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Abstract 
Cluster analysis aims at separating patients into phenotypical-
ly heterogenous groups and defining therapeutically homoge-
neous patient subclasses. It is an important approach in data-
driven disease classification and subtyping. Acute coronary 
syndrome (ACS) is a syndrome due to sudden decrease of cor-
onary artery blood flow, where disease classification would 
help to inform therapeutic strategies and provide prognostic 
insights. Here we conducted an outcome-driven cluster analy-
sis of ACS patients, which jointly considers treatment and 
patient outcome as indicators for patient state. Multi-task neu-
ral network with attention was used as a modeling framework, 
including learning of the patient state, cluster analysis, and 
feature importance profiling. Seven patient clusters were dis-
covered. The clusters have different characteristics, as well as 
different risk profiles to the outcome of in-hospital major ad-
verse cardiac events. The results demonstrate cluster analysis 
using outcome-driven multi-task neural network as promising 
for patient classification and subtyping. 
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Introduction 

Precision medicine is a healthcare approach which aims at 
developing more effective ways to improve health and treat 
disease by taking individual traits into account [1]. One at-
tempt toward precision medicine is to provide the best availa-
ble care for patients based on their disease subtypes within a 
disease of common biological basis. Patient cluster analysis 
comprises a solid step towards precision medicine, which ful-
fils the task of disease classification and subtyping [2]. Cluster 
analysis has been used for subgroup analysis of type 2 diabe-
tes [3], accurate phenotyping of heart failure and related syn-
dromes [4,5], as well as identifying meaningful patient clus-
ters for developing specific treatment programs in geriatric 
stroke patients [6]. The results support cluster analysis as a 
useful tool to discover disease classes and subtypes, which can 
inform therapeutic strategies like individualizing treatment 
regimens and providing prognosis insights. 

Cluster analysis is performed based on a similarity or distance 
measure. Commonly used similarity measures include Euclid-
ean distance, cosine similarity, Jaccard similarity, and so on. 
Traditionally, as no associating outcome measure is available 
for cluster analysis, the methods are unsupervised, and thus 
the similarity measure takes all patient characteristics as 
equally important, the results of which are less desired when 
we target the clustering results at reflecting specific patient 
traits. It has been recognized that patient similarities for clus-
ter analysis are commonly context-based and are sometimes 
associated with clinical outcomes of interest. Outcome-driven 

clustering (sometimes referred to as ‘semi-supervised cluster-
ing’ or ‘supervised clustering’) is applied when outcome 
measures are available and can serve as a noisy surrogate for 
the (unobserved) target cluster [7], which has been proven 
useful in patient cluster analysis for precision cohort finding 
[8] and clinical decision support [9]. 
Neural network has been increasingly used as a successful 
data modeling paradigm, which solves tasks such as pattern 
recognition and classification through a learning process and 
has been recently used in medical informatics research for 
representation learning [10]. Multi-task learning is a strategy 
where multiple learning tasks are solved at the same time to 
benefit from their commonalities and contrasts. Neural net-
works adapt to multi-task learning intuitively by designing 
specific network structure and cost function [11]. Though use-
ful, neural network is often criticized for lack of interpretabil-
ity. Attention mechanism is thus introduced to neural network 
to increase model interpretability as well as performance [12] 
and has been applied to healthcare research [13]. Thus, a joint 
use of the three techniques would facilitate representation 
learning, leveraging information from different tasks in an 
interpretable manner. 
Acute coronary syndrome (ACS) is a syndrome due to sudden 
decreased coronary artery blood flow. A treatment objective 
of ACS is to prevent major adverse cardiac events (MACE) 
during hospitalization. ACS can be classified into ST eleva-
tion myocardial infarction (STEMI), non-ST elevation myo-
cardial infarction (NSTEMI), and unstable angina (UA) by 
cardiac marker and manifestation of ST-elevation in electro-
cardiogram. However, exploration of biomarkers for disease 
classification and subtyping has never stopped [14,15]. In this 
study, we present outcome-driven clustering of ACS patients 
based on biomarkers as well as clinical indicators. We desired 
using patient state (which is an abstract characterization of 
patient traits regarding the disease) for clustering and decided 
on four outcome measures as surrogates to indicate the patient 
state: antiplatelet treatment, beta-blockers treatment, statins 
treatment, and in-hospital MACE. The four measures are sup-
posed to reflect different facets of the patient state. Therefore, 
a joint consideration would enable a more comprehensive and 
targeted depiction of the patient state. Cluster analysis has 
been conducted on ACS patients to discover symptom clusters 
[16], assess the differences in mortality between symptom 
clusters [17], discover clusters of different lifestyle risk factors 
[18], and to detect critical patients using medical parameter 
time series [19]. However, all the above studies are unsuper-
vised and none of them use neural network as the modeling 
framework. 
In this study, we conducted outcome-driven patient clustering 
on hospitalized ACS patients, identified underlying patient 
clusters, and profiled the cluster characteristics, especially risk 
factors to in-hospital MACE. Novelty of our study includes: 
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(1) using outcome-driven cluster analysis to guide cluster 
analysis; (2) using multi-task neural network to learn a multi-
faceted representation of patient characteristics; and (3) atten-
tion mechanism was introduced to the neural network model 
to increase model interpretability and facilitate feature im-
portance profiling. 

Methods 

Cohort Construction 

The multi-center, retrospective cohort study was conducted at 
38 urban and rural hospitals in China. Adult hospitalized 
patients (aged 18 years) with a final diagnosis of ACS 
identified at the time of death or discharge were included. 
Each hospital enrolled the first five consecutive patients on a 
monthly basis from January 1, 2008 through December 31, 
2015. We excluded patients who: (1) had potentially lethal 
diseases (e.g., incurable cancer, decompensated cirrhosis, 
multisystem organ failure); (2) had an expected life span 
below 12 months; or (3) died within 10 minutes of arrival at 
the hospital. A patient needs to have age, gender, ACS type 
recorded to be included in the analysis. A total of 26,986 pa-
tients were included in this study. 

Feature Construction 

Patient data was identified and reviewed by trained investiga-
tors to record clinical information. We included 41 patient 
characteristics as features, including: disease types (ACS type 
and Killip class), demographics, personal disease history, 
comorbidities, habits, laboratory test results, and procedures. 
Data outliers determined based on clinical knowledge were 
removed and represented as missing data. Missing values were 
imputed by multiple imputation utilizing the ‘mice’ package in 
R [20]: continuous variables by predictive mean matching, 
binary variables by logistic regression, and a proportional 
odds model for ordinal variables. We conducted one-hot en-
coding on categorical variables with more than two categories, 
and standardized continuous values by removing the mean and 
scaling to unit variance. 

Classification with Multi-task Neural Network Model 

Multi-task neural network with attention was used as the 
framework. A schematic representation of the neural network 
design is shown in Figure 1. The attention layer was imple-
mented as a hidden layer with softmax activation, with the 
same number of nodes as the shared input layer. Attention was 
added to the attention layer by multiplying element-wise with 
the shared input layer. 

 

Figure 1. Illustration of the Neural Network Design. 
 

Following the shared input layer are hidden layers, then a rep-
resentation layer which learns a joint patient representation. 
The four classification tasks are optimized simultaneously. For 
each task, the input for the task was formed by concatenating 
the representation layer with the features in the shared input 
layer after adding attention to each feature. It then reaches the 
final output layer after adding hidden layers in between. 

During training, features mentioned in the ‘Feature construc-
tion’ section were used as input for in the shared input layers, 
and the ground truth of the four patient traits (MACE, an-
tiplatelet treatment, beta-blockers treatment, and statins treat-
ment) were used as output in the four output layers for each 
task. 

Binary cross entropy loss was used for each classification task. 
For task j (j in 1, 2, 3, and 4), the task weight is denoted as , 
the ground truth and predicted probability for an instance i are 
denoted as and  respectively, and  is the bina-
ry cross entropy loss. The cost function for neural network we 
used is defined as: 

 

where n is the number of training samples. In our experiments, 
we assigned equal weight to all classification tasks. 

Parameters were optimized using ‘Adam’. Training was con-
ducted with a batch size of 512 and 50 epochs. Class weights 
were added to balance the biased proportion of positive and 
negative cases respectively for all four tasks. 

To validate the performance of the neural network for the 
classification tasks, cross validation was conducted 10 times 
by each randomly splitting data into training set and validation 
set at a ratio of 4:1. For patient clustering, all samples were 
used for neural network training. 

Post-Classification Analysis Workflow 

Analysis after classification with multi-task neural network 
model included three steps: (1) evaluating neural network 
classification performance; (2) clustering patients using values 
from the representation layer; and (3) profiling risk factors for 
in-hospital MACE in each patient cluster using the attention 
values. 

Patient Clustering 

For each patient, values of the representation layer after train-
ing were used as the vector for clustering, which is a 32-
dimension vector. K-means was used for patient clustering. 
Model selection was conducted using Bayesian Information 
Criteria to choose the model from a range of different K 
(number of clusters) settings (2 to 15). We selected K = 7 for 
K-means clustering. 

Implementation 

Cohort construction, feature construction and post-
classification analysis were conducted using R 3.4.1. Neural 
network training and analysis were conducted using Python 
2.7.14, Keras 2.2.4, and Theano 1.0.3. 
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Results 

Neural Network Classification Performance 

We used the multi-task neural network for the four selected 
classification tasks. Proportions of positive cases in four clas-
sification tasks are shown in Table 1, which are largely imbal-
anced. Classification performances are evaluated by AUROC 
(area under the receiver operating characteristics) and AUPRC 
(area under the precision recall curve) on the validation set in 
a cross validation setting (Table 1). From the results, MACE 
and antiplatelet treatment were best classified while beta-
blockers treatment had the lowest classification performance. 
The results suggest that the learned neural network model is a 
greater reflection of the patient states corresponding to MACE 
and antiplatelet treatment. 

Table 1. Neural network classification performance 

Task Positive 
case 

Performance 

AUROC AUPRC 
(class 0) 

AUPRC 
(class 1) 

MACE 3.54% 0.8602 
(0.0141) 

0.9926 
(0.0007) 

0.2924 
(0.0551) 

Antiplatelet 
treatment 80.50% 0.8634 

(0.0078) 
0.5799 

(0.0197) 
0.9640 

(0.0038) 

Beta-blockers 
treatment 68.87% 0.6881 

(0.0131) 
0.5035 

(0.0199) 
0.8184 

(0.0097) 

Statins 
treatment 89.24% 0.7725 

(0.0167) 
0.2842 

(0.0275) 
0.9635 

(0.0045) 

Note: In performance cells, the numbers denote mean value (standard 
deviation). 

K-means Clustering 

K-means was conducted on the representation layer to cluster 
patients into seven groups. Clustering results are visualized in 
Figure 2, where t-SNE was conducted to reduce the 32-
dimension data in the representation layer to 2 dimensions and 
used color to denote the assigned cluster membership. We see 
clear separation of the clusters in the low dimension represen-
tation. 

 

Figure 2. Visualization of Patient Clustering using t-SNE plot. 
 

Distribution of cluster size, and the properties relating to clas-
sification tasks are shown in Table 2. Clusters were organized 
based on descending MACE onset rate. The seven clusters 
have different cluster size, MACE rate and treatment rate. 
Cluster 2 has only 5 samples and is thus not included in later 

comparison. The largest cluster (9,889/26,986; 37%) had the 
highest MACE rate, and lower treatment rate compared to the 
overall cohort. 

Table 2. Distribution of Cluster Size and Classification Labels 

 Size MACE 
Anti-

platelet 
treatment 

Beta-
blockers 

treatment 

Statins 
treatment 

Overall  26,986 
(100%) 

955 
(3.5%) 

21,708 
(80.5%) 

18,572 
(68.9%) 

24,066 
(89.2%) 

Cluster 3 9,889 
(37%) 

760 
(7.7%) 

7,768 
(78.6%) 

6,210 
(62.8%) 

8,496 
(85.9%) 

Cluster 4 3,163 
(12%) 

74 
(2.3%) 

3,139 
(99.2%) 

2,361 
(74.6%) 

3,064 
(96.9%) 

Cluster 1 4,353 
(16%) 

82 
(1.9%) 

4,346 
(99.8%) 

3,225 
(74.1%) 

4,284 
(98.4%) 

Cluster 7 2,709 
(10%) 

23 
(0.8%) 

2,708 
(100.0%) 

2,292 
(84.6%) 

2,690 
(99.3%) 

Cluster 6 3,212 
(12%) 

14 
(0.4%) 

1,119 
(34.8%) 

1,788 
(55.7%) 

2,214 
(68.9%) 

Cluster 5 3,637 
(13%) 

2 
(0.1%) 

2,623 
(72.1%) 

2,691 
(74.0%) 

3,313 
(91.1%) 

Cluster 2 5 
(0%) 

0 
(0.0%) 

5 
(100.0%) 

5 
(100.0%) 

5 
(100.0%) 

Note: In each cell, the numbers denote count (proportion). In column 
‘Size’, the proportion is the proportion in the overall patient cohort. 
In other columns, the proportion is the proportion in the specified 
cluster. 

Profiles of patient clusters were analyzed. Notable features of 
each patient cluster are presented in Table 3. Specifically, 
Cluster 3 has more severe conditions as shown by the highest 
average age, proportion of patients with elevated cardiac en-
zyme levels, and the lowest average left ventricular ejection 
fraction (LVEF [%]). Cluster 4 also has comparatively severe 
condition as is shown by the Killip class. Cluster 1 does not 
show severe disease, but the MACE rate is still high, which is 
potentially associated with bad living habits (highest propor-
tion of current smoker and current alcohol drinker) of this 
cluster. Cluster 7 is featured by the highest proportion of 
STEMI patients and lowest proportion of UA patients. Though 
STEMI patients are far more prone to in-hospital MACE 
compared to UA and NSTEMI, this cluster is not associated 
with a high MACE rate, potentially as a combined effect of 
the less complicated disease manifestation and the high level 
of treatment. Cluster 6 has the highest proportion of UA pa-
tients, and are less prone to MACE even though they have the 
lowest treatment rates. Cluster 5 is featured by the low disease 
severity, and correspondingly, the lowest MACE rate. 

Risk Factors for MACE in Each Patient Cluster 

For each patient, a feature’s attention value for the MACE 
classification task from the neural network is used as its im-
portance in predicting MACE. For each patient cluster, a fea-
ture’s importance is calculated as the average attention value 
of all patients in the cluster. Feature importance in each pa-
tient cluster is shown in Table 4. Features with different im-
portance or high clinical relevance are selectively listed. The 
largest value in each row is shown in bold. Different clusters 
have different feature importance, indicating different risk 
profiles. As an example, smoking is a more important risk 
factor for MACE in Cluster 1 and Cluster 7, current comorbid-
ity of hypertension more important for Cluster 4, 5 and 6, age 
and systolic blood pressure are more important in Cluster 3 
than in other clusters. 
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Table 3. Profile of Patient Clusters 

Cluster Has the highest Has the lowest 

3 

MACE rate 
Age 
Proportion of NSTEMI patients 
Cormobidity of  atrial 
fibrillation 
Elevated cardiac enzyme levels 

LVEF (%) 

4 
Killip class 
History of myocardial 
infarction  

1 Current smoker and current 
alcohol drinker  

7 

Antiplatelet treatment 
Beta-blockers treatment 
Statins treatment 
Proportion of STEMI patients 

Proportion of UA 
patients 
Killip class 
Proportion of patients 
with cormorbidity 
Proportion of patients 
with disease history 

6 Proportion of female patients 
Proportion of UA patients 

Antiplatelet treatment 
Beta-blockers 
treatment 
Statins treatment 

5 

LVEF (%) 
Cormobidity of hypertension 
History of vascular disease 
History of established coronary 
artery disease 
History of percutaneous 
coronary intervention 
History of coronary artery 
bypass grafting 
History of other conditions 
confirmed by  computed 
tomography angiography 

MACE rate 
Elevated enzyme levels 

Discussion 

Attention Mechanism and Feature Importance 

Attention model in neural network is inspired by brain’s neu-
ral mechanism of attention and is simplified here as: in each 
sample, including a numerical weight (‘attention value’) for 
each predictor associated with each outcome. When we nor-
malize the weights for each sample to be all larger than 0 and 
have a sum of 1, the attention values look similar to a proba-
bility distribution to show the feature importance. In our 
study, we considered the outcome of in-hospital MACE. For 
each feature, we calculated the average attention value of pa-
tients in a cluster and used it as its importance in this cluster. 
When a feature has an importance larger than 0, we regard it 
as a risk factor to the outcome, where the feature importance is 
taken as the importance of the risk factor. The attention mech-
anism makes the neural network models, otherwise ‘black 
boxes’, interpretable to some degree, but is still less clear 
compared to logistic regression models, where both the feature 
importance and the action directionality (positive or negative 
impact) are shown with odds ratio, confidence intervals, and 
coefficient p-values. 

Choice of Outcomes 

Multi-task learning is an approach to transfer domain 
knowledge contained in related outcomes and learn in parallel 
using a shared representation [21]. The incentive for this ap-
proach is that the outcomes are reflections of different facets 

of a common latent representation. To better know the latent 
representation, we learn from different outcomes. When think-
ing of the patient state as the latent representation, we need to 
choose outcomes that are reflections of the patient state. In our 
study, antiplatelet, beta-blockers, and statins treatment are 
prescribed based on doctors’ perception of the patient based 
on domain knowledge. MACE outcome is a direct result of the 
patient disease state. We thus include all four outcomes to 
better represent the patient. After assessing the classification 
performance, the patient representation better characterizes the 
patient state regarding MACE and antiplatelet treatment than 
the patient state regarding beta-blocker treatment. 

Table 4. Feature Importance in Each Patient Cluster 

Cluster 3 4 1 7 6 5 
Ethnic group 
(Han) 0.046  0.070  0.048  0.050  0.127  0.088  

ACS Type 
(NSTEMI) 0.029  0.015  0.030  0.039  0.016  0.008  

ACS Type 
(STEMI) 0.002  0.002  0.003  0.003  0.002  0.002  

ACS Type 
(UA) 0.085  0.134  0.059  0.045  0.138  0.208  

Current smok-
ing 0.046  0.052  0.091  0.095  0.032  0.030  

Current Hy-
pertension 0.032  0.103  0.036  0.033  0.127  0.146  

Current Diabe-
tes 0.032  0.033  0.053  0.034  0.034  0.028  

Current atrial 
fibrillation  0.082  0.055  0.078  0.085  0.056  0.025  

Current Percu-
taneous coro-
nary interven-
tion 

0.064  0.071  0.101  0.086  0.018  0.032  

Elevated en-
zyme levels 0.047  0.043  0.050  0.060  0.080  0.061  

Killip Class 0.048  0.029  0.035  0.036  0.005  0.011  
Age (years) 0.045  0.029  0.033  0.027  0.008  0.013  
Systolic blood 
pressure 
(mmHg) 

0.033  0.017  0.018  0.019  0.010  0.012  

White blood 
cell count 
(×10^9/L) 

0.029  0.031  0.020  0.020  0.019  0.029  

 

Pitfalls in Interpretation of the Results 

Two points need to be addressed regarding interpretation of 
the results. First, algorithmically meaningful clusters are not 
necessarily clinically meaningful clusters. Though the cluster-
ing result has implication for disease prognosis, whether it can 
inform clinical practice needs further clinical research. Sec-
ond, risk factors cannot be directly translated to clinical inter-
vention. As an example, though comorbidity of hypertension 
and high systolic blood pressure are risk factors for in-hospital 
MACE, the results are not sufficient to claim the intensity of 
hypertension treatment required for different clusters. 

Suggestions for Future Study 

Our suggestions for future study using similar approach in-
clude: (1) carefully select clinically meaningful outcomes to 
be used; (2) use fewer features and easily acquired ones would 
make the results more applicable; and (3) identify cluster-
specific interventions considering treatment effectiveness 
would add extra clinical value to similar studies. 
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Conclusions 

In this study, we used multi-task neural network with attention 
as a modeling framework to support learning of patient state 
representations, cluster analysis of patients, and profiling of 
feature importance. Seven patient clusters were discovered, 
which have different characteristics and risk profiles to in-
hospital MACE. The results demonstrate cluster analysis using 
outcome-driven multi-task neural network as a promising ap-
proach for ACS patient classification and subtyping. 
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