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Abstract 

Acute Kidney Injury (AKI) is the most common cause of organ 
dysfunction in critically ill adults and prior studies have shown 
AKI is associated with a significant increase of the mortality 
risk. Early prediction of the mortality risk for AKI patients can 
help clinical decision makers better understand the patient 
condition in time and take appropriate actions. However, AKI 
is a heterogeneous disease and its cause is complex, which 
makes such predictions a challenging task. In this paper, we 
investigate machine learning models for predicting the 
mortality risk of AKI patients who are stratified according to 
their AKI stages. With this setup we demonstrate the stratified 
mortality prediction performance of patients with AKI is better 
than the results obtained on the mixed population.  
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Introduction 

Acute Kidney Injury (AKI) is defined as a sudden (within 
hours) decrease in nephritic function, including both renal 
structural damage and functional disorder [1]. It has been 
shown AKI is the most common cause of organ dysfunction in 
the critical care setting, and AKI is associated with a significant 
increase on the morbidity and mortality risk [2]. Early 
prediction of the mortality risk for AKI patients can help 
clinical decision makers better understand patient conditions in 
time and take appropriate actions. 
There has been prior research on building mortality risk 
prediction models for AKI patients. For example, Luo et al. [3] 
created a scoring model based on multivariate logistic 
regression to predict the 90-day mortality risk of AKI patients. 
Skarupskienė et al. [4] adopted logistic regression to predict the 
mortality risk of AKI patients requiring renal replacement 
therapy after cardiac surgery. Demirjian et al. [5] used logistic 
regression to predict the 60-day mortality risk of the AKI 
patients who are enrolled in the Veterans Affairs/National 
Institutes of Health Acute Renal Failure Trial Network study. 
Ohnuma et al. [6] compared the ability of various mortality 
prediction models in a retrospective, multi-centric cohort of 343 
Japanese patients with AKI requiring continuous renal 
replacement therapy in 14 ICUs captured between January and 
December 2010.  
All of these existing research tried to build a unique predictor 
for the entire AKI patient cohort. However, it has been 
demonstrated AKI is a heterogeneous disease with various 
kinds of causes and clinical manifestations [7]. In this case, it 
would be challenging to build a single model that is capable of 
predicting the mortality risk over the entire AKI patient 
population. 

With the above considerations and previous studies [8,9], we 
propose to perform a stratified prediction in this paper. 
Specifically, we will first stratify the AKI patients according to 
their disease stage (I, II, and III). Then, a mortality risk 
prediction model will be built for each patient strata. In addition 
to logistic regression, we will also test the performance of other 
machine learning models including random forest and gradient 
boosting tree. The Medical Information Mart for Intensive Care 
III (MIMIC-III) database [10] is used for empirical evaluations. 
Our results demonstrate the performance of stratified mortality 
prediction considering different AKI stages is higher than the 
mortality prediction on the entire mixed population. 
Additionally, the experiment results show different features 
play different roles for mortality prediction in patients with 
different AKI stages.  

Methods 

Data source   

The Medical Information Mart for Intensive Care III (MIMIC-
III) database is employed to extract patient data [10], which 
includes 58,976 admissions of patients. This database has 
comprehensive information (e.g., patient demographics and 
vital signs) regarding ICU admissions, which is open-source 
and freely accessible. The MIMIC-III dataset is passive and de-
identified [11], which is in compliance with the Health 
Insurance Portability and Accountability Act (HIPAA) Privacy 
Rule and does not make a significant impact on patient privacy. 

AKI stages 

The criteria of AKI stages has experienced some development 
progress based on the studies of researchers and clinicians. In 
particular, there are four AKI criteria: Risk-Injury-Failure-
Loss-End (RIFLE) criteria [12], pediatric RIFLE (pRIFLE) 
criteria [13], Acute Kidney Injury Network (AKIN) criteria 
[14], and Kidney Disease: Improving Global Outcomes 
(KDIGO) criteria [15]. KDIGO criteria unified previous criteria 
in 2012, which improves the sensitivity of AKI diagnostic 
criteria and has been widely used by researchers and physicians 
[1]. In this study, we employed the KDIGO criteria to stratify 
patients into different AKI stages: 
Stage 1: 1.5-1.9 times baseline, which is known or presumed to 
have occurred within the prior 7 days; or not less than 0.3 
mg/dL (not less than 26.5 mol/L) absolute increase in serum 
creatinine (SCr); or urine volume less than 0.5 mL/kg/h for 6-
12 hours. 
Stage 2: SCr not less than 2.0-2.9 times baseline; or urine 
volume less than 0.5 mL/kg/h for not less than 12 hours. 
Stage 3: SCr not less than 3.0 times from baseline; or increase 
in SCr not less than 4.0 mg/dL (not less than 353.6 mol/L); or 
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initiation of renal replacement therapy; or urine volume less 
than 0.3 mL/kg/h for not less than 24 hours; or anuria for not 
less than 12 hours; or renal replacement therapy required. 

Patient features 

A large number of features from MIMIC-III are extracted, 
which is shown as follows. Additional details about features can 
be found at: https://github.com/xuzhenxing2018/amia/ 
blob/master/features_name.xlsx. 

1. Demographics: Gender, age, and ethnicity. 
2. Medications: Medications the patient took from the 

patients’ ICU admission until prediction time. We 
focused on the following categories: diuretics, non-
steroidal anti-inflammatory drugs (NSAID), 
radiocontrast agents, and angiotensin. 

3. Comorbidities: We considered all comorbidities (e.g., 
congestive heart failure, peripheral vascular, 
hypertension, diabetes, liver disease, myocardial 
infarction (MI), coronary artery disease (CAD), 
cirrhosis, and jaundice) that patients already had. There 
were a total of 31 comorbidities in our dataset. 

4. Chart-events: Vital signs measured at the bedside. We 
mainly focused on diastolic blood pressure (DiasBP), 
glucose, heart rate, mean arterial blood pressure 
(MeanBP), respiration rate, blood oxygen saturation 
level (SpO2), systolic blood pressure (SysBP), and 
temperature. 

5. Lab-events: Laboratory test results. We considered 
bicarbonate, blood urea nitrogen (BUN), calcium, 
chloride, creatinine, hemoglobin, international 
normalized ratio (INR), platelet, potassium, 
prothrombin time (PT), partial thromboplastin time 
(PTT), and white blood count (WBC). 

Data pre-processing 

We mainly pre-processed two types of features: time-dependent 
continuous features and discrete features. For continuous 
features (e.g., lab and chart-events), we computed statistics 
including the first, last, average, minimum, maximum, slope, 
and the count based on observations during the observation 
window. The final encoding of the continuous features was 
represented by a vector representation with real numbers. The 
discrete features (e.g., medication and comorbidities) were 
encoded as zero-one multi-hot vectors. If there were missing 
demographics and discrete features for an ICU stay record, we 
deleted that ICU stay. Finally, each ICU stay was represented 
by a feature vector with a 224 dimension, which was indexed 
by icustay_id.  

Experimental setting 

In this study, we predicted whether a patient with AKI in 
different stages would die within the next seven days. 
Specifically, a predictive modeling setting with a rolling 
observation window design was adopted. We supposed t was 
the elapsed time (in hours) after a patient was admitted to the 
ICU, and the patient records in t were used to predict the 
mortality risk for the next seven days, where t took the value of 
24, 48, 72, 96, 120, and 144 hours. An illustration of this rolling 
window design is demonstrated in Figure 1.  
For each ICU stay, the AKI severity stage was identified based 
on whether the criteria in KDIGO stages were satisfied in an 
observation window, and then we put this ICU stay into 
corresponding cohorts (AKI Stage-I cohort, AKI Stage-II 
cohort, and AKI Stage-III cohort). If an ICU stay experienced 
multiple AKI stages during the observation window (from ICU 
admission to prediction point), we only chose the last AKI 

stage. Based on the built three cohorts, we predicted whether a 
patient with AKI in different stages would die within the next 
seven days. If an ICU stay did not meet one of the three AKI 
stage criteria in the observation window, we excluded the ICU 
stay from the prediction. 

 
Figure 1 - An illustration of mortality prediction for patients 

with AKI in different stages. PP: Prediction Point; OW: 
Observation Window; PW: Prediction Window 

Predictive models 

Several popular machine learning methods including Logistic 
Regression (LR) [16], L2 norm regularized Logistic Regression 
(Ridge) [17], Random Forest (RF) [18], and Gradient Boosting 
Decision Tree (GBDT) [19] were utilized to build predictive 
models using free and publicly available software. Specifically, 
for the implementations of LR, Ridge, and RF, we employed 
the Scikit-learn software library [20]. For the GBDT, we used 
the XGBoost software library [21]. For each predictive model, 
we used the 5-fold cross validation to assess the performance of 
these algorithms, and employed several popular and important 
metrics (AUC, recall, and precision) to evaluate the 
performance of these models.  
Note that, the number of cases (mortality patient with AKI) and 
controls (alive patient with AKI) was imbalanced (e.g., an 
approximate 1:10 case to control ratio in 24 hours for AKI 
Stage-I) in our dataset. More statistics for all AKI stages are 
shown in Table 1. With such an imbalanced dataset, most 
classifiers had a potential to support the majority class (alive 
patient with AKI) because they were considered to maximize 
the overall number of correct predictions, thus resulting in poor 
performance in the minority class (mortality patient with AKI) 
prediction [22].  
To address this imbalanced issue, we used case-control 
matching techniques [23] in this study, which matched each 
case with a control by considering the APACHE II score [24], 
Charlson comorbidity index [25], and demographic 
information. A matched control met two conditions: (1) has the 
same gender as the case and the age difference is within 5 years; 
(2) has the highest similarity score with the case measured by 
Manhattan distance on the basis of APACHE II and Charlson 
comorbidity index. By this technique, a resampled balanced 
training set was constructed with matched cases and controls. 

Results 

Comparison of different methods with all patient features 

We tested the performance of different predictive models with 
different AKI stages using all patient features with varying data 
observation windows. Figure 2 shows the performance of these 
methods in terms of AUC. In order to compare the performance 
of mortality prediction on subpopulations completely, we 
constructed a mixed cohort, which combined all the patients 
with different AKI stages together. This mixed cohort is 
represented as Stage-I-II-III in Figure 2. For the performance in 
terms of precision and recall, please refer to 
https://github.com/xuzhenxing2019/MedInfo. 
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Table 1 - The number of mortality and alive patients with AKI in different stages 

  24h 48h 72h 96h 120h 144h 

Stage-I 

Total 7506 8181 5801 4252 3222 2416 
Mortality 756 816 715 647 567 493 
Alive 6750 7365 5086 3605 2655 1923 
Mortality Rate 10.07% 9.97% 12.33% 15.22% 17.6% 20.41% 

Stage-II 

Total 3216 2895 2025 1576 1267 1007 
Mortality 514 514 421 386 347 310 
Alive 2702 2381 1604 1190 920 697 
Mortality Rate 15.98% 17.75% 20.79% 24.49% 27.39% 30.78% 

Stage-III 

Total 408 414 404 398 380 367 
Mortality 188 167 176 159 158 161 
Alive 220 247 228 239 222 206 
Mortality Rate 46.08% 40.34% 43.56% 39.95% 41.58% 43.87% 

 

 

  

  

  

Figure 2 - The AUC of different methods with 24-144 hours of data observation window in terms of different AKI stages 

From Figure 2, we observed that: 
1. The technique of stratifying patients with AKI into 

different stages obtained a better performance 
compared to the mixed cohort. This provided some 
evidence for our assumption that stratifying patients 
with AKI into different stages has the potential to 
improve the performance of mortality prediction 
because of AKI’s complex etiology and 
pathophysiology. 

2. The technique of constructing a mortality predictor 
based on different cohorts has the potential to consider 
different AKI causes. This predictive modelling 
strategy can be viewed as a case for local learning [26], 
which first splits the data space into multiple local 
areas and constructs different predictors for the areas.  

3. Comparing the Stages, Stage-III shows a higher 
mortality predictive performance. One implication is 

the AKI patients in Stage-III who are going to die had 
more distinctive clinical manifestations compared to 
the control patients. 

4. Comparing the performance of four predictors, GBDT 
acquires better results. 

Comparison of feature group predictability with GBDT 

Five different groups of features were employed to build 
mortality predictors for patients with different AKI stages. In 
this section we explored the prediction performance of GDBT 
with different feature groups within a 24 hour data observation 
window. The mortality prediction results are demonstrated in 
Table 2.  
We observed feature groups played different roles when 
patients were in different AKI stages. For example, the 
laboratory features acquired better performance than other 
feature groups when patients were diagnosed with AKI Stage-
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I. Chart features played a more important role in predicting 
mortality when patients were in Stage-II and III. One potential 
reason for this is the chart events had a finer time resolution, 
and for patients with a later stage of AKI, these events provided 
more in-time information of the patients’ condition which 

progressed rapidly. In addition, there were no obvious 
differences between comorbidities and medications feature 
groups. The demographic feature group contributed the least to 
mortality prediction in patients with different stages. 

Table 2 - The performance of different group features in all AKI stages on the basis of 24 hours data 

 Demographics Medications Comorbidities Chart-events Lab-events 
Stage-I 0.6823±0.0219 0.6971±0.0218 0.7027±0.0233 0.7031±0.0241 0.7237±0.0223 
Stage-II 0.7029±0.0222 0.7128±0.0221 0.7139±0.0237 0.7339±0.0246 0.7331±0.0243 
Stage-III 0.7134±0.0238 0.7236±0.0247 0.7239±0.0251 0.7424±0.0255 0.7334±0.0249 

 
The important features chosen from all feature groups 

There were 224 features extracted in total for mortality 
prediction in different AKI stages. The importance of each 
factor in mortality prediction was further explored in our 
experiments. The GBDT model was employed to acquire the 
importance score of each feature based on 24 hour data. The 
range of the feature importance score for mortality prediction 
in AKI Stage-I, Stage-II, and Stage-III were 0.0015-0.0457, 
0.0015-0.0556, and 0.0019-0.0316, respectively. The top ten 
features are shown in Table 3.  

From the table, we can observe HeartRate, CREATININE, 
CHLORIDE, WBC, HEMOGLOBIN, and RespRate were 
more important because there were strong associations between 
these features and mortality in patients with AKI. These results 
aligned well with some previous studies [27-32]. For example, 
the magnitude of increase in serum creatinine levels can 
determine the severity of AKI [27], which was associated with 
worse survival rates [28]. Chloride levels are also associated 
with the severity of AKI [29] and Shaw et al. demonstrated an 
association between higher intravenous chloride loads and 
hospital mortality [30]. 

Table 3 - The top 10 features selected from all feature groups on the basis of importance score 

 Stage-I Stage-II Stage-III 
 Features Importance Features Importance Features Importance 
1 POTASSIUM_count 0.0457 HEMOGLOBIN_slope 0.0556 HeartRate_last 0.0316 
2 metastatic_cancer 0.0365 HeartRate_last 0.0278 MeanBP_last 0.0247 
3 CREATININE_avg 0.0350 CHLORIDE_slope 0.0200 HEMOGLOBIN_slope 0.0237 
4 BUN_last 0.0289 WBC_min 0.0185 RespRate_last 0.0237 
5 PTT_avg 0.0274 CREATININE_slope 0.0173 BICARBONATE_slope 0.0221 
6 WBC_min 0.0243 CHLORIDE_max 0.0170 CREATININE_slope 0.0217 
7 PLATELET_last 0.0223 SysBP_last 0.0168 BUN_slope 0.0198 
8 HeartRate_max 0.0213 HeartRate_avg 0.0164 Glucose_min 0.0198 
9 Temp_avg 0.0213 Temp_last 0.0156 DiasBP_last 0.0198 
10 RespRate_avg 0.0182 HeartRate_max 0.0154 age 0.0178 

 
Discussion and Conclusions 

Accurate prediction of the mortality risk for AKI patients is 
helpful for clinicians to understand the condition of the patients 
and take appropriate actions. AKI has a complex etiology and 
pathophysiology, so it is challenging to construct a single model 
that can accurately predict the mortality risk over the entire AKI 
patient cohort. This study investigated the impact of different 
AKI subpopulations on the performance of mortality 
prediction. We stratified the AKI patients on the basis of their 
disease stage (I, II, and III), and then a mortality risk predictor 
was constructed for each patient cohort. Several popular 
machine learning models (e.g., logistic regression, RF, and 
GBDT) were built based on these subpopulations for the 
mortality prediction in patients with AKI. GBDT showed a 
better performance than other methods for the mortality 
prediction in this study. 
Prior models of risk prediction of mortality in critically ill 
patients with AKI typically employed mixed cohorts [5,6]. The 
utilization of stratification mechanisms performed in this study 
provides a chance to predict mortality in patients with AKI 
specific to each stage. This technique of constructing a 
mortality predictor based on different cohorts has the potential 
to consider different AKI causes. In addition, dynamic real-time 

data may allow for clinical monitoring of mortality risk beyond 
a solely static prediction upon ICU arrival. The utilization of 
dynamic clinical monitoring algorithms for mortality prediction 
may allow for its incorporation into the electronic medical 
record [33].  
With the ability to identify patients at high risk of mortality by 
employing real-time data may allow for initiation of earlier 
interventions to prevent or reduce mortality [34]. It might be 
useful to incorporate more information (e.g., imaging and 
genomic biomarkers) to further improve the performance of 
dynamic clinical mortality risk prediction models. In the future, 
we will consider some advanced models (e.g., recurrent 
network) with stronger learning capabilities to improve the 
performance of prediction.  
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