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Abstract 

Understanding the progression of chronic diseases, such as 

chronic obstructive pulmonary disease (COPD), is important 

to inform early diagnosis, personalized care, and health system 

management. Data from clinical and administrative systems 

have the potential to advance this understanding, but 

traditional methods for modelling disease progression are not 

well-suited to analyzing data collected at irregular intervals, 

such as when a patient interacts with a healthcare system. We 

applied a continuous-time hidden Markov model to irregularly-

spaced healthcare utilization events and patient-level 

characteristics in order to analyze the progression through 

discrete states of 76,888 patients with COPD.  A 4-state model 

allowed classification of patients into interpretable states of 

disease progression and generated insights about the role of 

comorbidities, such as cardiovascular diseases, in accelerating 

severe trajectories. These results can improve  the 

understanding of the evolution of COPD and point to new 

hypotheses about chronic disease management and 

comorbidity.  
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Introduction 

Chronic diseases typically progress slowly over many years. 

For example, patients with chronic obstructive pulmonary 

disease (COPD) may progress from mild to very severe disease 

over the span of more than a decade [1]. Understanding how, 

and to the extent possible why, patients progress through their 

disease is crucial for improving disease detection, management 

and prognosis. For example, inappropriate care at early stages 

of the disease can accelerate progression to more severe 

stages.[2,3]  At a clinical level, the GOLD criteria define stages 

of COPD disease (based on lung function assessments) and 

identify appropriate care by disease stage.[4] However, in the 

absence of accessible clinical and physiological data for the 

whole COPD population, health system managers are unaware 

of the distribution of disease severity and cannot tailor 

interventions to alter their trajectories.   

Fortunately, the data needed to model disease progression exist 

in the form of the vast amount of individual patient data stored 

in longitudinal health records, such as  healthcare 

administrative databases. Despite their value, these data are not 

direct observations of the underlying processes that drives 

disease progression, but instead they record indirect measures 

such as healthcare encouters, diagnositc codes and drugs. As a 

result, inferential methods are needed to model disease 

progression as a function of these observeables.  

Several factors complicate the modeling of disease progression. 

First, patient data are recorded only when services are 

delivered, resuling in irregularly-spaced observations that differ 

in granularity between patients or across one patient’s course of 

illness. Disease trajectories, in terms of the rate of progression 

and the profile of health service used, will also vary widely 

across patients, further creating challenges in modeling 

progression for groups of patients. Moreover, for large 

segments of patient trajectories, records may be sparse due to 

infrequent visits, or records may be incomplete (e.g., censored 

data or care provided outside the health system). Finally, the 

comorbid conditions experienced by most patients are an 

important driver of both observed healthcare use and 

progression in the underlying disease of focus.  

Research that has used data from electronical health records to 

model chronic diseases such as COPD has tended to simplify or 

collapse the data over time (e.g. 30-day readmission [5]). Other 

researchers have opted to use regularly spaced data from 

relatively small and selected clinical cohorts, allowing them to 

model disease progression as time-to-event [6,7]. In modeling 

the heterogeneity in COPD progession, researchers have 

clustered clinical measures cross-sectionally [8] or over-time as 

latent trajectories from smaller regularly-spaced trial data [9].  

Previous disease progression research using mutli-state 

modeling has typically made use of known disease status or 

known transition rates [10–13] rather than modeling the latent 

disease progression as a stochastic process. Recent research by 

Wang et al. [14] has developed a novel approach to modeling 

COPD progression using a hidden Markov model (HMM), 

which assumes a latent Markov process governing an evolution 

of observed events. These events are defined by latent 

groupings of COPD-related and comorbidity diagnostic codes 

(ICD-9) measured in 90-day bins.  

To model the heterogeneous, sparse, non-equidistant, and 

incomplete longitudinal observations in a large cohort of COPD 

patients we propose using a continuous-time hidden Markov 

model (CTHMM) under a generalized linear modeling 

framework with patient-level covariates of comorbidities [15]. 

Such multi-state models can describe patient status over time as 

a discrete-time realization of a continuous-time Markov 

process, while accommodating irregular spacing of 

observations [16]. We are interested in understanding how a 

CTHMM can be used to infer latent disease progression from 

an observed evolution in complex healthcare utilization data.  

We use a CTHMM on data from a large cohort of COPD 

patients to model trajectories of the chronic disease and 
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examine the role comorbid conditions in the progression. Our 

objective is to generate hypotheses about the evolution of the 

illness and how the management of COPD may be improved. 

Methods 

Data 

A cohort of COPD patients was selected from an open, dynamic 

cohort sampled in 1998 as a 25% random sample drawn from 

people registered with the provincial health insurance agency 

(Régie de l’assurance maladie du Québec) in the census 

metropolitan area of Montreal[17]. At the start of every 

following year, 25% of births and new residents arrived to the 

area in the past year were sampled to maintain a representative 

cohort. Patients were followed until they died or moved out of 

the region. The administrative records included outpatient 

diagnoses and procedures submitted through billing claims, and 

procedures and diagnoses from hospital records. 

Using established case-definitions based on diagnostic codes 

[18,19], we enrolled 76,888 COPD patients with an incident 

event (ICD-9 491x, 492x, 496x; ICD-10 J41-J44) occurring 

after a minimum of two years at risk and followed patients until 

December 2014. Comorbid diseases were determined at 

baseline (upon entry in the larger dynamic cohort) using 

established case-definitions for 9 diseases: acute myocardial 

infarction (AMI), asthma, cancer, congestive heart failure 

(CHF), diabetes, hypertension, ischemic heart disease (IHD), 

mental illness, and stroke). Patient age and sex were also 

retained for model covariates.  

When a patient has an ecounter with the health system, the data 

recorded are indirect measures of their underlying disease state. 

For this study, we used data captured during an outpatient visit 

with a general practitioner (GP), an outpatient visit with a 

specialist (SPEC) (coded as respirologist or internist), visits to 

an emergency department (ED), and hospitalizations (HOSP). 

Health services used prior to the incident COPD event were not 

considered.  

Model description 

To model disease progression within the COPD cohort, we used 

a continuous-time hidden Markov model (CTHMM). Our 

model assumes the observed events are generated from hidden 

states that we interpret as belonging to states of disease severity, 

by computing the probability of different healthcare utilization 

events with known levels of severity.[20] The observable data 

in this CTHMM were healthcare utilization events, which were 

classifed into four mutually exclusive types (GP, SPEC, ED, 

HOSP). If two events occured on the same day, then we used 

the most severe event, where HOSP was the most severe, 

follwed by ED, SPEC, and GP.  

Given an observed event, the probability of each of the four 

observables was determined by a multinomial model, using GP 

as the reference event. For each state, there was a set of 

parameters β that specified the multinomial model of the four 

healthcare utilization outcomes. Each state’s multinomial 

model was specified as a set of three logistic regression models 

of the probability of specialist, ED, or hospital visit versus the 

probability of a GP visit. Each logistic regression model was an 

intercept-only model, meaning that the probability of each 

healthcare utilization outcome was the same for any patient in 

the same state. Fixing the utilization probability within states 

facilitates the interpretion (or labeling) of different states, 

strictly based on differences in the severity of patient need 

across states. 

Because the observed values (healthcare utilization events) 

were irregularly-spaced in time, we modeled the transitions 

between hidden states in continuous time. Also, as patients may 

have extended periods without any healthcare visits, we 

allowed for transitions between states even if there were no 

observed healthcare utilization events. The transition rate 

between states was specified by the transition rate matrix Q, 

whose parameters were fit as part of the model, where each row 

and column corresponded to a hidden state. If �� is the state 

membership at time t, then ��� = lim
∆�→�

�(���∆���|����)

∆�
	  where � ≠

�. The diagonal entries of Q are computed so that the rows of Q 

sum to zero. Q was calculated separately for each patient using 

the vector of their baseline covariates �, such that log����	 =
�	
�� where � ≠ �.  

We fixed the transition matrix to allow transitions only to one 

adjacent subsequent state (a Markov chain), except in one 

branching state with two transitions. The parameter set 
��	for 

all other state pairs were fixed to zero. By restricting the 

transitions in this manner we aimed to model a set of alternative 

disease progression trajectories following an earlier Markov 

chain progression. We compared the goodness-of-fit of a 4-

state model (as an initial state transitioning to a state that 

branches to two absorbing states) to three  models with similar 

topologies but additional states: 5-states (one state before the 

branching state), 6-states (one state before each absorbing 

state), and 7-states (a combination of the 5- and 6-state 

additions).  We compared models using the Bayesian 

information criteria (BIC), mean posterior probabilities of 

predicted states, as well as criteria from guidelines on model 

fitting in HMM concerning the interpretability and usefulness 

of additional states. [21] 

Model fit 

Our model required us to fit three sets of parameters. π 

specified the probability of starting in each state, 
 specified the 

relationship of the patient’s baseline covariates to the transition 

rate matrix, and β specified the probability of each observable 

(healthcare utilization) for each state. 

To fit our model, we used expectation-maximization (EM) [22], 

an iterative algorithm in which previous parameter values are 

used to compute new values. The EM algorihm requires starting 

values for the model parameters. For π, we specified equal 

probability of starting in any state, the β parameters were 

randomly drawn from a normal distribution with a mean of 0 

and a standard deviation of 1, and the 
 parameters were drawn 

from a uniform distribution between 0 and 1, except for the 

parameter for age, which was scaled by the maximum age in 

the data. We scaled ∆� to be expressed in years. 

At each iteration of EM, we used the forward-backward 

algorithm [23,24], along with the current parameter values for 

π, β, and 
, to compute, for each consecutive pair of 

observations within each patient, the probability of starting and 

ending in each state pair. From these state pair membership 

probabilities, we computed the probability of state membership 

at all observed times for all patients. 

We then computed new estimates for each of our parameters. 

We computed a new value for π using the mean probability of 

state membership at the first observed time point across all 

patients, and computed new values for β by fitting a 

multinomial model for each state, weighting each observation 

by the probability of state membership at that time. Finally, we 

computed new values for 
 by using a nested EM procedure 

[25,26]. We stopped the algorithm when the sum of the 
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difference in norms between the previous and new parameter 

values was below 0.05.  

Results 

Figure 1 (A) describes the β and 5-year, non-diagonal Q 

coefficients of a 4-state model. A 4-state model was chosen 

over 5-, 6-, and 7-state Markov chain models despite decreases 

in BIC in latter models (4-state, 5853716; 5-state, 5767363; 6-

state, 5721712; 7-state, 5668360).  This decision was based on 

the 4-state model’s higher mean posterior probabilities of 

predicted states (0.93 vs 5-state, 0.91; 6-state, 0.90; 7-state, 

0.87) and its better interpretability of distinct states, allowing 

for better understanding of predictors of transition in disease 

progression modeling and for the aim of hypothesis generation. 

We interpreted state 1 as representing a controlled state with 

high probability of GP visits (86%). Patients in state 2, 

interpreted as a state of higher disease severity, had a higher 

probability of ED visits (51%) and hospitalizations (22%). State 

3 was interpreted as a stage of more specialized disease 

management (40% specialist visits and 41% GP services), 

compared to state 4 in which patients have a combination of 

higher GP use (65%) but also higher  ED visits (23%). 

Patients typically transitioned slowly (16% over 5 years) from 

state 1 to state 2, while transitions away from state 2 were more 

accelerated (57% to state 3 and 29% to state 4 over 5 years). 

The complements of these rates represent the probability of 

remaining in states 1 (84%)  and 2 (14%) over 5 years. 

Transitions from state 1 to 3 or 4 only occurred through state 2. 

Figure 1 (B) shows  four illustrative patients trajectories of 

observed health service use along with predicted states at 

observation time based on patients’ posterior probability. .  

Figure 1 A) Diagram of 4-state model of COPD progression based on healthcare utilization. Radial bars represent the probability of 

each health service (HOSP = hospitalization, ED = emergency department visit, SPEC = specialist visit, GP = general practicioner 

visit) within a state (labeled 1 to 4), while distance (horizontally) between each state represents the transition probability over 5 years 

(more distant states represent lower transition probability). B) Observed health service use trajectories of four illustrative patients. 

Health service types are plotted on separate lines, while patients’ predicted state (from1 to 4) at observation time is represented by 

the dot color  
 

A) 

B) 
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Table 1 describes the marginal associations between patients’ 

baseline covariates and 5-year transition rates. Noteworthy 

associations include hypertension, IHD, and stroke increasing 

the probability of transitioning to and remaining in state 2 (RR 

≥ 1.3 and ≥ 1.5, respectively), while cancer is the only covariate 

associated with higher transition probabilities from state 2 to 3 

(1.3). No covariates have large effects on transition 

probabilities from state 2 to state 4.  

Table 1– Risk ratio of transition between states after 5 years 

by patient characteristics. 

Start state 1 2 

End state 1 2 2 3 4

Variable      

Age (10 years) 0.8 1.3 1.0 0.8 1.1 

Sex (Male) 0.9 1.2 1.2 0.9 1.0 

AMI 1.0 1.0 1.0 1.0 1.0 

Asthma 0.9 1.2 1.3 1.1 0.9 

Cancer 1.0 1.0 0.9 1.3 0.9 

CHF 1.0 1.1 1.2 0.9 1.0 

Diabetes 0.9 1.1 0.9 1.0 1.0 

Hypertension 0.8 1.8 2.1 0.7 0.9 

IHD 0.9 1.4 1.5 0.9 0.9 

Mental illness 0.9 1.1 1.1 1.0 1.0 

Stroke 0.9 1.3 1.6 0.6 1.1 

 

Discussion 

We applied a continuous-time hidden Markov model to 

healthcare utilization data for a cohort of COPD patients to 

model their unobserved, latent, disease progression. The model 

allowed us to learn trajectories through underlying disease 

states from heterogeneous, sparse and incomplete observations.   

We found that the model provided interpretable results, 

allowing us to generate hypotheses about how healthcare 

utilization evolves at different stages of disease progression. 

The discrete states suggest slow progression from a controlled 

state of the disease (state 1) to one that requires acute care (state 

2) and is typically more transient. Patients will mostly transition 

rapidly from that acute state to one where their disease is 

managed with primary and specialized care  (state 3). However 

our model specification allowed us to identify an alternative 

trajectory from state 2 to state 4 where patients are potentially 

managed inadequately (lower specialist care and higher ED 

visits than state 3). This pattern suggests possible disparities in 

patient management (state 3 vs state 4) following 

hospitalizations and emergency care (state 2) as a window for 

targeting further investigations into COPD trajectories.  

Including patient covariates in the model allowed us to identify 

predictors of less favourable disease progression patterns. 

Having a history of different cardiovascular diseases (CHF, 

hypertension, IHD, and stroke) or of asthma; being older, and 

being male predicted more severe trajectories, either by 

precipitating transition towards a state requiring more 

hospitalizations and ED visits (state 2) or by increasing the 

probability of remaining in that state. A higher probability of 

remaining in state 2 typically occurred at the expense of 

transitions to more specialized care in state 3. We interpret this 

finding as suggesting that comorbid conditions may increase  

 

the risk of repeated acute care in COPD patients  and reduce the 

rate of progression to a state with specialized management. 

Patients with a history of cancer, however, were more likely to 

transition to state 3, possibly due to their greater need for 

specialized treatment. Further analysis can validate these 

covariates as being modifiers of disease progression by 

investigating to what extent they predict similar healthcare use 

patterns outside of a COPD cohort.  

These results demonstrate that with little specification beyond 

model topology (allowed transitions) and number of states, 

electronic health data can provide new insights and hypotheses 

on disease progression and management. At a clinical level, 

such models can improve prognoses by matching patients to 

typical trajectories of a sub-population. At a health systems 

level, decision makers can identify health service profiles (e.g. 

access to specialist care) that are predictive of slower disease 

progression. 

An important aspect of this type of analysis is to weigh  multiple 

criteria in model selection, such as interpretability and relative 

contribution of additional states [21], especially if the 

predictors of state transitions are also meaningful. Future 

research can explore the effect of specifying topologies 

allowing for transitions back to earlier states, more than one 

branching state, or higher order Markov chains (states 

depending on n previous states), as well as additional transition 

covariates such as prescribed drugs and treatments.  

Certain limitations of our approach must be considered. Despite 

our longitudinal focus, covariates of transition probabilities 

could only be analyzed in terms of their respective baseline 

measures, a limitation of CTHMMs. Time-varying measures of 

comorbidities and other covariates would better reflect the 

evolving impact of patient characteristics on disease 

progression. In addition, classification of both comorbid status 

and inclusion in the COPD cohort was based on deterministic 

case definitions that ignore potential misclassification. An 

improved approach could learn a probablistic classification of 

both comorbidities and the modeled disease in a manner similar 

to how the model learned disease states.   

Conclusions 

By modeling complex longitudinal observations generated by 

latent disease states, we have created opportunities for future 

research in understanding the progression of COPD with 

potential applications to other chronic diseases.   
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