
Providing Comorbid Decision Support via the Integration of Clinical Practice Guidelines

at Execution-Time by Leveraging Medical Linked Open Datasets

William Van Woensela, Samina Abidia, Borna Jafarpoura, Syed Sibte Raza Abidia

a NICHE Research Group, Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada,

Abstract

Clinical Decision Support Systems (CDSS) utilize

computerized Clinical Practice Guidelines (CPG) to deliver

evidence-based care recommendations. However, when

dealing with comorbidity (i.e., patients with multiple

conditions), disease-specific CPG often interact in adverse

ways (e.g., drug-drug, drug-disease interactions), and may

involve redundant elements as well (e.g., repeated care tasks).

To avoid adverse interactions and optimize care, current

options involve the static, a priori integration of comorbid

CPG by replacing or removing therapeutic tasks.

Nevertheless, many aspects are relevant to a clinically safe

and efficient integration, and these may change over time—

task delays, test outcomes, and health profiles—which are not

taken into account by static integrations. Moreover, in case of

comorbidity, clinical practice often demands nuanced

solutions, based on current health profiles. We propose an

execution-time approach to safely and efficiently cope with

comorbid conditions, leveraging knowledge from medical

Linked Open Datasets to aid during CIG integration.

Keywords:

Practice Guideline, Decision Support Systems, Clinical;

Comorbidity

Introduction

Clinical Practice Guidelines (CPG) are disease-specific and

evidence-based recommendations to guide diagnosis,

prognosis, and treatment [1]. By computerizing CPG as

Computer Interpretable Guidelines (CIG), they can be utilized

by Clinical Decision Support Systems (CDSS) to deliver

evidence-informed care recommendations. While CDSS can

effectively manage a single, complex condition, they often

cannot cope with multiple illnesses in a single patient (i.e.,

comorbidity). Indeed, managing comorbid conditions in a

patient is a complex problem, and requires avoiding adverse

interactions (e.g., drug-drug or drug-disease), by tailoring or

adding new therapeutic interventions; and optimizing care and

resource utilization, by eliminating redundant investigations.

Hence, the direct, concurrent application of multiple disease-

specific CIG is considered neither a safe nor efficient option.

A possible approach for managing comorbidity involves

reviewing existing, disease-specific CPG, and manually

integrating their workflows to yield a single, clinically safe

and resource-optimized clinical workflow. Examples include

the England and Wales NICE (National Institute for Health

and Care Excellence) CPG [2], which manages kidney disease

combined with hypertension, lipids and hepatitis C; and Abidi

[3] performed a manual, ontology-based integration of CIG

for Congestive Heart Failure (CHF) and Atrial Fibrillation

(AF). Nonetheless, this solution is considered impractical,

since it is not feasible to apply it to every possible

comorbidity. In line with his, a range of computer-based

approaches have been proposed to semi-automatically

integrate comorbid CIG [3-7]. These approaches tend to focus

on the a priori integration of comorbid CIG to realize a single,

static clinical workflow. Nevertheless, we observe that

execution-time aspects driving clinical workflow execution—

i.e., lab test outcomes, medical resource availability, care

delays, and the dynamic patient’s health profile—also affect

the clinical safety and efficiency of comorbid CIG integration.

Due to runtime delays, test outcomes or changes in the

patient’s health parameters, integration decisions may need to

be applied, adapted or reverted. Hence, we argue that a

comorbid CIG integration approach should incorporate the

execution-time flexibility to dynamically apply or revise

previous integration decisions, in light of evolving clinical

profiles and operational aspects. Below, we introduce 3

running examples (based on illness-specific CPG) which will

be used to illustrate our work:

- OA-Diabetes comorbidity: both osteoarthritis (OA) and

diabetes guidelines recommend Non-Steroidal Anti-Inflam-

matory Drugs (NSAID), such as aspirin and ibuprofen. Since

NSAID increase the risk of bleeding in OA patients, this type

of drug should only be described once for a comorbid patient.

- AF-CHF / COPD-PE: many illnesses require imaging scans,

ECG and other tests (e.g., spirometry) at a point-of-care or

healthcare facility. With many of these illnesses often

occurring comorbidly, such as AF-CHF and Chronic

Obstructive Pulmonary Disease (COPD) – Pulmonary

Embolism (PE), grouping these tests into a single visit will

improve the patient’s quality of life and reduce incurred costs.

- HTN-Diabetes: thiazide diuretics such as Methyclothiazide

are often prescribed for treating hypertension (HTN).

However, they may worsen glycemic control for diabetes

patients. In regular cases, the dose of thiazide diuretics should

be reduced; when creatinine clearance is low and volume

control is needed, it should be replaced by loop diuretics.

We present a knowledge-driven, execution-time approach for

integrating comorbid CIG into a clinically safe and efficient

comorbid clinical workflow. To cope with execution-time

aspects and clinical pragmatics, our approach supports (1)

refining or reverting integration decisions as more data be-

comes available—such the outcomes of medical tests, unfore-

seeable runtime delays, or limited hospital resources; and (2)

defining alternative CIG integration decisions, which are con-

ditional on the patient’s health profile and other clinical

events. Our approach involves a CIG Integration Framework,

MEDINFO 2019: Health and Wellbeing e-Networks for All
L. Ohno-Machado and B. Séroussi (Eds.)

© 2019 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI190345

858

which employs a Semantic Web based approach to CIG repre-

sentation, integration and execution. To support the identifica-

tion of adverse interactions, we leverage various Linked Open

Datasets (LOD), including the SNOMED CT ontology1, the

Drug-Drug Interactions Ontology (DINTO)2, the Drug Ontol-

ogy (DrOn)3 and Bio2RDF DrugBank ontology4.

Methods

Our approach supports a practitioner in (a) identifying the set

of clinical tasks, called CIG integration points, which could

result in loss of clinical safety or efficiency in comorbid

sitations; (b) given these integration points, instantiating

appropriate CIG integration policies that ensure clinical safety

and efficiency of the integrated CIG. In particular, a CIG

integration policy is instantiated to deal with a particular

comorbid patient scenario: e.g., to cope with drug interactions

in a HTN-Diabetes comorbidity, a policy is instantiated to

adjust dosages of Methyclothiazide.

The CIG Integration Ontology (CIG-IntO) defines the core

terms for representing, integrating and executing CIG. We

note that the SNOMED CT taxonomy is integrated into our

CIG-IntO ontology, with an extended mapping to other

ontologies (DrOn, DINTO, DrugBank). As we will illustrate

in the paper, by leveraging knowledge from these datasets, our

CIG framework can aid the practitioner in discovering CIG

integration points.

A CIG integration policy is responsible for coordinating the

execution-time integration of comorbid CIG; which is done by

operating on a multi-level state machine. At runtime, these

state machines manage the lifecycles for integration points.

We elaborate on these lifecycles, and the available integration

operations, below. Next, we discuss the high-level semantics

of our proposed CIG integration policies.

Clinical task lifecycles

Workflow-related task lifecycle

Fig. 1 shows the workflow-related clinical task lifecycle.

Figure 1– State machine for the CIG task workflow lifecycle.

During regular execution, a CIG task travels from inactive to

active when it is next in line for execution. This may occur

when its associated pre-conditions are satisfied and/or the pre-

vious task was completed. The practitioner selects an activat-

ed task for execution at their discretion, thus moving it to the

started state. Finally, an activated task moves to the completed

state when a practitioner marks it as complete, or when indi-

cated by an external system (e.g., lab information system).

Below, we exemplify the CIG execution semantics [8] (using

OWL2 DL [9]) that move inactive tasks to the active state:

�������	
��� ∩
��������������	���������� ∩ (1)

∃�����	�����. �����	�	�
��� ⊂ ∃����	�
�������	. ����	

An InactiveTask with a satisfied pre-condition (TaskWithSatis-

fiedCondition class) and a prior, completed workflow task

(hasPrevious relation), will be assigned the new Active state.

1 http://browser.ihtsdotools.org/
2 https://bioportal.bioontology.org/ontologies/DINTO
3 https://bioportal.bioontology.org/ontologies/DRON
4 http://bio2rdf.org/

To coordinate the integration of comorbid CIG, an integration

policy can apply integration operations, which move a clinical

task to the delayed or discarded state, or replace a task in the

CIG workflow. To ensure continuing clinical safety and effi-

ciency in light of changing execution-time circumstances, our

approach supports reverting these operations as well.

Figure 2– Integration operations on clinical tasks (CIG-IntO).

The transit relation indicates a transit operation on a CIG task

(CIGTask) to a particular state (CIGTaskState). To support

reverting the operation, the transitFrom property keeps the

original from state. The revert operation is represented by the

revert relation, indicating the state that the CIG task should be

reverted to. The replace relation indicates the clinical task

(subject) to be replaced and the replacement task (object). The

causes for transit and revert operations are kept as well.

Outcome-related task lifecycle

Various outcome-related information, including medical test

results or physician/patient choices, will only become availa-

ble as the clinical workflow progresses. When faced with such

new execution-time information, additional integration opera-

tions may be needed, while previous operations may need to

be adapted or reverted. To that end, CIG tasks additionally

feature an outcome-related lifecycle:

Figure 3– Integration operations on clinical tasks.

A clinical task is in the pendingChoice state when no choice

has yet been made at the nearest preceding decision node; i.e.,

it is still unknown whether the task will be executed. After a

choice is made, all tasks in the “chosen” branch travel to the

chosen state, up until the next decision node; and tasks in the

non-chosen branch(es) travel to the notChosen state. In other

words, tasks in the chosen state are in line for execution, while

notChosen tasks will not be executed.

CIG Integration Policies

We present an initial set of CIG integration policies to safely

and efficiently integrate comorbid CIG at execution-time. We

formalize their high-level semantics in terms of the CIG Inte-

gration Ontology (CIG-IntO) and First-Order Logic (FOL)

rules. These integration semantics are informed by, and oper-

ate on, the multi-level state machine introduced previously.

EquivTasksPolicy

A practitioner creates an EquivTasksPolicy instance to cope

with equivalent tasks: e.g., both OA and diabetes guidelines

recommend NSAID, but this type of drug should only be pre-

scribed once, since it increases risk of bleeding. To that end,

the practitioner identifies the integration points and instanti-

ates an EquivTasksPolicy as follows (using Turtle syntax5 with

CIG-IntO as default namespace):
:NSAID_equiv a :EquivTasksPolicy ; (2)
 :equivTask :task_OA_NSAID ;

5 https://www.w3.org/TR/turtle/

W. Van Woensel et al. / Providing Comorbid Decision Support via the Integration of Clinical Practice Guidelines 859

 :equivTask :task_Diabetes_NSAID ;

Here, the equivTask relation indicates the equivalent tasks,

i.e., prescribing the NSAID medications, as integration points.

Below, we elaborate on how these integration points may be

identified, and the concrete integration semantics.

- Finding equivalent tasks

In CIG-IntO, many workflow tasks are attached to SNOMED

procedures; which, if applicable, is further linked to the pre-

scribed medication (Turtle syntax, “sno” is the SNOMED

namespace). For instance, in the OA CIG:
:task_OA_NSAID a :WorkflowTask ; (3)
 :involves :presc_OA_NSAID.
:presc_OA_NSAID a sno:Prescription; sno:drugUsed sno:NSAID.

Since the relevant workflow tasks from both the OA and dia-

betes CIG are linked to a Prescription (subclass of Procedure)

of the same drug (drugUsed), the system flags the (potential)

comorbidity issue to the practitioner, indicating the two clini-

cal tasks as integration points. Based on their medical

knowledge and expertise, the practitioner may then proceed by

instantiating an appropriate CIG integration policy.

- CIG integration semantics

An informed execution-time choice should be made on which

equivalent task will be kept, and which one(s) will be discard-

ed. Simply discarding an arbitrary task at design-time may

negatively affect CIG execution, as shown in Fig. 4. Here, task

T1

was discarded at design time (Fig. 4.a) since it would have

been executed last under normal circumstances. However, due

to execution-time delays, task T1 is executed first; meaning

that the following tasks, such as T2, which rely on task T1 or

its equivalent (i.e., TA) having been executed, need to be de-

layed until TA is executed (Fig. 4.b).

 (a) (b)

Figure 4– Integration operations on clinical tasks.

Our execution-time approach purposefully introduces a race

condition; whichever task is reached first (i.e., activated) dur-

ing execution will be retained. In Fig. 4, this means that T1

will be retained instead of TA, meaning that both workflows

are able to proceed without delay.

These execution-time integration semantics can be represented

using the following state-transition rule:

�������	
	��������, �������, ���, �������, ���, �� ≠ ��, (4)
��������	
����,�ℎ�	����	
����,�����	��������	
����,
�����������	
����, ��	
��������, 	�
→ ����	�����, ′��	������′�, ����	���������, 	�, ����	�����	�(��, ��)

Once any integration point (intPt) is activated (t1), any other

integration point (t2) part of a chosen branch, i.e., in line for

execution, and not yet discarded or completed, will be moved

to the discarded state (transit operation). The origin state

(transitFrom) and cause (transitCause) are recorded as well.

To simplify the formulation of integration semantics, we de-

fine complex OWL subclasses of CIGTask; e.g., InactiveTask

class includes tasks with value inactive for property state.

ReplaceTasksPolicy

A ReplaceTasksPolicy instance is created to replace one or

more tasks by safer and/or more cost-effective task(s). For

instance, the thiazide diuretics prescribed for HTN may wors-

en glycemic control in case of HTN-Diabetes comorbidity. In

clinical practice, solutions for such interactions are often nu-

anced, and depend on the patient’s dynamic health profile. For

normal cases, the dosage of thiazide diuretics should be re-

duced; but when creatinine clearance is low and volume con-

trol is needed, loop diuretics should be prescribed instead.

This can be formulated as follows:
:thiazide_diuretics_diabetes a :ReplacePolicy ; (5)
 :toReplace :thiazide_diuretics
 :replacement [
 :condition cond:default ;
 :element :low_dose_thiazide_diuretics] ;
 :replacement [
 :condition [

 cond:operand :low_creatinine_clearance ;
 cond:conn cond:and ;
 cond:operand :volume_control_needed
] ;
 :element :loop_diuretics] .

The toReplace relation indicates the integration point(s), i.e.,

the clinical task(s) to be replaced. The replacement relation

indicates the conditional substitutions for the CIG task, mark-

ing (a) the condition (condition relation), which refers to the

patient profile; and (b) the replacement task (element relation).

The default substitution, i.e., with “default” condition, pre-

scribes low dose thiazide diuretics; the second substitution

prescribes loop diuretics in case volume control is needed and

low creatinine clearance is observed.

Using our CIG framework, the practitioner can leverage LOD

to identify such integration points. To that end, the

:thiazide_diuretics task is linked to the related medication

(e.g., see (3)). Based on this knowledge, there are multiple

ways for the CIG framework find potential interactions:

- Finding drug-drug interactions (DDI)

Searching the DINTO and Bio2RDF DrugBank ontologies,

the system discovers multiple DDI between Methyclothiazide

and different types of insulin—if the patient was prescribed

insulin for managing glucose levels, the system will flag these

DDI to the practitioner together with the integration points.

E.g., DrugBank encodes the DDI in question as follows:
drb:DB00232 dcterms:title "Methyclothiazide"@en ; (6)
 drb:ddi-interactor-in db:DB00030_DB00232 .
drb:DB00030_DB00232 a drb:Drug-Drug-Interaction .

- Finding drug-illness interactions (DII)

The system finds that Methyclothiazide is a type of Thiazide

Diuretic (SNOMED CT), which are categorized as Hypergly-

cemia-associated Agents (DrugBank); whereas Diabetes is a

type of Disorder of Glucose Metabolism (SNOMED CT).

Based on a DII knowledge source, which encodes adverse

interactions between agents and disorders of that type, the

system flags the DII and integration points to the practitioner.

- CIG integration semantics

When multiple tasks need to be replaced, as before, a choice

needs to be made on which task to discard (see Fig. 4). In that

case, a transition rule similar to (4) will be applied—which

additionally ensures that other task(s) (i.e., t2) are only dis-

carded when a replacement was actually applied (see (7)).

When only a single task is to be replaced (as in (5)), the toRe-

place task is simply discarded when it becomes active.

Based on the patient’s current health profile, a substitution

will be selected at execution-time, after which the toReplace

task will be replaced in the CIG workflow (NotApplied en-

sures that a replacement is applied only once):

 �������	
	��������, �������, ���,��������	
����, (7)
������������, ��, �����������, ��, ����	!������,
������������, ������(�, ��)

→ ���������, ���, ������(�, ′����′)

SimulTasksPolicy

To simultaneously execute certain clinical tasks, the practi-

tioner creates an instance of SimulTasksPolicy. For instance,

many comorbid illnesses involve imaging scans, ECG and

W. Van Woensel et al. / Providing Comorbid Decision Support via the Integration of Clinical Practice Guidelines860

other tests (e.g., spirometry) at a point-of-care or healthcare

facility; by grouping such medical tests together in time, we

may improve the patient’s quality of life and reduce healthcare

costs. This can be encoded using SimulTasksPolicy as follows:
:simult_siteofcare_tests a :SimultTasksPolicy ; (8)
 :simulTask [
 :involves [
 a sno:Evaluation_Procedure ;
 sno:placeOfTesting [a sno:SiteOfCare]

]] .

In the above case, the policy aims to group in time any clinical

task that involves any procedure of type of Evaluation Proce-

dure, and with any placeOfTesting of type SiteOfCare. In

SNOMED CT, medical tests such as ECG, MRI scans, spi-

rometry are all subtypes of Evaluation Procedure; whereas

SiteOfCare has subtype Hospital, among others. Based on the

policy definition, the CIG integration framework identifies

concrete integration points for the SimulTasksPolicy. Below,

we exemplify such an integration point:
:task_AF_ECG a :WorkflowTask ; (9)
 :involves :proc_ECG_monitor .
:proc_ECG_monitor a sno:ECG_Monitoring ;
 sno:placeOfTesting sno:Hospital .

- CIG integration semantics

To group the identified integration points at execution-time, a

SimulTasksPolicy will delay any activated simulTask until the

other simulTasks have “caught up” (i.e., have also been acti-

vated)—at least, as long as it is clinically safe to do so.

In particular, the max. (overall) delay of the active task shows

the max. period the task may still be delayed while safeguard-

ing clinical safety. Hence, as long as the max. delay exceeds

the (estimated) activation time of an inactive task, it will make

sense, and not violate clinical safety, to delay the active task:

Figure 5– Example workflows for SimulTasksPolicy.

Here, the max. overall delay for T1 exceeds the estimated acti-

vation time of TA, meaning that T1 can be safely delayed until

TA catches up. The following should hold: current + maxO-

verallDelay1 ≥ estimActiveA, which is formalized as follows:

��������		
�	����, ���, �����������, ���, � � �, ������ � �� � ��

→ ��	������������, �� (10)

The maxOverallDelay property is calculated based on (a) the

initial max. period that workflow tasks can be delayed while

ensuring patient safety; and (b) any already incurred delays

during execution, as well as the impact of discarded and re-

placed tasks. The estimActive property is calculated recursive-

ly from the prior task’s estimActive time and duration.

The integration semantics are represented as follows:

����	����� �	����!�, �� �!, ��, �� �!, ��, � � �, (11)
 ������������, ��	������������, ��, ��������, ��,
 �����"���#�����������, $�������������

→ �������, ′��	����′�, �����&�����, ��, ������������, ��

In case the delayCondition holds for an active task (t1) and at

least one other integration point (t2), which is part of a branch

with a pending decision or a chosen branch (PendingOr-

ChosenTask), the active task will be delayed.

As the CIG execution progresses and more information be-

comes available, integration decisions may need to be adapted

or reverted. When the delay condition no longer applies, the

delay operation should be reverted:

����	����� �	����!�, �� �!, ��,
�	�����������, (12)
������������, ��, '���	������������, ���
→ �������, ′��	����′�, ������������, ��

In case the delayCondition no longer holds for a delayed task

and the reason for the delay (transitCause), the delay opera-

tion will be reverted. Note that, at execution time, the delay

condition could become valid again at any point; in that case,

the delayed state transition (10) would be triggered again.

Secondly, when the operation’s transitCause, i.e., reason for

the delay, eventually becomes part of a non-chosen branch

(NotChosenTask), it becomes pointless to delay the clinical

task any further, and the delay operation will be reverted:

����	����� �	����!�, �� �!, ��,
�	�����������, (13)
������������, ��, (��#�����������
→ �������, ′��	����′�, ������������, ��

Once the previously inactive task has caught up (i.e., is acti-

vated), task t1 no longer needs to be delayed:

����	����� �	����!�, �� �!, ��,
�	�����������, (14)
������������, ��, ������������
→ �������, ′��	����′�, ������������, ��

When multiple medical tests need to catch up, an active medi-

cal test will be delayed multiple times. By keeping the causes

of task operations (transit/revertCause properties; Fig. 2), the

integration algorithm reverts an operation only once all its

causes are reverted; as discussed in the next section.

CIG Integration Algorithm

In this section, we discuss how the CIG integration algorithm

applies the CIG task operations inferred by the integration

semantics. We assume an underlying reasoner that is loaded

with the rules representing the integration semantics. The CIG

integration algorithm is called whenever dataset changes may

lead the reasoner to fire one or more rules:

• Any tasks’ state changes caused by the CIG execution

algorithm (see Workflow-related task lifecycle).

• External events indicating execution-time delays (e.g.,

from scheduling software), which affects the

estimated times (e.g., maxOverallDelay, estimActive).

The performIntegration function iteratively applies task

operations and reverts until no more operations are inferred:

function performIntegration() (15)
 do

 op ← performTaskOperations()

 op ← op ∪ performTaskReverts()
 while (op � ∅)

The performTaskOperations function calls the

performTransitOperations and performReplaceOperations

function (not shown). We show the former function below:

function performTransitOperations() (16)
 for each inferred transit operation:

 retract current state of task (= origin state)

 assert target state for task

 assert origin state(transitFrom),cause(transitCause)

end function

For each inferred transit operation, the function retracts the

task’s current state, and asserts its new state, keeping its origin

state and transit cause. Below, we show performTaskReverts:

function performTaskReverts() (17)
 for each inferred revert operation:

 retract reverted cause (revertedCause)

 if all task transit causes � ∅:
 retract current task state

 assert original target state (transitFrom)

end function

For each inferred revert operation, the “reverted” cause is

retracted (e.g., see (11)-(13)). When no more transit causes

are left, the task’s current state is retracted and its original

W. Van Woensel et al. / Providing Comorbid Decision Support via the Integration of Clinical Practice Guidelines 861

state is asserted. We note that, by only reverting a transit

operation once all its causes are reverted, we support scenarios

where e.g., a medical test is delayed multiple times (see (10)).

The CIG Client (not detailed here) features a UI that visualizes

the current state of comorbid CIG as a workflow, and allows

clinicians to make decisions on task execution and integration.

Results

When deploying execution-time, comorbid CIG integration at

a point-of-care, there is an expectation of timely

recommendations. Hence, we evaluate our approach by

measuring the performance of the CIG integration algorithm.

To that end, we (a) modeled the comorbid CIG; (b)

instantiated suitable CIG integration policies; and (c) executed

the CIG integration algorithm to perform execution-time

integration for a number of comorbidity scenarios.

We executed each experiment 10 times on a PC equipped with

8GB of RAM and an Intel® Core™ i7-3520 CPU. Table I

shows the average performance results. Loading the comorbid

CIG and integration policies took avg. ca. 270ms; calculating

dynamic properties (e.g., estimActive) took avg. ca. 180ms.

Table 1 – CIG Integration Performance Results

Comorbid CIG Integration Scenario performance (s)

EquivTasksPolicy

(OA-diabetes) discard second NSAID 0.79

ConditionalReplacePolicy

(HTN-Diabetes) in regular cases, reduce dosage;

when creatinine clearance is low and volume

control is needed, replace with loop diuretics.

0.94

SimulTasksPolicy

group tests concurrently at health facility 0.9

Discussion

Table 1 shows that integrating comorbid CIG takes between

0.7 – 0.9s. We note that, since performance is mostly

determined by the underlying reasoner (in our case, Apache

Jena), selecting a more performant reasoner would improve

performance. Nevertheless, we already consider these

acceptable performance times for a consumer-grade PC.

To the best of our knowledge, the work by Anselma, Piovesan

and Terenziani [4, 10] presents the first approach to focus on

the temporal dimension for comorbid CIG integration.

Analysis facilities allow a practitioner to analyse CIG for

adverse interactions and identify solutions. To emulate our

execution-time approach, the practitioner would need to

frequently utilize these facilities for any set of relevant

actions, and manually apply, adapt and revert integrations

when needed. Wilk et al. [7] support a form of execution-time

integration by repeating the integration process whenever new

patient data becomes available. But the authors do not

consider reverting integrations, and only supply two temporal

revision operators. Zamborlini et al. [11] propose a rule-based

approach that identifies repeated, alternative, and

contradictory actions, and leverages external sources. In

comparison, our work currently includes limited support for

identifying adverse interactions by leveraging LOD.

Another aspect of our approach, not elaborated here due to

space limitations, involves resolving conflicts between

integration policies themselves. In future work, we aim to

study more types of integration policies, and look into a global

optimization scheme—currently, integration policies focus

solely on their integration points, and disregard the global

effect of their actions; e.g., a SimulTasksPolicy could delay a

task that jeopardizes the success of more “important” policies.

Conclusions

We presented an execution-time approach and framework for

comorbid CIG integration, which dynamically (a) applies CIG

integrations, based on a priori defined integration policies and

the latest execution-time data; (b) refines or reverts previous

integrations, as more information becomes available at

runtime. To provide solutions in line with clinical practice,

alternative CIG integration decisions can be defined, which

are conditional on the patient’s up-to-date health profile. By

leveraging knowledge from LOD, our framework helps

practitioners in identifying adverse comorbid interactions, and

formulating suitable integration policies.

References

[1] J. E. Brush, M. J. Radford, and H. M. Krumholz, “Integrating

Clinical Practice Guidelines Into the Routine of Everyday

Practice,” Crit. Pathways Cardiol. A J. Evidence-Based Med.,

vol. 4, no. 3, pp. 161–167, 2005. (3)

[2] National Institute for Health and Care Excellence (NICE),

“Chronic kidney disease in adults,” 2014.

[3] S. R. Abidi, “A Knowledge Management Framework to

Develop, Model, Align and Operationalize Clinical Pathways

to Provide Decision Support for Comorbid Diseases,”

Dalhousie University, Halifax, NS, 2010.

[4] L. Anselma, L. Piovesan, and P. Terenziani, “Temporal

detection and analysis of guideline interactions,” Artif. Intell.

Med., vol. 76, pp. 40–62, 2017.

[5] F. Real and D. Riaño, “Automatic combination of formal

intervention plans using SDA* representation model,” in 2007

conference on Knowledge management for health care

procedures, 2008, vol. Amsterdam, pp. 75–86.

[6] D. Riaño and A. Collado, “Model-Based Combination of

Treatments for the Management of Chronic Comorbid

Patients,” in Artificial Intelligence in Medicine SE - 2, vol.

7885, N. Peek, R. Marín Morales, and M. Peleg, Eds. Springer

Berlin Heidelberg, 2013, pp. 11–16.

[7] S. Wilk, M. Michalowski, W. Michalowski, D. Rosu, M.

Carrier, and M. Kezadri-Hamiaz, “Comprehensive mitigation

framework for concurrent application of multiple clinical

practice guidelines,”J.Biomed.Inform.,vol.66,pp. 52–71, 2017.

[8] B. Jafarpour, S. S. R. Abidi, and S. R. Abidi, “Exploiting

Semantic Web Technologies to Develop OWL-Based Clinical

Practice Guideline Execution Engines,” IEEE J. Biomed.

Heal. Informatics, vol. 20, no. 1, pp. 388–398, 2016.

[9] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and

S. Rudolph, “OWL 2 Web Ontology Language Primer

(Second Edition),” 2012.

[10] L. Piovesan and P. Terenziani, “A Mixed-Initiative Approach

to the Conciliation of Clinical Guidelines for Comorbid

Patients,” in Knowledge Representation for Health Care,

2015, pp. 95–108.

[11] V. Zamborlini, R. Hoekstra, M. da Silveira, C. Pruski, A. ten

Teije, and F. van Harmelen, “Generalizing the Detection of

Internal and External Interactions in Clinical Guidelines,” in

9th International Joint Conference on Biomedical Engineering

Systems and Technologies, 2016, pp. 105–116.

Address for correspondence

William Van Woensel, Faculty of Computer Science, 6050
University Avenue, Dalhousie University, Halifax, Nova Scotia,
Canada, B3H 1W5; E-mail: william.van.woensel@dal.ca.

W. Van Woensel et al. / Providing Comorbid Decision Support via the Integration of Clinical Practice Guidelines862

