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Abstract 

Clinical Decision Support Systems (CDSS) utilize 

computerized Clinical Practice Guidelines (CPG) to deliver 

evidence-based care recommendations. However, when 

dealing with comorbidity (i.e., patients with multiple 

conditions), disease-specific CPG often interact in adverse 

ways (e.g., drug-drug, drug-disease interactions), and may 

involve redundant elements as well (e.g., repeated care tasks). 

To avoid adverse interactions and optimize care, current 

options involve the static, a priori integration of comorbid 

CPG by replacing or removing therapeutic tasks. 

Nevertheless, many aspects are relevant to a clinically safe 

and efficient integration, and these may change over time—

task delays, test outcomes, and health profiles—which are not 

taken into account by static integrations. Moreover, in case of 

comorbidity, clinical practice often demands nuanced 

solutions, based on current health profiles. We propose an 

execution-time approach to safely and efficiently cope with 

comorbid conditions, leveraging knowledge from medical 

Linked Open Datasets to aid during CIG integration. 
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Introduction 

Clinical Practice Guidelines (CPG) are disease-specific and 

evidence-based recommendations to guide diagnosis, 

prognosis, and treatment [1]. By computerizing CPG as 

Computer Interpretable Guidelines (CIG), they can be utilized 

by Clinical Decision Support Systems (CDSS) to deliver 

evidence-informed care recommendations. While CDSS can 

effectively manage a single, complex condition, they often 

cannot cope with multiple illnesses in a single patient (i.e., 

comorbidity). Indeed, managing comorbid conditions in a 

patient is a complex problem, and requires avoiding adverse 

interactions (e.g., drug-drug or drug-disease), by tailoring or 

adding new therapeutic interventions; and optimizing care and 

resource utilization, by eliminating redundant investigations. 

Hence, the direct, concurrent application of multiple disease-

specific CIG is considered neither a safe nor efficient option.  

A possible approach for managing comorbidity involves 

reviewing existing, disease-specific CPG, and manually 

integrating their workflows to yield a single, clinically safe 

and resource-optimized clinical workflow. Examples include 

the England and Wales NICE (National Institute for Health 

and Care Excellence) CPG [2], which manages kidney disease 

combined with hypertension, lipids and hepatitis C; and Abidi 

[3] performed a manual, ontology-based integration of CIG 

for Congestive Heart Failure (CHF) and Atrial Fibrillation 

(AF). Nonetheless, this solution is considered impractical, 

since it is not feasible to apply it to every possible 

comorbidity. In line with his, a range of computer-based 

approaches have been proposed to semi-automatically 

integrate comorbid CIG [3-7]. These approaches tend to focus 

on the a priori integration of comorbid CIG to realize a single, 

static clinical workflow. Nevertheless, we observe that 

execution-time aspects driving clinical workflow execution—

i.e., lab test outcomes, medical resource availability, care 

delays, and the dynamic patient’s health profile—also affect 

the clinical safety and efficiency of comorbid CIG integration. 

Due to runtime delays, test outcomes or changes in the 

patient’s health parameters, integration decisions may need to 

be applied, adapted or reverted. Hence, we argue that a 

comorbid CIG integration approach should incorporate the 

execution-time flexibility to dynamically apply or revise 

previous integration decisions, in light of evolving clinical 

profiles and operational aspects. Below, we introduce 3 

running examples (based on illness-specific CPG) which will 

be used to illustrate our work: 

- OA-Diabetes comorbidity: both osteoarthritis (OA) and 

diabetes guidelines recommend Non-Steroidal Anti-Inflam-

matory Drugs (NSAID), such as aspirin and ibuprofen. Since 

NSAID increase the risk of bleeding in OA patients, this type 

of drug should only be described once for a comorbid patient. 

- AF-CHF / COPD-PE: many illnesses require imaging scans, 

ECG and other tests (e.g., spirometry) at a point-of-care or 

healthcare facility. With many of these illnesses often 

occurring comorbidly, such as AF-CHF and Chronic 

Obstructive Pulmonary Disease (COPD) – Pulmonary 

Embolism (PE), grouping these tests into a single visit will 

improve the patient’s quality of life and reduce incurred costs.  

- HTN-Diabetes: thiazide diuretics such as Methyclothiazide 

are often prescribed for treating hypertension (HTN). 

However, they may worsen glycemic control for diabetes 

patients. In regular cases, the dose of thiazide diuretics should 

be reduced; when creatinine clearance is low and volume 

control is needed, it should be replaced by loop diuretics.  

We present a knowledge-driven, execution-time approach for 

integrating comorbid CIG into a clinically safe and efficient 

comorbid clinical workflow. To cope with execution-time 

aspects and clinical pragmatics, our approach supports (1) 

refining or reverting integration decisions as more data be-

comes available—such the outcomes of medical tests, unfore-

seeable runtime delays, or limited hospital resources; and (2) 

defining alternative CIG integration decisions, which are con-

ditional on the patient’s health profile and other clinical 

events. Our approach involves a CIG Integration Framework, 
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which employs a Semantic Web based approach to CIG repre-

sentation, integration and execution. To support the identifica-

tion of adverse interactions, we leverage various Linked Open 

Datasets (LOD), including the SNOMED CT ontology1, the 

Drug-Drug Interactions Ontology (DINTO)2, the Drug Ontol-

ogy (DrOn)3 and Bio2RDF DrugBank ontology4. 

Methods 

Our approach supports a practitioner in (a) identifying the set 

of clinical tasks, called CIG integration points, which could 

result in loss of clinical safety or efficiency in comorbid 

sitations; (b) given these integration points, instantiating 

appropriate CIG integration policies that ensure clinical safety 

and efficiency of the integrated CIG. In particular, a CIG 

integration policy is instantiated to deal with a particular 

comorbid patient scenario: e.g., to cope with drug interactions 

in a HTN-Diabetes comorbidity, a policy is instantiated to 

adjust dosages of Methyclothiazide. 

The CIG Integration Ontology (CIG-IntO) defines the core 

terms for representing, integrating and executing CIG. We 

note that the SNOMED CT taxonomy is integrated into our 

CIG-IntO ontology, with an extended mapping to other 

ontologies (DrOn, DINTO, DrugBank). As we will illustrate 

in the paper, by leveraging knowledge from these datasets, our 

CIG framework can aid the practitioner in discovering CIG 

integration points. 

A CIG integration policy is responsible for coordinating the 

execution-time integration of comorbid CIG; which is done by 

operating on a multi-level state machine. At runtime, these 

state machines manage the lifecycles for integration points. 

We elaborate on these lifecycles, and the available integration 

operations, below. Next, we discuss the high-level semantics 

of our proposed CIG integration policies. 

Clinical task lifecycles 

Workflow-related task lifecycle 

Fig. 1 shows the workflow-related clinical task lifecycle.  

 

Figure 1– State machine for the CIG task workflow lifecycle. 

During regular execution, a CIG task travels from inactive to 

active when it is next in line for execution. This may occur 

when its associated pre-conditions are satisfied and/or the pre-

vious task was completed. The practitioner selects an activat-

ed task for execution at their discretion, thus moving it to the 

started state. Finally, an activated task moves to the completed 

state when a practitioner marks it as complete, or when indi-

cated by an external system (e.g., lab information system). 

Below, we exemplify the CIG execution semantics [8] (using 

OWL2 DL [9]) that move inactive tasks to the active state: 

�������	
��� ∩ 
��������������	���������� ∩            (1) 

∃�����	�����. �����	�	�
��� ⊂ ∃����	�
�������	.  ����	 

An InactiveTask with a satisfied pre-condition (TaskWithSatis-

fiedCondition class) and a prior, completed workflow task 

(hasPrevious relation), will be assigned the new Active state. 

                                                           
1 http://browser.ihtsdotools.org/  
2 https://bioportal.bioontology.org/ontologies/DINTO  
3 https://bioportal.bioontology.org/ontologies/DRON  
4 http://bio2rdf.org/  

To coordinate the integration of comorbid CIG, an integration 

policy can apply integration operations, which move a clinical 

task to the delayed or discarded state, or replace a task in the 

CIG workflow. To ensure continuing clinical safety and effi-

ciency in light of changing execution-time circumstances, our 

approach supports reverting these operations as well. 

 

Figure 2– Integration operations on clinical tasks (CIG-IntO). 

The transit relation indicates a transit operation on a CIG task 

(CIGTask) to a particular state (CIGTaskState). To support 

reverting the operation, the transitFrom property keeps the 

original from state. The revert operation is represented by the 

revert relation, indicating the state that the CIG task should be 

reverted to. The replace relation indicates the clinical task 

(subject) to be replaced and the replacement task (object). The 

causes for transit and revert operations are kept as well. 

Outcome-related task lifecycle 

Various outcome-related information, including medical test 

results or physician/patient choices, will only become availa-

ble as the clinical workflow progresses. When faced with such 

new execution-time information, additional integration opera-

tions may be needed, while previous operations may need to 

be adapted or reverted. To that end, CIG tasks additionally 

feature an outcome-related lifecycle: 

 

Figure 3– Integration operations on clinical tasks. 

A clinical task is in the pendingChoice state when no choice 

has yet been made at the nearest preceding decision node; i.e., 

it is still unknown whether the task will be executed. After a 

choice is made, all tasks in the “chosen” branch travel to the 

chosen state, up until the next decision node; and tasks in the 

non-chosen branch(es) travel to the notChosen state. In other 

words, tasks in the chosen state are in line for execution, while 

notChosen tasks will not be executed. 

CIG Integration Policies 

We present an initial set of CIG integration policies to safely 

and efficiently integrate comorbid CIG at execution-time. We 

formalize their high-level semantics in terms of the CIG Inte-

gration Ontology (CIG-IntO) and First-Order Logic (FOL) 

rules. These integration semantics are informed by, and oper-

ate on, the multi-level state machine introduced previously.  

EquivTasksPolicy 

A practitioner creates an EquivTasksPolicy instance to cope 

with equivalent tasks: e.g., both OA and diabetes guidelines 

recommend NSAID, but this type of drug should only be pre-

scribed once, since it increases risk of bleeding. To that end, 

the practitioner identifies the integration points and instanti-

ates an EquivTasksPolicy as follows (using Turtle syntax5 with 

CIG-IntO as default namespace): 
:NSAID_equiv a :EquivTasksPolicy ;                (2) 
 :equivTask :task_OA_NSAID ; 

                                                           
5 https://www.w3.org/TR/turtle/  
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 :equivTask :task_Diabetes_NSAID ; 

Here, the equivTask relation indicates the equivalent tasks, 

i.e., prescribing the NSAID medications, as integration points. 

Below, we elaborate on how these integration points may be 

identified, and the concrete integration semantics. 

- Finding equivalent tasks 

In CIG-IntO, many workflow tasks are attached to SNOMED 

procedures; which, if applicable, is further linked to the pre-

scribed medication (Turtle syntax, “sno” is the SNOMED 

namespace). For instance, in the OA CIG: 
:task_OA_NSAID a :WorkflowTask ;         (3) 
    :involves :presc_OA_NSAID. 
:presc_OA_NSAID a sno:Prescription; sno:drugUsed sno:NSAID. 

Since the relevant workflow tasks from both the OA and dia-

betes CIG are linked to a Prescription (subclass of Procedure) 

of the same drug (drugUsed), the system flags the (potential) 

comorbidity issue to the practitioner, indicating the two clini-

cal tasks as integration points. Based on their medical 

knowledge and expertise, the practitioner may then proceed by 

instantiating an appropriate CIG integration policy. 

- CIG integration semantics 

An informed execution-time choice should be made on which 

equivalent task will be kept, and which one(s) will be discard-

ed. Simply discarding an arbitrary task at design-time may 

negatively affect CIG execution, as shown in Fig. 4. Here, task 

T1 

was discarded at design time (Fig. 4.a) since it would have 

been executed last under normal circumstances. However, due 

to execution-time delays, task T1 is executed first; meaning 

that the following tasks, such as T2, which rely on task T1 or 

its equivalent (i.e., TA) having been executed, need to be de-

layed until TA is executed (Fig. 4.b). 

 
 (a) (b) 

Figure 4– Integration operations on clinical tasks. 

Our execution-time approach purposefully introduces a race 

condition; whichever task is reached first (i.e., activated) dur-

ing execution will be retained. In Fig. 4, this means that T1 

will be retained instead of TA, meaning that both workflows 

are able to proceed without delay. 

These execution-time integration semantics can be represented 

using the following state-transition rule: 

�������	
	��������, �������, ���, �������, ���, �� ≠ ��, (4) 
��������	
����,�ℎ�	����	
����,�����	��������	
����, 
�����������	
����, ��	
��������, 	� 
→ ����	�����, ′��	������′�, ����	���������, 	�, ����	�����	�(��, ��) 

Once any integration point (intPt) is activated (t1), any other 

integration point (t2) part of a chosen branch, i.e., in line for 

execution, and not yet discarded or completed, will be moved 

to the discarded state (transit operation). The origin state 

(transitFrom) and cause (transitCause) are recorded as well. 

To simplify the formulation of integration semantics, we de-

fine complex OWL subclasses of CIGTask; e.g., InactiveTask 

class includes tasks with value inactive for property state. 

ReplaceTasksPolicy 

A ReplaceTasksPolicy instance is created to replace one or 

more tasks by safer and/or more cost-effective task(s). For 

instance, the thiazide diuretics prescribed for HTN may wors-

en glycemic control in case of HTN-Diabetes comorbidity. In 

clinical practice, solutions for such interactions are often nu-

anced, and depend on the patient’s dynamic health profile. For 

normal cases, the dosage of thiazide diuretics should be re-

duced; but when creatinine clearance is low and volume con-

trol is needed, loop diuretics should be prescribed instead. 

This can be formulated as follows: 
:thiazide_diuretics_diabetes a :ReplacePolicy ;      (5) 
   :toReplace :thiazide_diuretics          
   :replacement [  
     :condition cond:default ; 
     :element :low_dose_thiazide_diuretics ] ; 
   :replacement [  
     :condition [  

       cond:operand :low_creatinine_clearance ; 
       cond:conn cond:and ; 
  cond:operand :volume_control_needed 
     ] ;  
     :element :loop_diuretics ] . 

The toReplace relation indicates the integration point(s), i.e., 

the clinical task(s) to be replaced. The replacement relation 

indicates the conditional substitutions for the CIG task, mark-

ing (a) the condition (condition relation), which refers to the 

patient profile; and (b) the replacement task (element relation). 

The default substitution, i.e., with “default” condition, pre-

scribes low dose thiazide diuretics; the second substitution 

prescribes loop diuretics in case volume control is needed and 

low creatinine clearance is observed.  

Using our CIG framework, the practitioner can leverage LOD 

to identify such integration points. To that end, the 

:thiazide_diuretics task is linked to the related medication 

(e.g., see (3)). Based on this knowledge, there are multiple 

ways for the CIG framework find potential interactions: 

- Finding drug-drug interactions (DDI) 

Searching the DINTO and Bio2RDF DrugBank ontologies, 

the system discovers multiple DDI between Methyclothiazide 

and different types of insulin—if the patient was prescribed 

insulin for managing glucose levels, the system will flag these 

DDI to the practitioner together with the integration points. 

E.g., DrugBank encodes the DDI in question as follows: 
drb:DB00232 dcterms:title "Methyclothiazide"@en ;                (6) 
    drb:ddi-interactor-in db:DB00030_DB00232 . 
drb:DB00030_DB00232 a drb:Drug-Drug-Interaction . 

- Finding drug-illness interactions (DII) 

The system finds that Methyclothiazide is a type of Thiazide 

Diuretic (SNOMED CT), which are categorized as Hypergly-

cemia-associated Agents (DrugBank); whereas Diabetes is a 

type of Disorder of Glucose Metabolism (SNOMED CT). 

Based on a DII knowledge source, which encodes adverse 

interactions between agents and disorders of that type, the 

system flags the DII and integration points to the practitioner. 

- CIG integration semantics 

When multiple tasks need to be replaced, as before, a choice 

needs to be made on which task to discard (see Fig. 4). In that 

case, a transition rule similar to (4) will be applied—which 

additionally ensures that other task(s) (i.e., t2) are only dis-

carded when a replacement was actually applied (see (7)). 

When only a single task is to be replaced (as in (5)), the toRe-

place task is simply discarded when it becomes active.  

Based on the patient’s current health profile, a substitution 

will be selected at execution-time, after which the toReplace 

task will be replaced in the CIG workflow (NotApplied en-

sures that a replacement is applied only once): 

 �������	
	��������, �������, ���,��������	
����,             (7)           
������������, ��, �����������, ��, ����	!������, 
������������, ������(�, ��) 

→ ���������, ���, ������(�, ′����′) 

SimulTasksPolicy 

To simultaneously execute certain clinical tasks, the practi-

tioner creates an instance of SimulTasksPolicy. For instance, 

many comorbid illnesses involve imaging scans, ECG and 
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other tests (e.g., spirometry) at a point-of-care or healthcare 

facility; by grouping such medical tests together in time, we 

may improve the patient’s quality of life and reduce healthcare 

costs. This can be encoded using SimulTasksPolicy as follows:  
:simult_siteofcare_tests a :SimultTasksPolicy ;      (8) 
  :simulTask [ 
    :involves [ 
    a sno:Evaluation_Procedure ; 
      sno:placeOfTesting [ a sno:SiteOfCare ] 

] ] . 

In the above case, the policy aims to group in time any clinical 

task that involves any procedure of type of Evaluation Proce-

dure, and with any placeOfTesting of type SiteOfCare. In 

SNOMED CT, medical tests such as ECG, MRI scans, spi-

rometry are all subtypes of Evaluation Procedure; whereas 

SiteOfCare has subtype Hospital, among others. Based on the 

policy definition, the CIG integration framework identifies 

concrete integration points for the SimulTasksPolicy. Below, 

we exemplify such an integration point: 
:task_AF_ECG a :WorkflowTask ;             (9) 
    :involves :proc_ECG_monitor . 
:proc_ECG_monitor a sno:ECG_Monitoring ; 
 sno:placeOfTesting sno:Hospital . 

- CIG integration semantics 

To group the identified integration points at execution-time, a 

SimulTasksPolicy will delay any activated simulTask until the 

other simulTasks have “caught up” (i.e., have also been acti-

vated)—at least, as long as it is clinically safe to do so.  

In particular, the max. (overall) delay of the active task shows 

the max. period the task may still be delayed while safeguard-

ing clinical safety. Hence, as long as the max. delay exceeds 

the (estimated) activation time of an inactive task, it will make 

sense, and not violate clinical safety, to delay the active task: 

 

Figure 5– Example workflows for SimulTasksPolicy. 

Here, the max. overall delay for T1 exceeds the estimated acti-

vation time of TA, meaning that T1 can be safely delayed until 

TA catches up. The following should hold: current + maxO-

verallDelay1 ≥ estimActiveA, which is formalized as follows: 

��������		
�	����, ���, �����������, ���, � � �, ������ � �� � �� 

→ ��	������������, ��              (10) 

The maxOverallDelay property is calculated based on (a) the 

initial max. period that workflow tasks can be delayed while 

ensuring patient safety; and (b) any already incurred delays 

during execution, as well as the impact of discarded and re-

placed tasks. The estimActive property is calculated recursive-

ly from the prior task’s estimActive time and duration.  

The integration semantics are represented as follows: 

����	����� �	����!�, �� �!, ��, �� �!, ��, � � �,            (11) 
 ������������, ��	������������, ��, ��������, ��, 
  �����"���#�����������, $�������������  

→ �������, ′��	����′�, �����&�����, ��, ������������, �� 

In case the delayCondition holds for an active task (t1) and at 

least one other integration point (t2), which is part of a branch 

with a pending decision or a chosen branch (PendingOr-

ChosenTask), the active task will be delayed. 

As the CIG execution progresses and more information be-

comes available, integration decisions may need to be adapted 

or reverted. When the delay condition no longer applies, the 

delay operation should be reverted: 

����	����� �	����!�, �� �!, ��, 
�	�����������,           (12) 
������������, ��, '���	������������, ��� 
→ �������, ′��	����′�, ������������, �� 

In case the delayCondition no longer holds for a delayed task 

and the reason for the delay (transitCause), the delay opera-

tion will be reverted. Note that, at execution time, the delay 

condition could become valid again at any point; in that case, 

the delayed state transition (10) would be triggered again. 

Secondly, when the operation’s transitCause, i.e., reason for 

the delay, eventually becomes part of a non-chosen branch 

(NotChosenTask), it becomes pointless to delay the clinical 

task any further, and the delay operation will be reverted: 

����	����� �	����!�, �� �!, ��, 
�	�����������,           (13) 
������������, ��, (��#����������� 
→ �������, ′��	����′�, ������������, �� 

Once the previously inactive task has caught up (i.e., is acti-

vated), task t1 no longer needs to be delayed: 

����	����� �	����!�, �� �!, ��, 
�	�����������,           (14) 
������������, ��, ������������ 
→ �������, ′��	����′�, ������������, �� 

When multiple medical tests need to catch up, an active medi-

cal test will be delayed multiple times. By keeping the causes 

of task operations (transit/revertCause properties; Fig. 2), the 

integration algorithm reverts an operation only once all its 

causes are reverted; as discussed in the next section. 

CIG Integration Algorithm 

In this section, we discuss how the CIG integration algorithm 

applies the CIG task operations inferred by the integration 

semantics. We assume an underlying reasoner that is loaded 

with the rules representing the integration semantics. The CIG 

integration algorithm is called whenever dataset changes may 

lead the reasoner to fire one or more rules:  

• Any tasks’ state changes caused by the CIG execution 

algorithm (see Workflow-related task lifecycle). 

• External events indicating execution-time delays (e.g., 

from scheduling software), which affects the 

estimated times (e.g., maxOverallDelay, estimActive). 

The performIntegration function iteratively applies task 

operations and reverts until no more operations are inferred: 

function performIntegration()       (15) 
  do  

    op ← performTaskOperations() 

    op ← op ∪ performTaskReverts() 
  while (op � ∅) 

The performTaskOperations function calls the 

performTransitOperations and performReplaceOperations 

function (not shown). We show the former function below: 

function performTransitOperations()      (16) 
  for each inferred transit operation: 

    retract current state of task (= origin state) 

    assert target state for task 

    assert origin state(transitFrom),cause(transitCause) 

end function 

For each inferred transit operation, the function retracts the 

task’s current state, and asserts its new state, keeping its origin 

state and transit cause. Below, we show performTaskReverts: 

function performTaskReverts()       (17) 
  for each inferred revert operation: 

    retract reverted cause (revertedCause) 

    if all task transit causes � ∅: 
      retract current task state 

      assert original target state (transitFrom) 

end function 

For each inferred revert operation, the “reverted” cause is 

retracted (e.g., see (11)-(13)). When no more transit causes 

are left, the task’s current state is retracted and its original 
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state is asserted. We note that, by only reverting a transit 

operation once all its causes are reverted, we support scenarios 

where e.g., a medical test is delayed multiple times (see (10)).  

The CIG Client (not detailed here) features a UI that visualizes 

the current state of comorbid CIG as a workflow, and allows 

clinicians to make decisions on task execution and integration.  

Results 

When deploying execution-time, comorbid CIG integration at 

a point-of-care, there is an expectation of timely 

recommendations. Hence, we evaluate our approach by 

measuring the performance of the CIG integration algorithm. 

To that end, we (a) modeled the comorbid CIG; (b) 

instantiated suitable CIG integration policies; and (c) executed 

the CIG integration algorithm to perform execution-time 

integration for a number of comorbidity scenarios. 

We executed each experiment 10 times on a PC equipped with 

8GB of RAM and an Intel® Core™ i7-3520 CPU. Table I 

shows the average performance results. Loading the comorbid 

CIG and integration policies took avg. ca. 270ms; calculating 

dynamic properties (e.g., estimActive) took avg. ca. 180ms. 

Table 1 – CIG Integration Performance Results 

Comorbid CIG Integration Scenario performance (s) 

EquivTasksPolicy 

(OA-diabetes) discard second NSAID 0.79 

ConditionalReplacePolicy 

(HTN-Diabetes) in regular cases, reduce dosage; 

when creatinine clearance is low and volume 

control is needed, replace with loop diuretics. 

0.94 

SimulTasksPolicy 

group tests concurrently at health facility 0.9 

Discussion 

Table 1 shows that integrating comorbid CIG takes between 

0.7 – 0.9s. We note that, since performance is mostly 

determined by the underlying reasoner (in our case, Apache 

Jena), selecting a more performant reasoner would improve 

performance. Nevertheless, we already consider these 

acceptable performance times for a consumer-grade PC. 

To the best of our knowledge, the work by Anselma, Piovesan 

and Terenziani [4, 10] presents the first approach to focus on 

the temporal dimension for comorbid CIG integration. 

Analysis facilities allow a practitioner to analyse CIG for 

adverse interactions and identify solutions. To emulate our 

execution-time approach, the practitioner would need to 

frequently utilize these facilities for any set of relevant 

actions, and manually apply, adapt and revert integrations 

when needed. Wilk et al. [7] support a form of execution-time 

integration by repeating the integration process whenever new 

patient data becomes available. But the authors do not 

consider reverting integrations, and only supply two temporal 

revision operators. Zamborlini et al. [11] propose a rule-based 

approach that identifies repeated, alternative, and 

contradictory actions, and leverages external sources. In 

comparison, our work currently includes limited support for 

identifying adverse interactions by leveraging LOD.  

Another aspect of our approach, not elaborated here due to 

space limitations, involves resolving conflicts between 

integration policies themselves. In future work, we aim to 

study more types of integration policies, and look into a global 

optimization scheme—currently, integration policies focus 

solely on their integration points, and disregard the global 

effect of their actions; e.g., a SimulTasksPolicy could delay a 

task that jeopardizes the success of more “important” policies. 

Conclusions 

We presented an execution-time approach and framework for 

comorbid CIG integration, which dynamically (a) applies CIG 

integrations, based on a priori defined integration policies and 

the latest execution-time data; (b) refines or reverts previous 

integrations, as more information becomes available at 

runtime. To provide solutions in line with clinical practice, 

alternative CIG integration decisions can be defined, which 

are conditional on the patient’s up-to-date health profile. By 

leveraging knowledge from LOD, our framework helps 

practitioners in identifying adverse comorbid interactions, and 

formulating suitable integration policies. 
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