the word, which 
gathers between 65 to 70% of terms. 

Methods 

We propose to tackle the problem through the supervised 
categorization: the purpose is to categorize terms according to 
whether they can be understood or not by lay people. The 
manual annotations provide the reference data. The 
categorization pipeline is the following: categorization features 
are computed, they are used for training the classifiers, and the 
results are evaluated using the cross-validation. 

We exploit 11 types of automatically computed features: 

• Syntactic categories. Syntactic categories and lemmas 
are computed by TreeTagger [35] and then checked 
by Flemm [36]. The syntactic categories are assigned 
to words within the context of their terms. If a given 
word receives more than one category, the most 
frequent one is kept as feature. Among the main 
categories we find for instance nouns, adjectives, 
proper names, verbs and abbreviations. 

• Presence of words in reference lexica. We exploit two 
reference lexica of the French language: TLFi 
(www.atilf.fr/) and lexique.org (www.lexique.org/). 
TLFi is a dictionary of the French language covering 
XIX and XX centuries. It contains almost 100,000 
entries. lexique.org is a lexicon created for 
psycholinguistic experiments. It contains over 135,000 
entries, among which inflectional forms of verbs, 
adjectives and nouns. It contains almost 35,000 
lemmas.  

• Frequency of words through a non specialized search 

engine. For each word, we query the Google search 
engine in order to know its frequency attested on the 
web. 

• Frequency of words in the medical terminology. We 
also compute the frequency of words in the medical 
terminology Snomed International. 

• Number and types of semantic categories associated 

to words. We exploit the information on the semantic 
categories of Snomed International. 

• Length of words in number of their characters and 

syllables. For each word, we compute the number of 
its characters and syllables. 

• Number of bases and affixes. Each lemma is analyzed 
by the morphological analyzer Dérif [37], adapted to 
the treatment of medical words. It performs the 
decomposition of lemmas into bases and affixes 
known in its database and it provides also semantic 
explanation of the analyzed lexemes. We exploit the 
morphological decomposition information (number of 
affixes and bases). 
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• Initial and final substrings of the words. We compute 
the initial and final substrings of different length, from 
three to five characters. 

• Number and percentage of consonants, vowels and 

other characters. We compute the number and the 
percentage of consonants, vowels and other characters 
(i.e., hyphen, apostrophe, comas). 

• Classical readability scores. We apply two classical 
readability measures: Flesch [12] and its variant 
FleschKincaid [38]. Such measures are typically used 
for evaluating the difficulty level of a text. They 
exploit surface characteristics of words (number of 
characters and/or syllables) and normalize these 
values with specifically designed coefficients. 

• FastText word embeddings [39] pre-trained on French 
Wikipedia corpus, which cover up to 56% of the 
words from our dataset. Tthe embeddings cluster 
together words that share common contexts and 
semantics, and can help in generalizing other features 
over contextually and semantically close words. 

The ten first types of features, linguistic and non-linguistic, are 
called standard features, while the embeddings stand for 
themselves. 

The supervised categorization is performed with decision tree 
(DT) classifier from the scikit-learn library (scikit-learn.org). 

In the proposed experiments, we learn the model from all the 
annotations of a given annotator and then test the model on 
annotations provided by other annotators. In this way, we can 
measure the ability of the classifier to generalize on all known 
words, but for unknown annotators. This scenario is realistic to 
a real-world situation: the reference annotations can be obtained 
only from a couple of users, presumably representing the 
overall population, but not from all the possible users. Yet, it is 
necessary to predict the familiarity of medical words for all the 
potential users even if they did not participate in the 
annotations. Hence, the generalizability of models occupies the 
central position in these experiments. 

Results and Discussion 

The results obtained are presented in Table 1. The first two 
columns indicate the annotators. Data provided by each 
annotator are used for training the classifier (first column). The 
model generated is then tested on data from all the annotators 
including the reference annotator (second column). Three sets 
of such experiments are performed, depending on features 
exploited: standard features, word embeddings, and 
combination of all the features available. Each experiment is 
evaluated with several measures: P Precision, R Recall, F F-
measure to evaluate the efficiency in prediction which medical 
words are understandable or not understandable for a given 
annotator: the darker background, the better the results. 

We can do several observations on these results. Features used 
show an impact on the results. Thus, standard features usually 
show better results than embeddings. One explanation is that 
standard features include 24 individual features covering 
different aspects of linguistic and non-linguistic description of 
words, while word embeddings rely only on distribution of 
words and their similarity. Yet, combination of all the features 
(standard and embeddings) usually improves overall results, 
sometimes going to up to 2.9 improvement of F-measure. Our 
hypothesis is that there exists a robust nonlinear dependency 
between some subsets of standard features and subword-level 

components of word embeddings. Testing this hypothesis is the 
topic of our further research. 

Recall values are always higher than Precision values. In each 
set of experiments, the best results are not obtained when the 
model of a given annotator is applied to own data. For instance, 
the O1 model provides better results when tested on data from 
annotators O2, O3 and A8. Similarly, the A7 model shows better 
results when applied to data from annotators O1, O2, O3 and 
A8. This is an important issue because it shows that the models 
acquired from one annotator can be successfully generalized 
over other annotators. 

Besides, it seems that the annotators form two clusters 
according to the classification of difficult medical words: one 
cluster with four annotators (O1, O2, O3, A8) and one cluster 
with three annotators (A1, A2, A7). This issue may be related to 
the health literacy of annotators. This may indicate that the 
annotation models can be shared by people with similar skills 
and knowledge. Yet, to confirm this hypothesis, it is necessary 
to define the level of health literacy of annotators. This task is 
rather difficult because there is no existing tests created for 
computing the health literacy level for French-speaking healthy 
people. Another hypothesis is that some models may be better 
generalizable than other models. This hypothesis must also be 
verified with additional experiments. 

Another important point is that, while the annotations go 
forward, the annotators usually show learning progress in 
decoding the morphological structure of terms and their 
understanding [40]. This progress is not taken into account in 
the current models. 

Conclusions and Future Work 

We proposed to address the detection of medical words which 
understanding may be difficult for non-specialized users of the 
medical area. We exploit for this machine learning algorithms, 
reference data from seven annotators, and several sets of NLP 
features: standard features (syntactic information, reference 
lexica, frequency, etc.), distributional features (word 
embeddings), and their combination. Our results provide 
several indications. Hence, the combination of all features is the 
most efficient. Concerning the generalization, we propose to 
learn model on a given annotator and then to apply it to data 
obtained from other annotators. This set of experiments 
indicates that models provide better results when tested on data 
from other annotators. We consider this to be a positive issue 
because it is important to be able to generalize annotations 
provided by a set of users on the whole population. Yet, these 
results may point out that the users should be apprehended 
through their health literacy, while currently there is no 
available tests for measuring it in French-language healthy 
people. 

We have several directions for future work. For instance, we 
will train our own word embeddings specific to medical data in 
French, so that they suit better our data. We also plan to 
implement and test other deep learning/neural networks/NLP 
methods which use the morphological information of words, 
such as character-level recurrent neural networks and character 
embeddings together with 1D convolutions. In addition to the 
readability of medical words, we will also work on measuring 
health literacy of French-speaking people. 
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