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Abstract 

Foodborne disease is a growing public health problem 

worldwide and imposes a considerable economic burden on 

hospitals and other healthcare costs. Thus, accurately 

predicting the propagation of foodborne disease is crucial in 

preventing foodborne disease outbreaks. Few studies have 

investigated the dependencies between environmental 

variables and foodborne disease activity. This study develops 

a regularization-based eXtreme gradient boosting approach 

for foodborne disease trend forecasting considering 

environmental effects to capture dependencies hidden in 

foodborne disease time series. A real case in Shanghai, China 

was studied to validate our proposed model along with 

comparisons to traditional and benchmark algorithms for 

foodborne disease prediction. Results show that the foodborne 

disease prediction approach we propose achieves slightly 

superior performance in terms of one-day-ahead prediction of 

foodborne disease, and presents more robust prediction for 2-

7 days ahead prediction. 

Keywords:  

Algorithms, foodborne diseases, machine learning   

Introduction 

Foodborne disease encompasses a wide spectrum of illnesses 

and is a growing public health concern worldwide, which is 

the result of eating food contaminated with bacteria, viruses, 

and toxic or hazardous substances [1]. It is the leading cause 

of symptoms of nausea, vomiting, abdominal pain, diarrhea, 

fever, paralysis, rash, and other symptoms across all age 

groups, especially vulnerable groups such as children, older 

people and those with impaired immunity [2]. Foodborne 

diseases are estimated to cause 600 million - almost 1 in 10 

people in the world - fall ill and 420,000 die every year [3]. 

Although recent molecular methods have improved the 

detection, identification and characterization of foodborne 

disease in the environment and clinical samples, widespread 

emergence of the viruses still presents a challenge to the 

prediction technique. For healthcare authorities, developing 

emergency preparedness plans to manage the surge in the 

number of patients increase during a pandemic is important if 

foodborne disease could be predicted in a timely and accurate 

manner [4]. The reliable forecast of foodborne disease allows 

better coordination of mitigation and intervention resources in 

public health system and reduces the strain on healthcare 

systems [5].  

A vast number of quantitative approaches have been devoted 

to forecasting foodborne disease [6,7,8,9]. Cawley et al. 

proposed a sparse Bayesian kernel survival analysis model to 

predict the growth of a foodborne microbial pathogen, which 

achieved  better accuracy than models based on traditional 

survival analysis techniques [6]. Rasam et al. applied 

geographical information system (GIS) and satellite remote 

sensing technologies in interactive mapping of foodborne 

disease and analyzing dynamic changes for foodborne 

transmission risk factor [7]. Mohammed et al. proposed an 

adaptive neuro-fuzzy inference system (ANFIS) to forecast 

the total cases of norovirus, and the algorithm showed high 

accuracy and remarkable prediction of norovirus cases in 

drinking water [8]. Hill constructed an agent-based model to 

provide a reasonable representation of how the norovirus 

spread between students among classrooms in a school [9]. 

Several studies have contributed to the growing body of 

evidence that points to the role of environmental variables in 

the transmission of the foodborne disease [10,11], where 

linkages between certain environmental factors and specific 

foodborne disease type have been investigated. However, 

within current research there has been limited assessment of 

the global impact of the environment on foodborne diseases, 

and specifically the temporal transmission of foodborne 

disease. Incorporating considerations for environmental 

factors in foodborne disease spread may address uncertainties 

and non-stationarity existing in foodborne disease 

observations.  

To address this gap, we apply a regularization-based eXtreme 

gradient boosting approach in the creation of a prediction 

model that can reveal hidden patterns in foodborne disease 

data related to environmental factors, particularly meteorology 

and air quality. The contributions of the study can be divided 

into three folds. First, environmental information is fused into 

the model to assess their impact on foodborne disease spread. 

Prediction results are compared to explain the significance in 

including environmental variables. Second, L1-regularization 

(least absolute shrinkage and selection operator, LASSO) [13] 

is employed to identify the most explainable variables and 

reduce the sparse effect for multiple environmental factors in 

the prediction model. The LASSO has two advantages over 

other feature selection techniques in terms of stability and 

computational efficiency, which are preferable in our case to 

select most revelent and non-redundant environmental 

variables for foodborne disease prediction. Finally, a 

systematic comparison between several machine learning 

models and our approach is conducted through a real dataset 

from the Shanghai Municipal Center for Disease Control and 

Prevention (SHCDC) to demonstrate the performance of our 

proposed model. 

The rest of this paper is organized as follows. Methods 

presents the model details of the proposed regularization-

based eXtreme gradient boosting approach for foodborne 

disease trend forecasting. Results presents a real case study, 

where foodborne disease time series obtained from Shanghai 

is applied to demonstrate the performance. Finally, the 

discussion provides the summary and concluding remarks. 
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Methods 

Data Description 

A national foodborne disease monitoring and surveillance 

system was established in 2010, covering all 31 provinces, 

major municipalities and autonomous regions in Mainland 

China. Among those covered regions, Shanghai municipality 

has been confronted with the challenge of reducing the burden 

of foodbore disease. To determine a diagnosis of foodborne 

illness, clinicians review history and and underlying condition 

for patients who report gastrointestinal symptoms, vomiting, 

fever, or drowsiness. In collaboration with SHCDC, the daily 

number of total foodborne disease cases, along with five other 

channels of foodborne disease such as the daily numbers of 

positive cases and foodborne cases conducting laboratory test, 

was collected from 1st-Jan-2014 to 25th-Oct-2017. During this 

period of 1394 days  a total of 52163 cases were reported by 

selected survillance hospitals. The meteorology data including 

daily reports of sunshine, humidity, ground temperature, 

pressure, rainfall, air temperature, wind speed, max wind 

speed and wind direction from 2014 to 2017 were collected 

from Shanghai Meteorological Bureau. The daily 

concentrations of ambient air pollutants from 2014 to 2017 

were also obtained from Shanghai Environmental Protection 

Bureau website, where average values of sulfur dioxide (SO2), 

nitrogen dioxide  (NO2), ozone (O3), particular matter less 

than 2.5 µm in diameter (PM2.5), particulate matter less than 

10 µm in diameter (PM10), carbon monoxide (CO) and air 

quality index (AQI) from different monitoring stations were 

calculated. The  missing values of each variable were imputed 

with the mean computed from the remaining records of that 

variable. After preprocessing, these three sources of databases 

were aggregated according to the recorded dates. With 

consideration of periodicity such as date, week, month, year, 

day of week, day of month and day of year, the dataset was 

composed of a total of 29 variables. For our study, the daily 

number of total foodborne disease cases was the predictive 

variable of all models, and meteorology data and ambient air 

pollutants data were the input variable. 

KPSS and Kruskal-Wallis test 

The stationarity and linearity analysis of the foodborne disease 

series were performed. First, the non-stationary characteristic 

of the time series was detected by means of KPSS 

(Kwiatkowski, Phillips, Schmidt, and Shin) test [14]. Then, 

Kruskal-Wallis test [15] was applied to confirm the existence 

of non-linearities, which was performed by splitting the time 

series into five packages of data and detecting the equality of 

these five distribution functions to learn whether those 

samples were from the same distribution. 

L1-regularization for Important Environmental  Factor 

Selection 

The prediction task can be challenging given limited data and 

multiple environmental factors due to overfitting and strong 

correlations among different environmental factors. Variable 

selection methods are commonly used to in such scenarios. 

LASSO was applied in our study to identify an appropriate 

variable set of environmental factors for improving the 

prediction accuracy of foodborne disease.  

Proposed by Tibshirani, LASSO is widely employed to 

estimate parameters and select variables in regression analysis 

[12]. The LASSO estimator is a particular case of the 

penalized least squares regression using L1-penalty to shrink 

regression coefficients toward zero. Thus the most explainable 

variables whose coefficients are not equal to zero are selected. 

Typically, we assume that � ∈ � × � is the input data matrix, 

for which the first column is time index, and the remaining 

(� − 1)  columns are predictors including environmental 

components and other channels of foodborne diseases for 

continuous N days. � ∈ � × 1 represents daily number of total 

foodborne disease cases during the same continuous � days. 

Given the standardized predictors ���  for  � = 1,2, … ,�  and 

� = 1,2, … , � , and the response values 	� , the LASSO 

estimator is described as 

���
������ = ������∑ (	� − 
� − ∑ ���
�	
�
� )� +

�
�

� ∑ |
�|	
�
� � .           

(1)   

LASSO is implemented with training data to select the most 

robust predictors using least angle regression algorithm by 

employing the LARS package in the R (Version 3.3.2). The 

following methods are also applied with R based on the 

corresponding R packages, such as xgboost, stats, adabag, 

gbm, etc. 

eXtreme Gradient Boosting Approach 

With the predictor subset selected by LASSO, machine 

learning models are applied to forecast foodborne disease 

cases. The gradient boosting model proposed by Friedman  

has been empirically proven to have high efficiency [13]. As 

one of popular gradient boosting models, tree boosting is a 

highly effective and widely used machine learning method. In 

this paper, a scalable end-to-end tree boosting approach, 

namely eXtreme gradient boosting (XGBoost) has been 

applied to perform foodborne disease forecasting. XGBoost is 

widely used by data scientists to achieve state-of-art results on 

difficult machine learning challenges [14]. 

For a given data set with �  samples and �  features � =
��x�,	��� (|�| = �, �� ∈ ℝ	,	� ∈ ℝ), a tree ensemble model 

uses K additive functions (K trees)  to predict the output. 

          	�� = ∑ ������,�
�
� 				�� ∈ ℱ,           (2) 

where ℱ = {���� = �����	(�:	ℝ	 →  ,� ∈ ℝ�) stands for the 

space of  regression trees (also known as CART). Here  � 

represents the structure of each tree that maps an instance to 

the corresponding leaf index.   is the number of leaves in the 

tree.  Each �� corresponds to an independent tree structure � 

and leaf weights �. For each instance, the decision rules in the 

trees (given by �) are applied to classify it into the leaves and 

calculate the final prediction by summing up the weight in the 

corresponding leaves (given by � ). To learn the set of 

functions used in the model, we minimize the following 

objective in equation (3) . 

         !(∅) = ∑ "#$$�	� ,	���+ ∑ %(��)�
�
� 	

�
� ,                     (3) 

where the first part in equation (3) is the differentiable convex 

training loss that measures the difference between the 

prediction 	��  and the target 	� . The second term %  is the 

complexity of the trees. The model complexity %(��)  is 

defined by the following equation, 

                %���� = γ +
�

�
� ∑ &'��'&��

�
� ,                            (4) 

where   is the number of leaves in the tree, � represents for 

the regularization weight, γ is the minimum loss reduction and 

||��|| stands for the score for corresponding leaves.  The tree 

��(�) is defined in the following equation (5), 

        ����� = �����,� ∈ ℝ� ,�: ℝ� → 1,2, … , .                 (5) 

The tree ensemble model in equation (3) includes function as 

parameters and cannot be optimized using traditional 

optimization methods in Euclidean space. Instead, the model 

is trained in an additive manner. Formally, let  	��(�)represents 
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the prediction of �-th training sample at the (-th iteration, we 

will need to add ��  to minimize the following objective.: 

  !(�) = ∑ "#$$)	� ,	��(���) + ��(��)*+ %(��)	
�
�                  (6) 

The ��  that most improves the models is greedily added to the 

model structure.  By embedding the regularization term with 

equation (4) and (6) it can be further approximated based on 

the  Taylor’s expansion as follows:           

!+(�) ≈ ∑ ,"#$$)	� ,	�������*+ ��������+ �

�
ℎ��������-+

�
�

γ + 	�
�
	� ∑ ||.�||

��
�
� ,                                                           (7)               

where �� = /"#$$(	� ,	�������)//	�(���) , ℎ� =

/�"#$$(	� ,	�������)//	�(���)   are the first and second order 

gradient statistics on the loss function . 

 Define 0� = {�|�(�� = �)} as the instance set in leaf �. We can 

rewrite equation (7) as follows.  

 !+(�) ≈ ∑ [�
�
� 1∑ ���∈��

2�� +
�

�
1∑ ℎ� + ��∈��

2��
�] + 3 .     (8) 

Given a fixed decision rule	�(�), the optimal weight .�
∗  of 

leaf � can be  computedby setting the first-order derivatives of 

!+(�) equal to zero, obtaining the following expression: 

                               .�
∗ = −

��

����
,              (9) 

where 4� = ∑ ���∈��
 and 5� = ∑ ℎ��∈��

. The corresponding 

optimal value is calculated  as                             

                         !+������ = −
�

�
∑ ��

�

����
+�

�
� γ                      (10) 

The optimal XGBoost classifier is obtained with the sequential 

optimization at each scenario. 

Benchmark Algorithms for Comparative Analysis 

We implemented benchmark algorithms with their standard 

implementations and  compared them to the XGBoost. 

• Linear Regression (LR): The dependent variable is 

considered as categorical in nature while classification 

is done by calculating the error [16]. 

• Support Vector Regression with Linear Kernel (SVR): 

Attempts to minimize the generalization error bound 

so as to achieve generalized performance. SVR is 

based on the computation of a linear regression 

function in a high dimensional feature space where the 

input data are mapped via a nonlinear kernel [17]. 

• Bagging (Treebag): A method for generating multiple 

versions of a predictor to get an aggregated predictor. 

The aggregation averages over the versions when 

predicting a numerical outcome [18]. 

• Gradient Boosting Model (GBM): Combines the 

results of different prediction models by iteratively 

learning from the losses which occurr at the previous 

step through calculation of negative gradient [13]. 

Evaluation  

The two indices, root mean square error (RMSE) and mean 

absolute percentage error (MAPE), are selected for evaluation 

of the errors. The RMSE is a frequently used measure of the 

differences between values predicted by a model and the 

values observed, which is the square root of the average of 

squared errors and scale-dependent. The MAPE is also a 

popular measure of prediction accuracy of a prediction method 

in statistics. The absolute value in the calculation is summed 

for every forecasted point in time and divided by the number 

of fitted points. Compared to the RMSE, the MAPE is scale-

independent. The formulas for calculation are defined as 

follows: 

                         6789 = :�


∑ (	� − 	��)�

�
� ,                      (11) 

                          7;<9 =
�


∑ |������|

��


�
� ,                              (12) 

where �  is the number of data samples, 	�(� = 1,2, … ,�) is 

the observed number of foodborne cases and 	��(� =
1,2, … ,�) is the predicted daily number of total foodborne 

disease cases. 

Results 

The descriptive statistics summary of the daily number of 

foodborne disease cases and environment factors are given in 

Table 1.  

Table 1– Decriptive Statistics of  the Data (Daily Based) 

Variable Mean SD Min Max

Total foodborne cases 37.30 24.07 2.00 181.00

Sunshine(h) 4.49 4.00 0.00 12.70

Relative humidity(%) 73.17 12.56 35.00 98.00

Ground temperature(℃) 18.66 9.25 -2.70 40.20 

Pressure (Pa) 1015.90 8.88 992.80 1039.70

Rainfall (mm) 3.98 12.71 0.00 155.40

Air temperature(℃) 17.71 8.55 -6.10 34.80 

Wind speed(m/s) 2.55 0.92 0.50 7.40

Max wind speed(m/s) 4.97 1.22 2.50 10.40

PM2.5(µg/m3) 47.31 30.68 5.00 216.00

PM10(µg/m3) 66.39 37.06 8.00 256.00

SO2(µg/m3) 15.35 8.55 6.00 75.00

CO(µg/m3) 0.80 0.27 0.40 2.20

NO2(µg/m3) 43.38 19.38 5.00 143.00

O3(µg/m3) 106.50 44.54 11.00 286.00

AQI 83.14 37.89 23.00 266.00

In time series plot of the daily number of total foodborne 

disease cases (Figure 1), a moderate peak is observed in 2015, 

with two sharp peaks followed in 2016 and 2017 respectively. 

Before 2015, steady growth in the daily number of total 

foodborne cases was recognized, which demonstrated the 

nonlinearity existing in foodborne disease occurrence. 

Figure 1– Time Series Plot of Daily Foodborne Disease Cases 

Correlation, Stationarity and Linearity Analysis Between 

Disease and Environment 

The Pearson correlation analysis was implemented to explore 

the relationship between external factors and foodborne 

disease cases. Daily numbers of the positive cases, the 

laboratory testing cases and the norovirus testing cases, as 

well as the daily percentage of total positive cases were found 

to be strongly correlated with the daily number of total 

foodborne disease cases, with positive correlation values of 

0.71, 0.65, 0.65 and 0.44 respectively. The qualitative 

relationships between daily foodborne disease cases and 

weather conditions were exploited with paired scatter plots as 

shown in Figure 2. For each subfigure in Figure 2, the x axis 

denotes the corresponding environmental factor, while the y 

axis represents the daily number of total foodborne disease 
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cases. As seen from the figure, weather conditions such as 

ground temperature, air temperature and pressure were highly 

 

Figure 2- Scatter Plot Matrix Between Foodborne Disease 

and Environmental Factors 

correlated with the daily number of total foodborne disease 

cases. These findings are further verified through quantitative 

analysis of Pearson correlation calculation, where the 

correlations between ground temperature, air temperature, 

pressure and daily number of total foodborne disease cases 

reached 0.48, 0.47 and -0.38 respectively.  Weak correlations 

were also observed between air quality conditions and daily 

number of total foodborne disease cases. Except for O3, SO2, 

NO2, PM2.5, PM10, CO and AQI were negatively correlated 

with the daily number of total foodborne disease cases, with a 

maximum absolute value of 0.29 found at NO2.  

The null hypothesis that the foodborne disease series was level 

(or trend) stationary was rejected by KPSS test results, with p 

value smaller than 0.01 (ptrend<0.01, plevel<0.01). The Kruskal-

Wallis test also depicited that nonlinearity existed in 

foodborne disease occurrence with an extreme small p value 

(p=9.43 ⅹ 10-144). 

Trend Prediction with Regularization Based XGBoost 

The collected foodborne disease cases and environmental 

datasets were employed to validate the effectiveness of 

regularization based XGBoost methods. The entire dataset was 

divided into two partitions, with observations from 1st , Jan, 

2014 to 19, Jan, 2017 (1116 samples) for training and 

observations from 20, Jan, 2017 to 25, Oct, 2017 (279 

samples) for testing. The seasonal ARIMA (SARIMA) models 

were first implemented to encompass the potential critical 

predictors for instance and the historical daily number of total 

foodborne disease cases, and then applied as a benchmark 

model without considering any environmental factors. The 

parameters in 8;607;(�,=, �)(<,>,?)  , which represented 

seasonal factors (s), autoregressive (AR) order (p), degree of 

differentiating (d), moving average (MA) order (q), seasonal 

AR order (P), seasonal differential order (D) and seasonal MA 

order (Q), were selected using both partial autocorrelation and 

iterative searching approach. Through the comparisons of 

RMSE and MAPE on the validation dataset (the last 20% of 

training samples in training dataset), the prediction results 

showed that  8;607;(6,0,0)(3,0,0)!  achieved best 

generalization ability with a minimum MAPE of 18.04% on 

validation dataset compared with other parameter 

combinations. The selected model (8;607;(6,0,0)(3,0,0)!) 

was employed to predict the daily number of total foodborne 

disease occurrence in 1-7 days’ advance with test dataset. The 

predictive performance steadily decreased when the 

forecasting horizon increased due to uncertainty and 

complexity in future foodborne disease occurrence. The best 

prediction was achieved at 1-day ahead prediction, with a 

minimum RMSE and MAPE of 11.72 and 21.34% 

respectively. To illustrate the effects of environmental factors 

and other monitoring channels of foodborne disease in 

foodborne disease forecasting, XGBoost method was applied 

to predict the cases. Before model building, the LASSO was 

firstly adopted to derivative of 27 external variables for 

selecting the most explainable features. For 1-day ahead 

prediction, 12 of 27 variables including daily numbers of other 

foodborne diseases (positive cases, laboratory testing cases, 

norovirus positive cases), daily percentage of total positive 

cases, air temperature, sunshine, humidity, wind speed, 

maximum wind speed, CO, year, and day of week were found 

to be critical in improving the performance of XGBoost. With 

proposed regularization based XGBoost method, we were able 

to obtain a RMSE of 11.71 and a MAPE of 21.15% on the 

same test dataset with SARIMA model, slightly improving the 

predictive performance.  

Discussion 

We further compared the daily foodborne disease forecasting 

performances obtained from other machine learning models 

including linear regression (LR), support vector regression 

with linear kernel (SVR), bagging (treebag), gradient boosting 

model (gbm), and XGBoost model. Table 2 shows the 

forecasting performances obtained on test dataset.  

Table 2– Performance of Mutiple Models on Test Dataset 

 

Model Horizon RMSE 
MAPE 

(%) 
Model Horizon RMSE 

MAPE 

(%) 

SARIMA 

1 11.72 21.34 

treebag 

1 13.07 23.32

2 12.49 22.44 2 14.72 25.02

3 13.37 24.06 3 14.18 24.44

4 13.98 24.42 4 14.79 25.40 

5 14.89 24.92 5 15.30 27.03

6 15.79 26.24 6 14.95 26.21

7 16.88 27.70 7 15.57 26.41

LR 

1 12.29 25.43 

gbm 

1 11.85 21.09 

2 14.06 29.47 2 13.47 24.23

3 13.61 28.16 3 12.98 23.83 

4 15.49 31.54 4 13.84 26.04

5 14.87 30.53 5 15.45 27.44 

6 15.35 31.60 6 15.89 28.67

7 15.78 33.80 7 16.17 27.63 

SVR 

1 11.65 22.78 

XGBoost 

1 11.71 21.15 

2 13.21 26.58 2 13.21 24.14

3 12.88 25.89 3 12.85 25.30

4 13.98 27.99 4 13.98 27.14

5 14.16 28.41 5 14.21 26.60

6 14.31 29.17 6 14.14 26.25 

7 14.51 30.77 7 13.59 25.51

Varying with the forecasting horizon, both SARIMA and 

XGBoost achieved a stable and robust predictive precision in 

terms of RMSE and MAPE. However, when the forecasting 

horizon increased, the predictive errors of XGBoost remained 

steady, but had a rising trend with SARIMA model. The 

performances of 1-day ahead prediction on test dataset are 

further provided in Figure 3 as an example, of which x axis 

denotes date and y axis is the daily number of foodborne 

disease cases. From these performances we suggest when the 

forecasting horizon is within 4 days, SARIMA model can be 

deployed for real application. When the forecasting horizon is 

greater than 4, regularization based XGBoost model is 

recommended. 

Conclusion 

This paper presents a regularization based model based on 

eXtreme gradient boosting approach for foodborne disease 

trend forecasting. Environmental factors including weather 

conditions and air quality conditions were incorporated into 

the prediction model and the LASSO technique was applied to 

shrink the predictors and identify the critical factors that 

would affect foodborne disease progagation. The real case 

demonstrated a satisfactory and robust performance in terms  

of 5-7 day ahead prediction, with a lowest MAPE of 25.52% 

for 7-day ahead forecasting. However, the model does not 

significantly improve the predictive performance within 4 

days of environmental factors and foodborne disease. 
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(a) SARIMA                                      (b) Linear Regression      (c) SVR  

                                                                

              

  (d) Treebag           (e) GBM                                (f) XGBoost method 

Figure 3– Foodborne Disease Prediction with Different Machine Learning Techniques 

 

 

Future works still need to be done to investigate relationship 

between specific type of foodborne disease (e.g norovirus 

foodborne disease) and environmental factors. Moreover, 

spatial factor should also be modeled for accelerating the 

investigation of foodborne disease outbreak. 
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