
Implementation of Clinical Decision Support Services to Detect Potential Drug-Drug
Interaction sing Clinical Quality Language

Binh-Phi Nguyena, Thomas Reesec, Stefen Deckera,b, Daniel Maloned, Richard D. Boycee, Oya Beyana,b

a Informatik 5, RWTH Aachen University, Aachen, Germany,
b Fraunhofer FIT, Sankt Augustin, Germany

c Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
d College of Pharmacy, University of Arizona, Tucson, Arizona, USA

e Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Abstract

Potential drug-drug interactions (PDDI) rules are currently
represented without any common standard making them
difficult to update, maintain, and exchange. The PDDI
minimum information model developed by the Semantic Web in
the Healthcare and Life Sciences Community Group describes
PDDI knowledge in an actionable format. In this paper, we
report implementation and evaluation of CDS Services which
represent PDDI knowledge with Clinical Quality Language
(CQL). The suggested solution is based on emerging standards
including CDS Hooks, FHIR, and CQL. Two use cases are
selected, implemented with CQL rules and tested at the
Connectathon held at the 32nd Annual Plenary & Working
Group Meeting of HL7.

Keywords:

Potential Drug-Drug Interaction, Clinical decision support
systems, Electronic health records.

Introduction

Drug-drug interactions (DDI) are biological processes that
result in a clinically meaningful change to the response of at
least one co-administrated drug [1]. Identifying potential DDIs
during the care process is important to ensure patient safety and
health care quality. DDIs can often be predicted and mitigated
at the point of care. However, a large number of drugs, lack of
knowledge of DDIs [2] hinders the ability of physicians to
preemptively identify all potential DDIs [3]. Therefore it is
important to guide care providers with well design
computerized alerting systems during the medication prescribe
process [4].

In the last two decades, numerous clinical decision support
(CDS) systems have been developed to support physician by
presenting alerts in real time to the clinician about the current
medication’s potential impact to patients [5]. Ideally, CDS
should provide clinicians with the relevant reference
information such as knowledge or suggestions, intelligently
filtered and presented at appropriate times [6]. Currently, there
are many CDS systems that provide drug interaction alerts [4].
Most of the systems curate their own knowledge base since
there is no complete source of potential DDI (PDDI) knowledge
[7]. Also, there are currently no broadly accepted standards to
guide implementers in the organization and presentation of
PDDI information [8]. Most EHR vendors either develop their
own internal rule engines based on their custom standards, or
contract with a third party. Since these rules are written in a way

1 https://github.com/DBCG/cqf-ruler

just for those systems, it is difficult to exchange, review and
rewrite the rules. Lack of agreement on standards hinders the
reuse of the rules by third parties, creating additional burden to
rewrite rules at each side.

The minimum information models help to describe the PDDI
information in a detailed, actionable and contextualizable
format. Standardized PDDI information can be exchanged via
broadly applicable formats. In this research, we will
demonstrate the use of the PDDI minimum information model
developed by Semantic Web in Healthcare and Life Sciences
Community Group [9], by implementing them with CQL
language and extend CQF Ruler1 to provide decision support.

The aim of this work is to present an example implementation
of representing PDDI logic in CQL and execution of them by
using the FHIR Clinical Reasoning module. We selected
Digoxin-Cyclosporine and Warfarin-NSAIDs as use cases
because they are non-trivial PDDIs for which alerts can be
contextualized to specific patient cases. The developed
prototype detects a PDDI and provides alerts using Clinical
Decision Support Hooks to Electronic Health Record systems
that subscribe to the CDS services.

The following sections provide an overview of our methods,
prototype architecture, implementation of PDDI with CQL, and
evaluation.

Methods

PDDI: The PDDI Minimum Information Model [9] [10] is a
standard proposed by the W3C Semantic Web in Healthcare
and Life Sciences Community Group. It is aimed to help the
clinicians to keep up with the PDDI evidence base, document
and share PDDI information by summarizing PDDI evidence
from primary sources using the information elements from the
PDDI minimal information model.

The information model contains 10 core information items that
should be used to describe every PDDI CDS knowledge artifact
as follows: (i) Clinical consequences; (ii) Contextual
information/modifying factors; (iii) Drugs involved, (iv)
Evidence; (v) Frequency of exposure to the interacting drug
pair; (vi) Frequency of harm for persons who have been
exposed to the interacting drug pair; (vii) Mechanism of the
interaction, (viii) Recommended actions; (ix) Seriousness
rating; and (x) Operational classification of the interaction.

CQL: Clinical Quality Language (CQL)2 is a Health Level
Seven International (HL7) authoring language standard that can

2 http://cql.hl7.org

U

MEDINFO 2019: Health and Wellbeing e-Networks for All
L. Ohno-Machado and B. Séroussi (Eds.)

© 2019 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI190318

724

be used with both CDS and electronic Clinical Quality
Measures to represent the PDDI information. The CQL syntax
provides a clinical focused, author-friendly and human-
readable language to clinical domain experts, since it allows for
rich, modular and flexible expression of the logic, and supports
different data models including FHIR. CQL is a query language
built up by combining rules, namely statements, to describe the
available data in terms of a data model. For decision support,
the rules will be evaluated in the context of a specific patient to
produce a response at some specific point in a workflow.

CDS Services: CDS Service [11] is a role which provides real-
time clinical decision support as a remote service. It enables a
consumer to ask for clinical decision support based on his
current context. The consumer gives relevant contextual
information as part of the request and receives clinically
relevant suggestion describing potential actions to be taken.
The service implementation must comply with CDS Hooks
specification.

CDS-Hooks3 is an emerging standard gained considerable
interest from EHR vendors. It is a “hook” based pattern
designed to provide a simple way to initiate requests for CDS,
from any point in a clinical workflow. It specified the basic
actions of registering for CDS services, calling those services,
and then receiving the CDS service response in form of simple
cards providing appropriate information within the context of
the EHR.

Concept

Architecture: As shown in the Figure 1, the PDDI CDS
Implementation was designed as a self-contained service, with
three main components including HAPI FHIR server4, CDS
Services, and CQL engine5. The first component is the HAPI
FHIR server which is an option to store the definition of
services, called PlanDefinition, supported by the system and
knowledge base of CQL rules, called Library. The second
component is the CDS services, which serve as a core logic to
map the incoming request to the corresponding service defined
by PlanDefinition, execute the CQL logic of the service defined
in Library following the instruction from the PlanDefinition,
and generate response cards. By this way, the new service can
be introduced into the system without changing the core CDS
services and the configuration. The third component is the CQL
engine which provides CQL rule execution for the core CDS
services.

As described in detail in the current draft of the PDDI
Implementation Guideline (IG) [12], the CDS Discovery
service is hosted at a stable endpoint, i.e. {baseUrl}/cds-
services, and allows EHRs to discover the list of available
supported CDS Service, e.g. {baseUrl}/cds-services/warfarin-
nsaids-cds. The list of CDS Services contains information such
as a description of the CDS Service, when it should be invoked,
and any data that is requested to be prefetched.

PDDI CDS Implementation Workflow: The PDDI IG
envisions two hooks which are medication-prescribe at order
authorization, and medication-select at the time of selecting a
medication and prior to the order authorization. For this paper,
we focus only on medication-prescribe in the Level 1
Implementation.

Firstly, the EHR invokes the "medication-prescribe" hook and
PDDI CDS service is called by sending an HTTP POST
request, namely CDS Hooks Request, containing JSON to the

3 https://cds-hooks.org
4 http://hapifhir.io

service endpoint (e.g. {baseUrl}/cds-services/warfarin-nsaids-
cds).

Figure 1 – The architecture and process of PDDI CDS
Implementation

The CDS Hooks request contains specific information for the
hook that was triggered including hook name FHIR server url,
context data that the service will need, and prefetch data that is
pre-queried data based on the CDS discovery. If the PDDI CDS
service does not receive prefetch data in the request, it will
query the EHR FHIR Server via network call with the
authentication given by the EHR Application Client.

When CDS Service processes the request, the corresponding
PlanDefinition and Library resources are loaded from FHIR
server. Once the resources are loaded, the CQL logic in Library
resource is decoded and evaluated by CQL engine with the data
received either in the prefetch or from EHR FHIR server. The
CQL engine evaluates the CQL logic following the guidance
specified in the PlanDefinition resource.

After the evaluation is done, CDS Response cards are generated
and returned to the client. Each Card has specified attributes
including summary, detail, indicator, and list of suggestions
providing actionable information. The specified attributes map
to the core elements of the minimum information model (e.g.
summary = Drugs Involved, detail = Clinical consequences,
Seriousness, Mechanism of Interaction, and Evidence). The
Card indicator element dictates how the EHR presents the alert
(e.g. indicator = “hard-stop” could be a modal alert).

CDS Services Workflow: When the PlanDefinition is loaded by
PDDI CDS services for the corresponding request, the services
will load the CQL library defined in the PlanDefinition and
decode it based on base64format.

Figure 2 – The flow of processing Plan Definition

After the CQL library is loaded, the services check the hook
event specified in the incoming request with the trigger
definition defined in the PlanDefinition. If the hook event meets
the trigger definition, the services begin to resolve the actions
by evaluating the condition defined in CQL library to see
whether or not the definition specified in the Action is to be
applied. Then, the services collect the data in the action’s
properties and evaluate the dynamic value specified in the CQL
library for the customizable properties. For the suggestions, the
services resolve the sub-actions as the same approach as
resolving actions.

5 https://github.com/DBCG/cql_engine

B.-P. Nguyen et al. / Implementation of Clinical Decision Support Services to Detect Potential Drug-Drug Interaction 725

When the data is ready, the corresponding response card is
generated and the services continue to resolve the next action
until no actions left. Once finished, the services return the
response cards as a result to the client.

Results

The implementation focuses on two PDDI CDS use cases
which are Digoxin + Cyclosporine and Warfarin + NSAIDs.
This section only discusses the Digoxin + Cyclosporine use
case. Please refer to our repository
(http://doi.org/10.5281/zenodo.1481220) for the full
implementation and the PDDI IG [12] for the detail including
PDDI model of the two use cases.

Figure 3 – The partial of decision tree for Digoxin

Cyclosporine use case [12]

Use Case

The Digoxin + Cyclosporine exemplar artifact has two main
decision blocks. Whether the patient is taking digoxin and/or
cyclosporine at the time of the current order for digoxin or
cyclosporine, and whether the patient has risk factors that may
potentiate the risk of digitalis toxicity.

As shown in the Figure 2, each decision block has a certain
suggestion in rectangle shape which presents core elements of
PDDI model, necessary actions and level of indicator (i.e.
“info” – green, “hard-stop” – red, and “warning” – orange).

Implementation of Plan Definition: PlanDefinition is a
definition of the service served as a guide for the incoming
request. PlanDefinition contains a set of definition including
Library, Trigger Definition, Condition, Action, and Dynamic
Value (Figure 3).

The Library element defines the reference to the logic used by
the PlanDefinition. An example of digoxin-cyclosporine-cds
PlanDefinition is the reference to Library/digoxin-
cyclosporine-cds Library. This Library contains the CQL logic

library encoded in base64 format as a string used by the
PlanDefinition.

The Trigger Definition uses the Name Event, which allows
triggering of an event opposed to a scheduled or fixed event. As
an example, by specifying medication-prescribe as an event, the
service only serves for the incoming request sent from
medication-prescribe hook.

The condition element is used to determine whether or not the
CDS logic specified in the Library is to be applied. By
specifying “Inclusion Criteria” as a CQL statement for the
condition, an action(s) is initiated once the condition is satisfied
(i.e., true or false).

The Action element defines a list of response card needed to be
generated. The subaction element indicates a list of suggestion
which recommends a set of changes in the context of the current
activity.

The Dynamic Value enables customization of the response
card’s properties by collecting the dynamic data defined in
CQL statements. For the action, we define three dynamic
values, such as “Get Summary” statement for the card title,
“Get Detail” for the card description and “Get Indicators” for
the card level. Since each decision block for PDDIs has one or
more individualized information components, integrating
patient-specific and product-specific data into Card elements is
facilitated by the Dynamic Value element.

Implementation of CQL: All artifact logics of CQL for the
Digoxin Cyclosporine use case are wrapped in the
Digoxin_Cyclosporine_CDS library. A set of declarations,
including data model, included libraries, valuesets, parameters,
and context, provide information about the library.

The PDDI CDS uses FHIR model, version 3.0.0 as the primary
data model to support for the FHIR resources.

A common library, namely PDDICDSCommon, contains all
supported statements. The PDDI IG provides a number of
valueset used in this library. Each valueset describes RxNorm
codes drawn from one or more code systems for certain drugs.
For example, the “Digoxin” valueset has this number of codes
which is 197604 for Digoxin 0.125 MG Oral Tablet, 245273 for
Digoxin 0.0625 MG Oral Tablet and other RxNorm codes.
CQL evaluate the rules using all these RxNorm codes.

A ContextPrescription parameter refers to the list of Medication
Request prescribed by the clinician specified in the incoming
request. The Patient context restricts the information within a
scope of single patient.

As specified in the condition element of the PlanDefinition, the
“Inclusion Criteria” statement is used to check whether the
patient of the incoming request is taking digoxin and/or
cyclosporine at the time of the current order for digoxin or
cyclosporine.

define "Inclusion Criteria":
 ("Is Context medication cyclosporine"
 and "Is digoxin in prefetch"
) or (
 "Is Context medication digoxin"
 and "Is cyclosporine in prefetch"
)

To express “Is Context medication cyclosporine” criterion, we
need to check the existence of the list of Medication Request
containing Cyclosporine specified in the ContextPrescription.
The "Cyclosporine Prescription" statement requires that all
codes from medication of the ContextPrescription parameter
belong to the valueset identified by "Cyclosporine".

define "Is Context medication cyclosporine":
 exists ("Cyclosporine Prescription")

B.-P. Nguyen et al. / Implementation of Clinical Decision Support Services to Detect Potential Drug-Drug Interaction726

http://doi.org/10.5281/zenodo.1481220

define "Cyclosporine Prescription":
 ContextPrescriptions P
 where Common.ToCode(P.medication.coding[0]) in
"Cyclosporine"

Next, the second criterion is "Is digoxin in prefetch". This
criteria requires that the code of MedicationRequest is the code
in the valueset identified by "Digoxin". Since we are in the
Patient context, this query retrieves all Medication Request for
only current Patient in the context. To filter the results which
authored within the 100-day look-back period, we had to
construct an interval from the 100-day look-back to infinitive.

define "Is digoxin in prefetch":
 exists ("Digoxin Rx")

define "Digoxin Rx":
 [MedicationRequest: "Digoxin"] MR
 where MR.authoredOn.value in Interval[Today()-100 days,null]

We use the same approach for the remaining criteria.

As defined in the dynamicValue element of the PlanDefinition
for the “summary” property of the response card, the “Get Base
Summary” statement provides the short description of the drugs
involved in this interaction.

define "Get Base Summary":
 'Potential Drug-Drug Interaction between digoxin ('
 + (if "Is Context medication digoxin"
 then Common.GetDrugNames("Digoxin Prescription")
 else Common.GetDrugNames("Digoxin Rx")
)
 + ') and cyclosporine ('
 + (if "Is Context medication cyclosporine"
 then Common.GetDrugNames("Cyclosporine Prescription")
 else Common.GetDrugNames("Cyclosporine Rx")
)
 + ')'

For the “detail” property of the response card, the “Get Base
Detail” statement provides detail of PDDI minimum
information.

define "Get Base Detail":
 'Increased risk of digoxin toxicity...'

For the “indicator” property of the response card, the “Get Base
Indicator” statement specifies the importance of what this card
conveys.

define "Get Base Indicator":
 if "Is Context medication cyclosporine" then
 if "Is cyclosporine in prefetch" then
 if "Is there a normal digoxin level in prefetch" then
 if "Are diuretics or abnormal electrolyte or abnormal
renal observations in prefetch"
 then 'info'
 else 'warning'
 else 'warning'
 else
 if "Is there a normal digoxin level in prefetch" then
 then 'warning'
 else 'hard-stop'
 else
 if "Is digoxin in prefetch" then
 if "Is there a normal digoxin level in prefetch" then
 if "Are diuretics or abnormal electrolyte or abnormal
renal observations in prefetch"
 then 'info'
 else 'warning'
 else 'warning'
 else 'warning'

The first criterion of the “Get Base Indicator” statement is "Is
there a normal digoxin level in prefetch". This criterion requires
that all codes of Observation are in the valueset identified by
"Digoxin LOINC". The normal digoxin observation is
identified by measure the number of quantity less than
0.9ng/mL. To filter the results which take effects within the 30-
day look-back period, we had to construct an interval from the
30-day look-back and infinitive. Because the most recent of

6 https://www.getpostman.com

Observation is important for the check, we select the latest
result after ordered by the effective date.

define "Is there a normal digoxin level in prefetch":
 exists ("Normal Digoxin Observation")

define "Normal Digoxin Observation":
 Last (
 [Observation: "Digoxin LOINC"] O
 where O.effective.value in Interval[Today()-30 days, null]
 and Common.ToQuantity(O.value) < 0.9 'ng/mL'
 sort by effective.value
)

The second criterion of the “Get Base Indicator” statement is
"Are diuretics or abnormal electrolyte or abnormal renal
observations in prefetch". This criteria contains three main
components which are the diuretics medication requests
involved, the abnormal electrolyte observations involved, and
the abnormal renal observations involved.

We apply the same approach to detect the diuretics medication
requests involved by checking the existence of Aldosterone
Antagonists and Loop Diuretics in the Medication Request. For
the remaining components, a similar approach for the abnormal
electrolyte observations and renal observations has been used
to detect the abnormal level of Potassium, Magnesium,
Calcium, and Renal.

Table 1 – The variety of resources tested in two use cases

Warfarin-NSAIDs Digoxin-Cyclosporine
MedicationRequest MedicationRequest
MedicationDispense MedicationDispense
MedicationStatement MedicationStatement
MedicationAdministration MedicationAdministration
Patient Patient
Encounter Encounter
Condition Observation

Evaluation

We prepared FHIR resources (Table 1) to cover all cases of two
decision trees and tested around 170 FHIR resources in STU3
version for 21 different patients on 14 cases of Digoxin-
Cyclosporine and 7 cases of Warfarin-NSAIDs decision tree to
support the draft IG. We also performed the evaluation at the
Connectathon held at the 32nd Annual Plenary & Working
Group Meeting of HL7 held in September 2018.
The evaluation was done using Postman6 and CDS Hooks
Sandbox7, a tool developed by CDS Hooks team demonstrate
how CDS Hooks would work with an EHR system. In brief, the
clinician enters the medication, e.g., Ketorolac Tromethamine
10 MG Oral Tablet, for the specific treatment, and the CDS
Hooks Sandbox then invokes the "medication-prescribe" hook
to send the request to the PDDI-CDS services endpoint (e.g.
{baseUrl}/cds-services/warfarin-nsaids-cds). After the PDDI
CDS service processes the request, the CDS Response cards are
returned. Finally, the CDS Response cards is presented by the
CDS Hooks Sandbox.

Discussion

We were able to implement a PDDI CDS service using CQL,
FHIR, and CDS Hooks. This shows the feasibility and that CQL
was sufficiently expressive to cover to realistic use cases. We
suggested enhancements to CDS Hooks that would enable it to
support PDDI CDS using the minimum information model, and
the combination of tools indeed performed PDDI CDS as a

7 https://sandbox.cds-hooks.org

B.-P. Nguyen et al. / Implementation of Clinical Decision Support Services to Detect Potential Drug-Drug Interaction 727

Figure 4– The screenshot of CDS Hooks Sandbox tool to test
our PDDI-CDS services through CDS Developer Panel
service for two patient use cases. One of the limitations is a lack
of tools supported for CQL because the community who is
using CQL and CQL itself is entirely new. Therefore, it takes a
lot of time in debugging to find out the problem.

As described in the Concept section, we need two components
including FHIR server and CQL engine to implement CDS
services. There are many FHIR server implementations
including HAPI FHIR, FHIR .NET API8 and others. However,
HAPI FHIR is the most stable and popular implementation. It
has a well-written documentation and full FHIR version
support. Apart from that, there are less choices for CQL engine
and we chose CQL-Evaluation-Engine from Database
Consulting Group. This implementation is based on CQF-Ruler
open source developed by Database Consulting Group, and
Level 1 implementation of the draft PDDI-CDS
Implementation Guide developed by HL7 Clinical Decision
Support Work Group.

The Level 1 Implementation uses a single CDS service call and
response with the medication-prescribe hook. As a future work,
we plan to implement Level 2 implementation which we are
working with the CDS Hooks developers to define the new
medication-select hook and clarify how DetectedIssues will be
returned in the card responses.

To create the CQL artifacts, the CDS Authoring Tool9 is a
promising candidate which is a component of the CDS Connect
project funded by the Agency for Healthcare Research and
Quality (AHRQ). The CDS Authoring Tool introduces an
interface for composing CDS logic step by step using simple
forms and exporting it as CQL artifacts using the HL7 FHIR
DSTU 2 data model.

Conclusions

Based on the PDDI-CDS IG, we successfully implemented
PDDI CDS services supported the Level 1 implementation of
PDDI-CDS IG. The implementation follows strictly the CDS
Hooks specification which enables EHR system to interoperate
and exchange the data by using FHIR STU3 standard to
enhance the better clinical diagnostic decision making. In the
future, we will focus on the Level 2 implementation to help
advance the standards including the new mediation-select.

Acknowledgments
This work funded in part by grants from the United States
Agency for Healthcare Research and Quality R01 LM011838,

8 https://github.com/FirelyTeam/fhir-net-api

R21 HS023826 and R01 HS025984; and National Library of
Medicine grants T15 LM007124 and R01LM011838.

References
[1] OBO Technical WG, Drug-drug Interaction and Drug-drug

Interaction Evidence Ontology, (2018).
http://www.obofoundry.org/ontology/dideo.html (accessed
Nov 10, 2018).

[2] H. van der Sijs, J. Aarts, and et al., Turning Off Frequently

Overridden Drug Alerts: Limited Opportunities for Doing
It Safely, J Am Med Inform Assoc, 15 (2008), 439-448.

[3] R.T. Scheife, L.E. Hines, and et al., Consensus

recommendations for systematic evaluation of drug-drug
interaction evidence for clinical decision support, Drug
Saf, 38 (2015), 197-206.

[4] T.H. Payne, L.E. Hines, and et al., Recommendations to

improve the usability of drug-drug interaction clinical
decision support alerts, J Am Med Inform Assoc 22 (2015),
1243-50.

[5] J.I. Wolfstadt, J.H. Gurwitz, and et al., The Effect of

Computerized Physician Order Entry with Clinical
Decision Support on the Rates of Adverse Drug Events: A
Systematic Review, J Gen Intern Med 23 (2008), 451–458.

[6] A.M. Sirajuddin, J.A. Osheroff, et al., Implementation

pearls from a new guidebook on improving medication use
and outcomes with clinical decision support. Effective
CDS is essential for addressing healthcare performance
improvement imperatives, J Healthc Inf Manag 23 (2009),
38-45.

[7] K.W. Fung, J. Kapusnik-Uner, and et al., Comparison of

three commercial knowledge bases for detection of drug-
drug interactions in clinical decision support, J Am Med
Inform Assoc 24 (2017), 806-812.

[8] M.Z. Herrero, I.B. Segura, and P. Martínez, Conceptual

models of drug-drug interactions: A summary of recent
efforts, Knowledge-Based Systems 114 (2016), 99-107.

[9] W3C Group, HCLS Drug-Drug Interaction, 2018.

https://github.com/w3c/hcls-drug-drug-interaction/
(accessed Nov 10, 2018).

[10] M. Brochhausen, M. Herrero-Zazo, and et al., MPIO - A

novel Minimum Potential drug-drug interaction
Information Ontology implemented in OWL, AMIA
Informatics Summit, San Francisco, CA. USA, 2018.

[11] HL7, HL7 IG: Decision Support Service, Release 1,
(2018). http://www.hl7.org/implement/standards/product_
brief.cfm?product_id=334 (accessed Nov 10, 2018).

[12] HL7, PDDI CDS Implementation Guide, (2018).

http://hl7.org/fhir/uv/pddi/2018Sep (accessed Nov 10,
2018).

Address for correspondence
Oya Beyan, beyan@fit.fraunhofer.de.

9 https://cds.ahrq.gov/authoring/

B.-P. Nguyen et al. / Implementation of Clinical Decision Support Services to Detect Potential Drug-Drug Interaction728

http://www.obofoundry.org/ontology/dideo.html
https://github.com/w3c/hcls-drug-drug-interaction/
https://github.com/w3c/hcls-drug-drug-interaction/
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=334
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=334
http://hl7.org/fhir/uv/pddi/2018Sep
http://hl7.org/fhir/uv/pddi/2018Sep
mailto:beyan@fit.fraunhofer.de

