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Abstract 

Secondary analysis of electronic health records for clinical 

research faces significant challenges due to known data quality 

issues in health data observationally collected for clinical care 

and the data biases caused by standard healthcare processes. 

In this manuscript, we contribute methodology for data quality 

assessment by plotting domain-level (conditions (diagnoses), 

drugs, and procedures) aggregate statistics and concept-level 

temporal frequencies (i.e., annual prevalence rates of clinical 

concepts). We detect common temporal patterns in concept 

frequencies by normalizing and clustering annual concept 

frequencies using K-means clustering. We apply these methods 

to the Columbia University Irving Medical Center 

Observational Medical Outcomes Partnership database. The 

resulting domain-aggregate and cluster plots show a variety of 

patterns. We review the patterns found in the condition domain 

and investigate the processes that shape them. We find that 

these patterns suggest data quality issues influenced by system-

wide factors that affect individual concept frequencies. 
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Introduction 

Secondary reuse of observational health data for research is 

increasing in importance and popularity as electronic health 

data become more available and analytic methods become more 

powerful. However, analysis of electronic health records (EHR) 

continues to face many social and technical challenges, 

including data inaccuracy, incompleteness, and biases implicit 

in the healthcare recording process [1–5]. Since observational 

clinical data are sourced from disparate systems not designed 

for research purposes, researchers consuming these data must 

clearly understand the nuances of their data. Due to the 

complexity of interactions, ongoing development, and technical 

challenges of these systems, events that impact data integration 

can occur without awareness from data managers. Further, 

experts knowledgeable of the intricacies of the data may not be 

available to researchers, especially in the context of shared data 

in collaborative research networks, such as the Observational 

Health Data Sciences and Informatics (OHDSI) [6].  

EHR data quality is receiving increased attention for its effects 

on secondary analysis for clinical research and population 

health informatics [7–10]. Temporal trend analysis is a 

common method of assessing data quality. Kahn’s harmonized 

data quality framework includes temporal plausibility metrics, 

such as comparing data value density over time against 

expected values [7]. Hall’s database guidelines recommend 

counting frequency of records and field occurrences over time 

to identify blocks of missing data or changes in data volume 

[8]. Brown et al demonstrate visually exploring trends of 

intrasite and intersite frequency to detect data anomalies [9]. 

ACHILLES performs temporal analysis of concepts in 

Observational Medical Outcomes Partnership (OMOP) 

databases to assess month-to-month stability of counts and flags 

changes that exceed thresholds [6]. These methods enable 

detection of data quality issues in individual variables but do 

not detect systemic issues that may affect multiple variables.  

The Columbia University Irving Medical Center (CUIMC) 

Clinical Data Warehouse (CDW) formatted using the OMOP 

Common Data Model (CDM) (herein referred to as the OMOP 

database) contains observational data on nearly 60,000 

concepts. Individual analysis of 60,000 concepts would be 

prohibitively time consuming. Although population prevalence 

of clinical concepts can change with time, we hypothesize that 

common patterns of temporal trends in EHRs reveal systemic 

factors that influence observational data and data quality.  

In this manuscript, we present methods of detecting systemic, 

population-level data quality issues in electronic health records 

by analyzing domain-level aggregate statistics and identifying 

common temporal patterns across concepts. We apply these 

methods to the CUIMC OMOP database and infer and 

investigate system wide processes that affect the data quality.  

Methods 

Data Source 

This study received institutional review board approval with 

waiver for obtaining informed consent. The CUIMC CDW 

contains records from multiple sites and was converted to 

OMOP CDM v5.1 in March 2018. Diagnoses (“conditions” in 

OMOP nomenclature), drugs, procedures, and visit types were 

collected from CUIMC’s OMOP database from the condition-

occurrence, drug_exposure, procedure_occurrence, and 

visit_occurrence tables, respectively. We analyze conditions, 

drugs, and procedures to provide multiple views of patient data 

and visit types to indicate clinical service capacity. 

Conceptual Framework 

Figure 1 shows our conceptual framework for analysis. There 

are four entities: patients, concepts, domains, and time. Patient 

health is characterized in the OMOP database by individual 

concepts, which are categorized by domains (e.g., conditions, 

drugs, and procedures). For each concept, we count the number 

of patients in each year and plot the counts over time. Data 

captured in EHRs are affected by population health status, 

health service capacity, medical coding protocols, and 

operation of clinical databases. These parameters change over 

time, as reflected in the counts and frequency of concepts.  
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Concept Prevalence 

We assume that population health is consistent with only minor 

changes annually and gradual changes over many years [11]. 

Correspondingly, we assume the annual frequency of most 

clinical concepts to be relatively stable over time if the health 

system is stable. Observed fluctuations in concept frequencies 

may have causes intrinsic to the concept (e.g., outbreaks or new 

interventions) or extrinsic to the concept (e.g., expansion of 

clinical services). We measured yearly counts and frequencies 

of concepts from the OMOP database. We defined counts as the 

number of unique patients with the concept per calendar year. 

We defined frequency as the count divided by number of 

patients in that year. We estimated the number of patients per 

year from the number of unique patient identifiers associated 

with at least one condition, drug, or procedure per year. 

Domain-Level Concept Aggregates 

Given a stable healthcare system, we hypothesize the domain-

level aggregated metrics are highly stable over time. 

Fluctuations in these metrics may reflect changes to healthcare 

services or the EHR recording process. To identify global 

trends in each domain, we analyzed the yearly patient count and 

yearly aggregated statistics across concepts in condition, drug, 

and procedure domains using the domain of each concept as 

defined in the OMOP standard vocabulary to aggregate 

concepts. We analyzed four aggregated statistics across each 

domain per year: 1) the total patient counts across concepts; 2) 

the count-per-capita (total patient count divided by number of 

patients), indicating the average number of conditions, drugs, 

or procedures per patient; 3) the number of unique concepts; 

and 4) the mean frequency across concepts.  

Clustering of Concept Patterns 

Analyzing thousands of individual concept frequencies would 

be overwhelming and difficult to differentiate between changes 

in the population prevalence versus changes affecting the 

recorded prevalence in EHRs. To identify common behavior 

patterns with similar trends among concepts, we performed K-

means clustering [12] within each domain. Each concept’s 

annual frequencies were normalized to unit magnitude and 

treated as vectors. We used concept frequency instead of count 

to normalize against population changes. We normalized 

frequencies to unit magnitude to match trends with similar 

proportional changes. Annual frequencies from calendar years 

1985 to 2017 were included; we excluded 2018 since data was 

not yet available for the entire year. We excluded concepts with 

maximum frequency below 0.01% of the population to reduce 

noise from infrequent concepts. We performed K-means 

clustering on the normalized frequency vectors. We manually 

selected K by clustering each domain with different levels of K 

(4, 6, 8, 10, 12, 15, 20, and 25) and selecting the smallest K 

before intracluster variance ceased to improve substantially.  

Post-hoc Analyses 

To determine if the clustered concept patterns reveal systemic 

factors (e.g., changes in health service capacity or medical 

coding protocols) that affect concept frequency in the database, 

we manually reviewed the domain- and concept-level patterns, 

arriving at hypotheses on the causes of several patterns. We 

performed post-hoc analyses to validate these hypotheses.  

Results 

As of March 2018, the CUIMC OMOP database contains EHR 

records on 5,368,414 patients, covering 59,583 concepts, 

including 18,399 conditions, 18,691 drugs, and 22,787 

procedures spanning October 1985 to March 2018. 

Domain-Level Concept Aggregates 

Figure 2 shows plots of the domain-level count-per-capita and 

total counts of a) conditions, b) drugs, c) procedures, and d) 

people per year. Patient counts are relatively flat between 1986-

2001, except for a slight depression from 1992-1995, and grows 

steadily from 2001-2010 and rapidly after 2010, with a spike in 

2014. The condition domain total count and count-per-capita 

increase nearly linearly over time. The condition count-per-

capita is slightly unstable before 2000 but steadily increases 

after 2000, peaking in 2015 and dropping in 2016-2017. The 

total count of conditions spikes in 2014. Drug data is nearly 

non-existent before 2001 but steadily increases until it peaks in 

2013. The drug count-per-capita drops substantially in 2014 

and fluctuates through 2017. The procedure domain is the most 

unstable. Procedures display notable growth in 1989, a large 

spike in 1996-1997, rapid increase from 2001-2005 and steady 

Figure 2– Total count (blue) and count-per-capita (orange) of 

a) conditions, b) drugs, c) procedures and d) people per year.

Figure 3– Count of unique concepts (orange) and the mean 

frequency of concepts (blue) per year for a) conditions, b) 

drugs, and c) procedures.

Figure 1– Conceptual framework for analysis. 
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increase thereafter. Similar to drug count-per-capita, procedure 

count-per-capita drops in 2014 and fluctuates through 2017. 

Figure 3 shows the annual number of distinct concepts and the 

mean frequency of patients across concepts for each domain. 

The condition domain stably grows from 1989-2013 but 

fluctuates thereafter. The drug domain is relatively stable from 

2001-2006 but fluctuates thereafter. In the procedure domain, 

the number of concepts stably grows from 1989 to 2001, grows 

quickly to 2005, slowly grows through 2014, and quickly grows 

again. The mean frequency of procedure concepts has similar 

periods of behavior with an additional sharp increase in 1996.  

Concept-Level Analyses 

Due to space limitations, we primarily present and discuss the 

results for concept-level analyses in the condition domain and 

exclude drug and procedure results. Figure 4 plots annual 

frequencies for the ten conditions with the highest total counts 

across all years, showing multiple remarkable behaviors. Type 

2 diabetes mellitus and asthma both begin to drop in 2014 and 

are nearly zero by 2017. Type 2 diabetes mellitus and acute 

upper respiratory infection both exhibit abrupt depressions 

from 1992-1995. Inflamed seborrheic keratosis is nearly zero 

until 1999 but rapidly increases and plateaus after 2001. Chest 

pain and abdominal pain both increase in frequency from 

roughly 1990-1995 and decrease from 1995-2000. 

K-means clustering was performed for conditions (K=20). 

Figure 5 shows plots of cluster centroids (i.e., the temporal 

pattern) for condition concepts. The clusters are sorted in 

descending order of the number of concepts belonging to each 

cluster. The two largest condition clusters have nearly zero 

frequency until a rapid increase in 2014. Clusters 4, 5, 6, 11, 12, 

and 19 drop in frequency starting around 2014.  Cluster 12 is 

the only cluster with constant frequency over a large time 

period but only contains 3.47% of condition concepts. Clusters 

3 and 16 increase almost linearly with time. Other clusters 

display patterns that are more dynamic. Clusters 7, 8, 10, 13, 

14, 17, and 18 exhibit peaks at different times. Condition cluster 

11 decreases from 1989-1999 and then increases until 2014.  

Post-hoc Analyses of Trends 

To demonstrate that the above methods reveal systemic data 

quality issues, we manually reviewed the domain- and concept-

level patterns, hypothesized the causes of several patterns, and 

performed post-hoc analyses to test these hypotheses.  

Condition clusters 0 and 1 behave like step functions with a 

rapid increase in 2014 while many other clusters begin to 

decrease around the same time. The number of condition 

concepts (Fig. 2a) also suddenly increases in 2014. We 

hypothesized that these patterns were caused when the health 

systems converted from using one medical coding system to 

another, e.g., from ICD9CM to ICD10CM. To investigate this, 

we analyzed the composition of medical coding systems (i.e., 

OMOP source vocabularies) contributing to these clusters. 

Table 1 shows the source vocabulary composition of condition 

clusters 0 and 1 compared against the aggregate of all other 

trends. Condition clusters 0 and 1 are composed of 93.9% and 

92.0% ICD10CM source concepts, respectively. The remaining 

clusters are composed of 83.2% ICD9CM concepts.  

The domain-level count of condition concepts displays an 

abrupt depression from 1992-1995 (Fig. 1a). Condition clusters 

9, 15, and 19 also display similar depressions from 1992-1995, 

but this behavior is not noticeable in other clusters. Since the 

behavior was isolated to a few trends, we hypothesized that this 

depression was caused by changes affecting specific service 

types (e.g., temporary loss of data or reduction of services) 

which cover the conditions in these clusters.  

To investigate whether changes in health services occurred, we 

analyzed the number of patient visits per year stratified by visit 

type (e.g., inpatient, outpatient, etc.) from the OMOP visit- 

occurrence table. Figure 6 shows plots of the annual counts for 

the 10 most frequent visit types, which account for 97.3% of 

Figure 4– Example annual concept trends for the ten most prevalent conditions. 

Figure 5– K-means clusters for conditions. Plots show cluster centroids (the cluster trend over time) with standard deviation across 

concepts as error bars (intracluster vaiance). Subplot titles show cluster labels and the percent of concepts belonging to each cluster.
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Table 1– Source vocabulary composition of condition clusters. 

Vocabulary ID Cluster 0 Cluster 1 

Remaining 

clusters 

SNOMED 0.2% 1.6% 0.0%

ICD10CM 93.9% 92.0% 16.8%

ICD9CM 6.0% 6.4% 83.2%

 

visits. We excluded 17 less frequent visit types, including 

cardiology clinic, general surgery clinic, community clinic, etc., 

from the figure for visual clarity. Outpatient visit is the most 

frequent type and exhibits a large depression from 1992-1995. 

The other visit types do not display similar depressions. 

Inpatient visits appear in 1989 and are very stable throughout 

the years. Emergency room visits appear in 1989 with unstable 

growth until 1995 and stable growth thereafter. 11.7% of visits 

did not have a specified visit type (No matching concept).  

Discussion 

Concept Prevalence 

Reviewing plots of annual frequencies of individual concepts, 

we found that the large majority of concepts exhibited a variety 

of unstable behaviors. Figure 1 shows a sample of plots, 

including the ten most prevalent conditions. We show the most 

frequent conditions because we assumed they would generally 

behave more stable than less frequent conditions. If frequencies 

of clinical terms in the EHR are representative of general 

population prevalence, then the behavior of terms in the EHR 

should reflect the behavior of the clinical concepts in the 

population. We should expect relative stability from the 

conditions in Figure 1, but from this small sample, it is 

immediately apparent that concepts exhibit a wide variety of 

behaviors in the EHR. Most of these fluctuations are too 

dramatic to be reflective of real health changes in the 

population. For example, Type 2 diabetes mellitus and asthma 

fall to nearly 0% frequency in 2015 while inflamed seborrheic 

keratosis was nearly 0% until 1999 but plateaus from 2000 

onward. These patterns suggest underlying changes in the usage 

of medical coding systems (e.g., changing from ICD9CM to 

ICD10CM). Type 2 diabetes mellitus and acute upper 

respiratory infection both have abruptly depressed frequencies 

from 1992-1995. Chest pain and abdominal pain have similarly 

shaped growth and decline patterns in the 1990s.  

Domain-Level Analysis 

The domain-level aggregate plots show high-level changes 

observable in the EHR. Figure 1 shows the annual number of 

patients, total patient count across concepts, and the count of 

concepts per capita for each domain. Some of the patterns 

observed in individual concepts also exist at the domain-level. 

From 1992-1995, the number of patients abruptly drops relative 

to surrounding years, corresponding to decreased condition 

counts. This suggests that the dips in type 2 diabetes mellitus 

and acute upper respiratory infection were caused by system 

level events, potentially affecting many conditions. Drug 

counts were practically non-existent before 2001 and almost 

linearly increased after 2001, indicating that drug data was not 

available before 2001. Changes in the annual number of unique 

concepts and the mean patient frequency across concepts (Fig. 

2) may suggest changes in the usage of medical coding systems. 

The increased number of concepts in the condition domain from 

2014-2015, in the drug domain from 2007-2011, and in the 

procedure domain from 2002-2005 and 2015-2017 all suggest 

that changes occurred in the medical coding system. 

Concept-Level Analysis 

As discussed above, many concept frequency curves display 

fluctuations too dramatic to be caused by changes in population 

prevalence. We applied K-means clustering to find groups of 

concepts that have similar behavioral patterns. Clusters contain 

hundreds to thousands of concepts, so their average frequency 

curves are minimally influenced by true changes in individual 

concepts’ population prevalences. These cluster patterns may 

suggest changes in the medical system that influence the 

clinical recording process, including service capacity changes 

(e.g., expansion of medical system) or events that affect patient 

data records (e.g., deployment of new clinical databases). In 

Figure 5, various patterns among condition concepts can be 

easily identified along with the proportion of concepts that 

follow the pattern. A small number of concepts remain stable 

and constant over time (e.g., condition cluster 12, 3.47% of 

conditions), and the stability only lasts for a period (1989-

2013). The majority of concepts are stable only during certain 

time windows, and these windows vary by cluster.  

Several clusters have sharp increases that correspond with 

decreases in other clusters. Clusters 0 and 1 increase while 

clusters 4, 5, 6, 11, 12, and 19 drop around 2014. We 

hypothesized that these patterns were caused by changes in the 

medical coding systems in 2014. To test this hypothesis, we 

analyzed the composition of source vocabularies among these 

clusters to determine if these clusters are primarily represented 

by different vocabularies (Table 1). Indeed, clusters 0 and 1 are 

composed of over 90% ICD10CM concepts, while all other 

clusters are cumulatively composed of 83.2% ICD9CM 

concepts, supporting the hypothesis above. Similar patterns 

were observed in the procedure domain associated with changes 

from ICD9Proc to ICD10PCS in 2016 (data not shown).  

Condition clusters 9, 15, and 19 exhibit a marked drop in 

frequency between 1992-1995, corresponding with dips in 

domain-level counts (Fig. 2a). Since this behavior was not 

observed among most other clusters, we hypothesized that this 

depression was isolated to specific sites or services. To test this, 

we analyzed annual visit type occurrences (Fig. 5). Outpatient 

visits display a similar depression between 1992-1995 while the 

other visit types behave stably during this time, suggesting that 

clusters 9, 15, and 19 are primarily composed of conditions 

observed in outpatient settings. Inpatient visit and emergency 

room visit types both begin in 1989, corresponding with the 

opening of the Milstein Hospital Building of Presbyterian 

Figure 6– Annual number of visits for the 10 most common 

visit concepts.  
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Hospital. A flurry of other visit types, including private 

physicians’ group office, nurse practitioner clinic, and 

community medical center, begin to appear in 2009, suggesting 

that the network of clinical data sources connected to the 

clinical data warehouse was expanding to more sites. 

Limitations 

There are a number of limitations to our methods. While 

clustering the annual concept frequencies reveals patterns of 

behavior among the concepts, the clusters on their own do not 

provide meaningful insight for the causes of these patterns. For 

some patterns, we were able to generate hypotheses and 

corroborate the causes by investigating other information 

sources (e.g., visit types and source vocabularies) to reveal 

systemic forces behind these patterns. However, many patterns 

are unexplained, and we cannot infer causality for the 

hypothesized causes of patterns as we did not apply statistical 

analyses. Even without causal explanations, these methods still 

allow researchers to identify time frames of data instability to 

exclude from their analyses or interpret with caution. These 

methods do not produce quantitative, scalar, and invariant 

results, which are desired characteristics of data quality metrics 

to allow comparison of data quality statistics across data sets 

and time [13]. The domain- and concept-level analyses were 

performed at annual intervals, which may be too coarse to 

detect short data aberrations. However, the method should 

perform well with shorter intervals. 

The selected number of clusters for K-means clustering was 

arbitrary. The choice of K influences the resulting clusters and, 

thus, the interpretation of results. We attempted to use the 

elbow method [14] to guide our choice, but the intercluster sum 

of squared differences had broad-shouldered changes over K in 

all domains (data not shown). This indicates the presence of 

many small clusters or many concepts may not follow common 

patterns, thus, there may not exist an optimal choice for K. 

We determined the annual number of patients based on 

observations in the condition, drug, and procedure tables and 

subsequently used this patient count in calculating concept 

frequencies of those conditions, drugs, and procedures. This 

introduces bias into the calculation of concept frequency. 

Ideally, the patient population should be identified externally 

from the variables undergoing analysis. The OMOP CDM 

contains observation_periods which should identify the start 

and end dates when the patient was observed in the database. 

However, in our database, 66.6% of patients have missing start 

dates, which may indicate an error in the extract-transform-load 

process, which converts data from the clinical data warehouse 

to the OMOP CDM. Also, we assume that each patient has a 

single unique identifier. This may not be true if patients have 

duplicate registrations within the CDW.  

Developing this analysis on an OMOP database confers both 

advantages and disadvantages. By analyzing the transformed 

database, we lose some ability to investigate data provenance 

and sources of data quality issues. However, developing this 

analysis on a widely adopted CDM allows other institutions to 

immediately benefit and learn from these results. Although 

other data models will not be able to replicate this analysis 

directly, the methods are simple to implement in other systems. 

Conclusions 

We contribute methods for analyzing EHR data quality aspects 

(e.g., temporal plausibility, consistency, etc.) for secondary 

analysis using domain-level aggregate statistics and clustering 

the annual concept frequency trends to find common temporal 

patterns across concepts. These patterns may indicate EHR data 

quality issues caused by operational or system-wide factors that 

affect multiple concepts simultaneously.  
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