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Abstract 

Behavioral analysis for identifying changes in cognitive and 

physical functioning is expected to help detect dementia such 

as mild cognitive impairment (MCI) at an early stage. Speech 

and gait features have been especially recognized as behavioral 

biomarkers for dementia that possibly occur early in its course, 

including MCI. However, there are no studies investigating 

whether exploiting the combination of multimodal behavioral 

data could improve detection accuracy. In this study, we 

collected speech and gait behavioral data from Japanese 

seniors consisting of cognitively healthy adults and patients 

with MCI. Comparing the models using single modality 

behavioral data, we showed that the model using multimodal 

behavioral data could improve detection by up to 5.9%, 

achieving 82.4% accuracy (chance 55.9%). Our results suggest 

that the combination of multimodal behavioral features 

capturing different functional changes resulting from dementia 

might improve accuracy and help timely diagnosis at an early 

stage. 
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Introduction 

As the world’s elderly population increases, the number of 

people living with dementia is rising rapidly, making dementia 

an increasingly serious health and social problem. According to 

a previous survey, around 47 million people globally were 

living with dementia as of 2015, corresponding to about 7.6% 

of the world’s over-65-year-olds [1]. While dementia affects 

individuals within many domains, including cognition, 

neuropsychiatric symptoms, activities of daily living, and 

usually comorbid physical illnesses, it also affects their 

supporters, including relatives and even wider society because 

people with dementia require constant and costly care for years 

[2]. In fact, approximately 85% of the healthcare costs of 

dementia are related to family and society, and global annual 

costs reached over 818 billion USD in 2015 [2]. In contrast, 

there have been numerous attempts to develop an effective drug 

to combat dementia, but the results of trials have all been 

negative [2]. One of the remaining possible way to improve this 

situation is thought to intervene at earlier disease stages such as 

mild cognitive impairment (MCI) or preclinical Alzheimer’s 

disease. Although there is no validated effective intervention, 

longitudinal studies suggested that early intervention at stage of 

MCI might reduce the progression to dementia [3]. An 

intervention that delays the onset of Alzheimer’s disease (AD) 

dementia by 5 years is estimated to result in a 57% reduction in 

the number of AD patients and to reduce 45% of the projected 

Medicare costs [4]. Thus, early detection of dementia has been 

increasingly important. However, diagnostic coverage of 

dementia worldwide remains low, and even in high-income 

countries, only 40–50% of dementia sufferers have received a 

diagnosis [5,6]. Thus, detection at earlier disease stages should 

be a more challenging issue.  

One of the most promising ways to detect dementia at early 

disease stages is identifying the evolution of behavioral change 

over the course of dementia’s progression. Instead of medical 

examinations including brain imaging as well as in-clinic 

neuropsychological assessment, being capable of inferring 

dementia and MCI from behavioral features that can be 

measured in various everyday situations holds promise for 

increasing the opportunity for timely detection. 

Among the behaviors, the most investigated might be speech 

and gait [7]. Speech has been used for characterizing language 

dysfunction resulting from cognitive changes [8-12]. For 

example, memory impairment causes difficulties with word-

finding and word-retrieving, which has been measured by 

speech features such as fillers, including non-words and short 

phrases (e.g., "umm" or "uh") [9]. The reduction in speech 

expressiveness is another language dysfunction typically 

observed in both MCI and AD. This reduction is measured by 

the decrease in adjectives and indicators related to vocabulary 

richness (such as type-token ratio and Brunet’s index) [10]. Gait 

disturbances are also common across the dementia spectrum, 

although the main clinical hallmark of dementia is cognitive 

impairment especially related to memory impairment [13]. 

Over the past decade, large cohort studies on dementia have 

shown the relationship between the severity of cognitive 

impairment and increased gait abnormalities [13-16]. For 

example, dementia is associated with a decrease in gait velocity 

and an increase in stride variability [17]. While there are limited 

studies evaluating gait in MCI, some but not all studies have 

suggested that gait dysfunction can be observed in patients with 

MCI even under normal walking conditions [13]. Although 

speech and gait features have been suggested as behavioral 

biomarkers for AD and possibly early in the course of dementia, 

including MCI, no studies have investigated whether 

combining both behavioral features could improve detection 

accuracy for MCI and AD. If speech and gait each could capture 

different aspects of subtle changes related to physical and 

cognitive functioning, the multimodal behavioral approach 

seems to be promising for building a model enabling detection 

at an earlier disease stage. 

In this study, we investigate whether combining behavioral 

features of speech and gait could improve detection accuracy   

for patients with MCI. We collected speech and gait behavioral 

data from Japanese seniors consisting of cognitively healthy 
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adults and patients with MCI.  Specifically, speech data were 

collected while performing an picture description task by 

microphones, while gait performance was assessed during a 5-

meter walk at normal speed by a marker-based motion capture 

system. Through the analyses, we demonstrate that exploiting 

the combination of multimodal behavioral data to identify MCI 

outperforms that based on each set of single-modality data 

alone by up to 5.9%, achieving 82.4% accuracy (chance 

55.9%). The results demonstrate how our multimodal 

behavioral analysis could identify the early stages of dementia 

by exploiting the combination of subtle changes. 

Methods 

Participants 

We collected data from 34 elderly individuals (20 females and 

14 males, between 64 and 82 years, i.e., 73.06 ± 4.76). Nineteen 

participants were grouped as healthy controls (HCs) and fifteen 

as having MCI. There was no significant difference in age 

among the groups. Table 1 shows the number of participants 

(number of female participants), mean age, and mean Mini-

Mental State Examination (MMSE) score for the HC and MCI 

groups. None of the participants in the HC group were 

diagnosed as having MCI or dementia before the experiment. 

The definitions of the MCI groups were based on diagnosis by 

psychiatrists through medical examinations including structural 

magnetic resonance imaging, blood tests, and 

neuropsychological tests. More specifically, the doctors 

followed the guidelines and criteria of the study by Petersen et 

al [18]. This study was conducted under the approval of the 

Ethics Committee, University of Tsukuba Hospital. 

Speech data collection and feature extraction 

We collected speech data from the participants while they 

performed the Cookie Theft picture description task. The 

Cookie Theft picture description task, adapted from the Boston 

Diagnostic Aphasia Examination, is a task used to test the 

production of free speech in a structured context [19]. A picture 

is provided to the participants, showing a mother and two 

children (a boy and girl). Participants are asked to tell 

everything they see in the picture. This task is used to test the 

ability of the participants to describe the characters and events 

in the scene.  

The task was administered using a 2nd generation iPad Air 

through a web-based application using a Wizard of Oz 

experiment method. This method is efficient for examining user  

 

interaction with computers and facilitating rapid iterative 

development of dialog wording and logic. The method requires 

two machines linked together, one for the subject and one for 

the experimenter. In this implementation, the experimenter (the 

“Wizard”), pretending to be a computer, “operates” using 

complete replies to user queries or presses function keys to 

which common messages have been assigned. The software 

automatically records the dialog and its timing. This was done 

as a step towards a fully automated system to first assess the 

ability to achieve similar results using tablet devices as in 

traditional assessment styles.  

Voice recordings were collected using three microphones: a 

throat microphone (NANZU SH-12iK), a lavalier microphone 

(SONY ECM-CS3), and the iPad’s internal microphone. The 

throat and lavalier microphones were fitted onto the 

participants’ necks and connected to a USB recording device 

(ZOOM H1/MB) for voice recording (wav format, 44.1 

k/stereo) (Figure 1A). Analysis was done on voice recordings 

gathered from the lavalier microphone, which were selected 

after synchronization with the throat microphone showing 

which portions of the recordings contained actual speech from 

participants. The throat microphone does not record the sound 

of open-air, so participants’ speech area can be detected by  

extracting the sections above a certain volume level in the 

recorded audio. Recordings from the iPad’s internal 

microphone were collected but not analyzed in this study. These 

recordings will be used in later analysis after the proper features 

have been selected and a model is developed from higher 

quality audio. After assessment, voice recordings from the 

lavalier microphone were used for preprocessing. The recorded 

audio was preprocessed by automatic speech recognition 

(ASR), which automatically transcribes audio data into text 

format. Then the experimenter manually corrected the errors of 

the ASR by listening to the recorded audio. The experimenter 

also annotated fillers and false starts during the transcribing 

procedure. For the preprocessing, we used the Japanese 

morphological analyzer MeCab [20]. 

Once all the transcribing and annotatince were completed, we 

collected speech features on the basis of the previous studies.  

 

Status 

No. of 

Participants 

(Female) 

Mean Age 

(SD) 

Mean 

MMSE 

(SD) 

Control 19 (12) 71.63 (4.39) 28.42 (1.47)

MCI 15 (8) 74.87 (4.73) 25.53 (3.89)

Table 1 – Demographics of participants 

Figure 1 – Overview of speech and gait experiments. (A) Example of the speech experimental setup. (B) Example of motion capture 

data during gait experiment. 
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Previous study reported that syntactic complexity is closely 

associated with the incidence of dementia [21]. Syntactic 

complexity was measured in various ways, such as the mean 

length of sentences, number of sentences, ”part-of-speech” 

frequency, and dependency distance [10,22]. Dependency 

distance infers the number of intervening words between two 

syntactically related words in a sentence [23]. Another feature 

that must be considered is vocabulary richness. This measures 

lexical diversity, which tends to reduce in dementia cases [9]. 

Repetitiveness is also reported as an important factor of 

capturing the linguistic dysfunctions of the patients with 

dementia [24]. Some matrixes measure the frequency of 

repeated words and phrases, and others estimate sentence 

similarities by calculating the cosine distance between two 

sentences [10]. The feature which widely used in image 

description tasks is semantic density. It was calculated on the 

basis of ”informational units” that are predefined objects or text 

segments that might refer to important information. For 

example, in the Boston Cookie Theft picture description task, 

information units consist of objects such as ”Woman”, 

”Cookies”, and ”Boy taking the cookie”. With the information 

units, semantic density can be defined as the number of 

information units divided by the total number of words [10,22]. 

A number of previous studies have found that individuals with 

dementia tend to produce speech with lower information, 

defined as semantic density, than with healthy controls [22, 25].  

In this study, we collected 49 speech features from the 

transcribed and annoteated text of picture descrtion task. It 

includes twenty-seven features related to parts-of-speech 

(POS), four features related to information units (e.g. 

frequency, ratio), six features for syncatcic complexity (e.g. 

maximum dependency level), six different measures of 

sentence similarities (e.g. cosine-disntance), and three 

measures of vocabulary richness (e.g. type-token-ratio). 

Number of false starts and number of fillers are extracted from 

the annotation in the transcribed text. Addition to the text 

features, the speech rate (audio length/syllables) was also 

caluclated. 

Gait data collection and feature extraction 

The gait experiment was conducted on the same day as the 

speech experiment. The participants took enough rest between 

experiments. We collected motion data of the participants 

walking five meters in a lab area at their usual speed. To ensure 

that gait features were collected during steady-state walking, 

participants started walking at least two meters before the target 

zone and completed their walk at least two meters beyond it, 

which makes nine meters walk in total. Start and end points 

were marked on the floor with tape. Before each experiment, a 

trained experimenter gave verbal task instructions to the 

participants as “Please walk up to the tape at  your usual speed”.  

Participants’ body positions during their walk were captured by 

the motion capture system, OptiTrack Flex 13, with eight 

cameras allocated in a 6 meters �  12 meters walking area 

(Figure 1B). Three-dimensional kinematic data were measured 

at 120 Hz using a full body skeleton model of 50 markers. 50 

markers includes head (4 markers), torso (6 markers), waist (4 

markers), shoulder (4 markers), arm (6 markers), hand (8 

markers), leg (8 markers), foot (6 markers), and toe (4 markers). 

Skeleton is calibrated for each participant before the gait 

experiment. 

In a previous study, a broad range of characteristics is used to 

describe gait performance. Gait speed is applied widely as an 

evaluative and a predictive measure of various diseases 

[13,14,26]. Other measures such as gait velocity and stride 

variability has also been suggested as a sign of dementia [17]. 

Step width and step width variability reflect the postural control 

of gait [27]. 

In this study, we collected 13 gait features from the positional 

data obtained from each markers during a gait task. We 

calculated the gait cycle from four markers on each foot (toe in, 

toe out, toe tip, and heel). Once all the data preprocessing was 

completed, gait speed (walk length/time), step length (mean and 

standard deviation), stride (mean and standard deviation), left-

right stride variability, toe angle (mean and standard deviation), 

left-right toe angle variability and step width (mean and 

standard deviation) were extracted from gait cycle. We also 

Figure 2 – Distributions for speech and gait features which may have tendancy between HC and MCI groups. Boxes denote 25th 

(Q1) and 75th (Q3) percentiles. Line within box denotes 50th percentile, while whiskers denote upper and lower adjacent values that 

are most extreme within Q3+1.5(Q3-Q1) and Q1-1.5(Q3- Q1), respectively. Filled circles show outliers, and squares represent 

mean values.  
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extracted the position of head top marker and calculated the 

variablity of the distance from the direction of travel to see the 

stability of the head position.  

Feature anaysis & classification models 

After linguistic features and gait features were extracted, we 

investigated if each feature differed significantly between the 

HC and MCI groups. We performed Student t-test for statistical 

examination, and considered to be significantly different when 

the p value was less than 0.05. 

Classification was then done using support vector machine 

(SVM) models with a linear kernel function with a two-class 

classification model for testing the strength of features for 

differentiating patients with MCI from HCs in an automated 

fashion [28]. We used the algorithm for the SVM models 

implemented in MATLAB (MathWorks Inc., Natick, MA). 

Features were selected on the basis of the receiver operating 

characteristic (ROC) score for each feature. 

We evaluated the model’s accuracy by leave-one-out cross-

validation, where classifers were trained using data collected 

from all participants expect one and then were tested on data of 

the one participant left out of the training data set. After 

obtaining loss estimate using cross-validation, accuracy, 

sensitivity, specificity and F-measure were calaulated for the 

model. 

Results 

We investigated if these features differed significantly between 

the HC and MCI groups for each task. Through the analysis, 

two features in speech, fillers and proportion of nouns showed 

siginificant difference between HC and MCI groups (p < 0.005 

and p < 0.05, respectively; Figure 2). We calculated the effect 

size (Cohen’s d) of each feature as discriminative power [29]. 

For Cohen’s d, the 0.8 effect size is thought to be large, while 

the 0.5 effect is medium, and the 0.2 effect size is small [29]. 

We found large and medium effect size with fillers (effect size 

of 1.09, 95% CI: 0.32-1.86; Figure 2) and medium effect size 

with proportion of noun (effect size of 0.76, 95% CI: 0.04-1.48; 

Figure 2). For the gait features, gait speed and head postition 

stability were higher with HC than MCI, although this 

differences were not statistically significant (p=0.056 and 

p=0.053, respectively; Figure 2). These changes in the speech 

and gait features consistent with the results of previous studies 

that investigated the differnces in these measures with HC and 

dementia [10,13,22]. 

Next, we evaluated classification models for each speech and 

gait task between HC and MCI groups. As a result, for the 

speech features, three features were selected to be used for the 

classification model, which achieved 76.5% accuracy 

(sensitivity: 73.3%, specificity: 78.9%, F-measure: 0.733). As 

for gait features, three features were also selected for the 

classification model, which achieved 76.5% accuracy 

(sensitivity: 88.9%, specificity: 72.0%, F-measure: 0.667).  

Finally, we analyzed the classification model by combining 

speech and gait features. We combined speech and gait features 

that were selected in each classification model. The accuracy 

was 82.4% (sensitivity: 76.5%, specificity: 88.2%, F-measure: 

0.813) which improved by 5.9% from that of the classification 

models using the features of individual tasks. 

Discussion 

In contrast to previous studies focusing on detecting MCI and 

AD from a single modality of behavioral data, we aimed to 

argue the effectiveness of multimodal behavioral analysis. To 

this end, we collected and investigated speech data during the 

image description task and gait data during the 5-meter gait test 

with normal speed from cognitively healthy controls and MCIs.  

 We first investigated the significant differences of each feature 

and found significance only in speech features with a medium 

to large effect size. We did not find differences in gait features 

when comparing people with MCI to controls. Gait disturbance 

in MCI is still controversial [30], but a reason for the absence 

of significant differences can be explained by the following: 

gait patterns differ between MCI subtypes, and then the use of 

a heterogeneous MCI group, including people with single-

domain and multi-domain MCI, increases the intra-group 

variability of gait features in MCI groups [31,32]. In our 

experiment, such a heterogeneous MCI group in addition to the 

small number of participants might be a possible reason. 

Therefore, we could not find features that differed significantly 

between the MCI and controls with a larger effect size in both 

sets of behavioral data.  

 We then built a classification model by combining these 

features. When we built models by using speech and gait data 

separately, the models each showed the same accuracy of 

76.5%, which was the same accuracy of the baseline model by 

using MMSE scores. In comparison with these models, we 

showed that the model using multimodal behavioral data could 

improve detection by up to 5.9%, achieving 82.4% accuracy. 

The results indicate that exploiting the combination of 

multimodal behavioral data could improve the detection 

accuracy of MCI. Though no gait features differed significantly 

between the MCI and controls, these gait features could 

contribute to improving detection performance by combining 

speech features. These results might be made possible by 

exploiting the combination of multimodal behavioral features 

capturing different functional subtle changes resulting from 

MCI. If this hypothesis is true, our approach focusing on the 

multimodal behavioral analysis might be important especially 

(i) in targeting at earlier stages such as MCI or preclinical AD 

stages and (ii) in using data collected in non-controlled 

environments such as free living situations with a lot of noise. 

One of the limitation in this study is the relatively small number 

of participants.. For future work, we will need to confirm our 

results on a larger number of participants. Another limitation is 

the limited number of task trials. The speech and gait data we 

analyzed were collected from a single trial from a single task. 

We need to conduct further research with data from multiple 

trials to verify our results.  

To the best of our knowledge, this is the first empirical study to 

demonstrate that multimodal behavioral analysis on speech and 

gait data could improve detection accuracy for patients with 

MCI and might be useful for early detection of AD. We hope 

the results of our study will help promote future efforts towards 

timely diagnosis at an early stage such as MCI. 

 

Features 

Acc 

(%) 

Spe 

(%) 

Sen 

(%) 

F-measure 

MMSE 

(baseline)

76.5 72.0 88.9 0.667 

Speech 76.5 78.9 73.3 0.733

Gait 76.5 72.0 88.9 0.667

Speech & Gait 82.4 88.2 76.5 0.813

Table 2 – Classification model performance for HC vs. 

MCI. Performance is measured after leave-one-out cross-

validation (Acc: accuracy, Spe: specificity, Sen: sensitivity). 
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