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Abstract 

This paper presents the extract-transform-and-load (ETL) 

process from the Electronic Patient Records (ePR) at the 

Heart Institute (InCor) to the OMOP Common Data Model 

(CDM) format. We describe the initial database 

characterization, relational source mappings, selection filters, 

data transformations and patient de-identification using the 

open-source OHDSI tools and SQL scripts. We evaluate the 

resulting InCor-CDM database by recreating the same patient 

cohort from a previous reference study (over the original data 

source) and comparing the cohorts’ descriptive statistics and 

inclusion reports. The results exhibit that up to 91% of the 

reference patients were retrieved by our method from the ePR 

through InCor-CDM, with AUC=0.938. The results indicate 

that the method that we employed was able to produce a new 

database that was both consistent with the original data and 

in accordance to the OMOP CDM standard. 
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Introduction 

In the last decades, the field of Informatics has unveiled the, 

so-called, Big Data phenomenon; an intense increase of data 

gathering, exchanging and storage in several human activities. 

This phenomenon is outlined by the so called five Vs: 

velocity, volume, variety, veracity and value of data; posed as 

the big challenges for data analysis and processing [1]. Such 

characteristics are also common in Medical and Health 

Information Systems, whose databases have grown into huge 

amounts of patient information and health-related activities, in 

diverse formats, always online, and easily accessible from a 

mobile screen. If properly interconnected and treated, these 

systems offer interesting data sources for evidence-based 

research, such as Precision Healthcare, Population Health, 

Clinical Research, and more. [11] 

However, this data exchange is often a significant challenge. 

Most of the Electronic Patient Record (ePR) systems were not 

explicitly designed for research; rather, they are organized by 

standards and structures which are local to the institutions they 

primarily serve, e.g. hospital facilities, clinics, pharmacies, 

health insurance companies, etc. Thus, interchange methods, 

protocols and architectures were designed to cope with this 

challenge, such as the HL7 standards [12] and the OpenEHR 

platform [13]. These approaches mediate the communication 

of near-line and online transaction processing (OLTP) 

systems, specifying standard data elements and 

transformations from their internal data to a common 

messaging format. Furthermore, data analysis follows an 

approach akin to online analytical processing (OLAP), using 

denormalized, coalesced and preprocessed data in a standard 

common database format. 

OHDSI and the Common Data Model 

In this context, the Observational Health Data Sciences and 

Informatics (OHDSI – www.ohdsi.org) initiative grew out of 

the Observational Medical Outcomes Partnership (OMOP) 

developing a mature data standardization model, the OMOP 

Common Data Model (CDM) [6]. Having a ready-to-use 

database in a standard common model such as the OMOP 

CDM simplifies the exchange and integration of standardized 

methods, applications, information and tools between clinical 

researchers; a critical feature for distributed research networks 

using patient-centric clinical databases. [7] 

The CDM is a strong information model; its conceptual 

elements and their relationships are explicitly specified in a 

formal language, and every piece of information is connected 

to a standard term from SNOMED-CT. The CDM’s Standard 

Clinical Tables include Person, Visits, Observations, 

Conditions, Death, Procedure occurrences, Drug exposures, 

Measurements and more detailed information such as Drug 

ingredients, and Condition modifiers. OHDSI also provides 

open-source CDM applications for visualization and statistical 

analysis of patient-exposure-outcome cohorts. [10] 

The InCor data integration challenges 

The Heart Institute (InCor) of São Paulo, Brazil, is one of the 

six institutes of the Clinics Hospital complex, University of 

São Paulo Medical School. In the last two decades, InCor has 

increased its commitment in integrating all the relevant infor-

mation of its patients, successfully developing an ePR named 

SI³. The first version of SI was deployed in year 2000; cur-

rently, it stores the clinical history, examinations, procedures, 

surgeries, notes, laboratory tests, medication, bills, and more 

for 1.3 million patients. Since then, the system has continuous-

ly evolved, overcoming several challenges related to the ex-

change of information among different healthcare institutions 

and remote installations. Furuie et al., describe details of the 

system architecture [8], while a number of studies involved 

cohort selection based on information collected by the SI³ sys-

tem [3-5]. 

However, the workload involved in extracting the relevant 

patient information from SI³ has motivated the adoption of 

new strategies.  Recently, we started the mapping from the SI³ 

data model to a standard data model that can simplify the ob-

servational retrospective studies related to Clinical Research. 

In this paper, we present the steps related to the mapping be-

tween SI³ and the CDM data models to prepare a new stand-

ardized database, named InCor-CDM, that can be used with 
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the OHDSI toolset and a number of visual analytics tools. We 

measure the quality of the resulting InCor-CDM database us-

ing precision and recall statistics, when compared to the co-

hort generated by a previous study (gold standard). 

Methods 

Environment preparation 

We prepared the InCor-CDM database environment by 

installing a PostgreSQL 10 DBMS, Java 10 JDK and Docker-

compose in a Linux workstation. The database setup includes: 

(a) creating the required database users; (b) creating the 

OMOP CDM tables with the CommonDataModel/PostgreSQL 

scripts; and (c) importing the standard OMOP vocabularies 

from athena.ohdsi.org. All the OHDSI sources are available at 

github.org/OHDSI. Next, we installed the Achilles and 

Broadsea repositories required for the OHDSI web 

applications, configured the addresses and JDBC URLs and 

started their respective docker containers. 

Database characterization 

The InCor SI³ database is stored in an Oracle 12c instance, 

accessed with the Oracle JDBC connector and DBeaver SQL 

client. The first step to manage the database was sampling its 

tables and columns with the OHDSI’s WhiteRabbit software. 

This application generates a spreadsheet with the most 

frequent values of each selected column, so we can inspect 

them and make decisions about which columns to ignore, 

especially those with irrelevant or missing values. Then, we 

use RabbitInAHat to parse the output of WhiteRabbit and 

draw relational data-flow diagrams for documentation. 

Some namespaces in SI³ were ported from non-relational or 

older systems; such namespaces had no associated 

documentation, comments, constraints or foreign keys. For 

this reason, the database metadata had to be converted to a 

searchable JSON format with table and column names, types, 

comments, constraints and foreign keys. The column names 

were tokenized according to the naming scheme of the 

institution (e.g. abbreviations separated by underscore) and 

matched to similar columns in other tables; the goal was to 

find implicit relationships where the foreign keys were 

missing. Some attribute domains, such as internal record status 

codes, event sequence and timing diagrams, were documented 

from interviews with the support staff of InCor. 

Patient de-identification 

For de-identification purposes, personal information mapped 

to the CDM was limited to a minimum. Any key with a path to 

a patient primary key (and the PK itself) was pseudonymized 

[14], i.e., direct identification information such as citizenship 

document, phones numbers, addresses and names are not 

ported to the CDM, and the record primary key is exchanged 

to a new id (pseudonym), which is a random number drawn 

from an uniform distribution in the range 1×1010 and 9×1015 

using Oracle’s DBMS_RANDOM functions, addressing 

collisions with repeated sampling. This range was selected not 

to conflict with OMOP’s standard concept ids (0 up to 2×109 

are reserved) and to be within the limits of JSON numbers 

(53-bit precision). InCor holds the mapping from the new ids 

to the original keys in a private table; the mapping is to be 

used for notifying the patient, or her/his physician, in case the 

result of a study can improve a patient’s condition. 

Numerical variables were truncated in order to satisfy a 

baseline level of k-anonymity [15], i.e., guaranteeing that any 

patient variable value have at least k patients with the same 

information, so no patient is uniquely identifiable. For 

example, event dates were truncated to yearly, monthly, daily 

or hourly precision where original precision were not needed. 

Records with spurious attributes (e.g., dates in the future, 

outside any visit, invalid range, null required field, missing 

keys) were discarded. Also, we only loaded data from patients 

born before 2010 (aged 18+), with at least one valid visit. 

si3.pac_paciente  keys 

paci_id tp_sexo ... table src_id new_id

01721 M ... pac_paciente 01721 7369111123

01722 M ... pac_paciente 01722 1257321234

01723 F ... pac_paciente 01723 3038618654

 

gender_map  omop.person 

src id person_id gender_concept_id ...

F 8532 7369111123 8507 ...

M 8507 1257321234 8507 ...

3038618654 8532 ...

Figure 1– Example: gender mapping from SI³ to the CDM. 

Figure 1 shows sample data to illustrate this process. Each 

column from CDM person table (e.g., gender_concept_id) is 

extracted from the source table and column (e.g., 

pac_paciente. tp_sexo), and transformed with the appropriate 

domain map (e.g., value ‘F’ used in SI³ for female gender is 

mapped to CDM concept 8532). The keys and gender_map 

tables are populated beforehand. The standard CDM concept 

ids were searched in OHDSI’s Athena – a web-based CDM 

vocabulary explorer. Then, observe the following query, 

which loads data from the SI3 PAC_PACIENTE table into the 

InCor-CDM omop.person table with remapped keys and 

concepts: 

 
INSERT INTO omop.person 
SELECT K.new_id          AS person_id, 
       EXTRACT(YEAR FROM P.dt_nasc) 
                         AS year_of_birth, 
       COALESCE(G.id, 0) AS gender_concept_id 
FROM si3.pac_paciente P 
JOIN keys K ON  K.table=’pac_paciente’ 
            AND K.src_id=P.paci_id 
LEFT JOIN gender_map G ON P.tp_sexo=G.src; 
 

This query operates on the table samples in Figure 1, where it 

is assumed that the keys table holds the patient’s random 

new_id, and that the gender_map table is a domain map table 

defined as (src char(1); id integer) corresponding to values of 

(tp_sexo, gender_concept_id). Unmapped values receive code 

0, meaning “unknown concept” in the standard CDM 

vocabulary. Related tables were joined to the patient PK as 

usual, with their PK also remapped by keys.new_id. 

Coding translation 

InCor SI³ uses the ICD 10 for diagnosis, a set of Brazilian 

vocabularies for coding clinical conditions, drugs, and 

procedures (TUSS is used by the Brazilian Health Care 

System for general terms and Brasindice for drugs – 

datasus.gov.br) and an internal coding system for generic 

billable items. Internal codes in use at InCor were inserted as 

new Concepts in the CDM (with ids mapped between 3×109 

and 9×109) under the “InCor” vocabulary, with Concept 

Relationships to standard concepts whenever this information 

was available in SI³. Initially, the records are inserted in the 

InCor-CDM with the original source codes, then the Concept 

Relationships from local to international codes are used to 

update the local InCor-CDM references to OMOP 

standardized terminologies, such as the SNOMED-CT, 
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RxNorm, and LOINC [6], while the preserving the original 

source code stored in the patient record. 

Quality assessment 

After loading all the CDM tables, we execute the Achilles 

analysis, which will report data quality issues as errors, 

warnings or notifications. It will also preprocess the 

demographic characterization of the database for the 

visualizations and reports; after that, we start the Atlas 

WebAPI and front-end servers. Atlas offers both a RESTful 

API and a graphical web interface to schedule the execution of 

OHDSI methods, automatically generating the queries on a 

properly built and configured CDM database. 

The most relevant errors initially found were related to: (a) the 

referential integrity, e.g., events without associated visit or 

events without a valid person_id, which were discarded; (b) 

lack of condition_eras, drug_eras and observation_periods, 

which were imputed from the ePR records by collapsing all 

the events of a patient not apart for more than a year into a 

single era – in the CDM standard, an “event” era refers to a 

time period of interest where “events” are recorded in the ePR;  

(c) events with invalid date, e.g. a condition_occurrence with 

start date in a future date; (d) too many patients without a 

diagnostic or prescription; InCor-CDM keeps such records 

because they can be used in the condition or drug_exposure 

dashboards, regardless of previous diagnosis. 

Statistical evaluation 

After initial corrections, we evaluate the quality of InCor-

CDM by using software OHDSI’s Atlas to recreate a previous 

CVD patient cohort observed in a reference study that was 

executed over the InCor SI³ database by Abrahao et al. [9]. 

That reference study prepared a clean de-identified database 

named Pauá, based on a 2016 snapshot of SI³ records of 

patients, admissions, discharges, diagnoses, surgeries, PCI, 

medications, and laboratory tests. Within the Pauá database, 

Abrahao et al., verified the effect of statins on the survival rate 

of patients diagnosed with cardiovascular diseases. Our study 

will evaluate the InCor-CDM quality by defining a cohort 

with the same criteria and by verifying how many patients 

(with the same private InCor identifiers) were retrieved by 

each criteria given that reference study. 

Results 

In this section we evaluate InCor-CDM quality by selecting 

the same DCV cohort of a previous study in the Pauá database 

[9], by using Atlas over the InCor-CDM database. Our 

evaluation computes the Area Under the ROC Curve (AUC) 

based on the results of 12 executions of the DCV cohort at 

various settings. We compute predictive statistics for each 

cohort execution, using Pauá as a gold standard. The resulting 

AUC ranges from 0.5 (no different than random sampling) to 

1.0 (reproduces exactly the same result as the gold standard). 

Table 1– Databases cardinality (thousands of records). 

Domain SI³2016 Pauá SI³2018 CDM 

Person 1,116 323 1,346 946

Visit Occurrence 6,427 5,686 7,499 7,305

Condition Occur. 1,205 1,007 1,361 1,324

Procedure Occur. 45,024 144 53,945 51,479

Drug Exposure 83,283 2,775 100,052 38,962

Measurement 22,025 20,528 31,095 30,177

Death 17 21 18 18
 

In Table 1, we present the cardinality of the InCor-CDM in 

comparison to the SI³ and Pauá database. Note that the 

Procedure and Drug domains in the Pauá database have 

substantially less records; this is because they are restricted to 

surgeries and particular classes of drugs, and because Pauá 

only uses patients with at least one admission and diagnosis. 

Additionally, InCor-CDM is based on a more recent snapshot, 

named SI³2018 in the aforementioned table. 

Cohort definition 

To replicate the Pauá study, we created a cohort over the 

InCor-CDM database with the criteria below. Each list item 

directly corresponds to a HTML input field in the Atlas 

cohort definition form. These criteria are translated to SQL 

queries over our database in the CDM format (InCor-CDM). 

• Initial Event Cohort: People having any of a visit 

occurrence of  Outpatient concept set (with 

concept_id 9202, Outpatient Visit); 

• Additional Qualifying Inclusion Criteria: 

− Condition occurrence criteria: with at least 1 

of any condition; 

− Demographic criteria: age greater than or equal 

23 (in the censor window), matching the 

patients over 18 years old at the Pauá study start 

(1999); 

− Demographic criteria: with a gender of MALE 

(8507) or FEMALE (8532); 

− Condition occurrence criteria: of 

CardioVascular Disease (a concept set of 

concept ids from ICD-10 categories I20 to I25, 

I64 to I70 and G45, including descendants and 

mapped), with occurrence start between 2003-

01-01 and 2013-12-31, where event starts 

between All days before and 30 days after index 

end date (meaning the diagnosis was recorded 

around the time of the initial outpatient visit); 

− Visit occurrence criteria: with at least 1 of 

Outpatient concept set, where event starts 

between 30 after and All days after index end 

date (a subsequent visit recording the outcome); 

− Limit qualifying cohort to the earliest event; 

• Era collapse gap size: 1 day; 

• Cohort censor window: starting 2003-01-01 and 

ending 2013-12-31. 

After verifying the Concept Sets to have the correct concept 

ids, we generated the cohort on the InCor-CDM database and 

verified the cohort attrition report (the number of patients 

remaining in the selection after each filter) in Table 2: 

Table 2– InCor-CDM CVD cohort attrition report in Atlas. 

Criteria n % Visualization 

Initial 778,015 100.00 

a) Dx 351,205 45.14 

b) 18+ 321,827 41.37 

c) M/F 303,847 39.05 

d) CVD 45,710 5.88 

e) 2nd-V 39,910 5.13 

f) People 39,498   
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Table 2 summarizes the cohort definition criteria, where each 

abbreviation mean: (a) Dx: has a valid condition occurrence 

(diagnosis); (b) 18+: over 18 years old; (c) M/F: Male or 

Female gender; (d) CVD: has any occurrence of ICD-10 I20 

to I25, I64 to I70 or G45; (e) 2nd-V: has a second outpatient 

visit occurrence more than 30 days after the index event (the 

initial visit); (f) People: lists how many people actually 

matched the events, because some patients have more than one 

episode. The baseline results achieved by the InCor-CDM 

CVD cohort indicate that 39,498 patients satisfy the criteria. 

Table 3– Pauá reference CVD cohort attrition report. 

Criteria n % Visualization 

Initial 313,894 100.00 

Dx 313,894 100.00 

18+ 282,677 90.00 

M/F 263,339 83.87 

CVD 56,799 18.06 

2nd-V 27,698 8.80 

People 27,698   

 

In comparison, Table 3 displays an attrition report for the 

reference study (Pauá). The visualization was drawn with 

Python and GNU Gimp because Pauá’s schema is not based 

on the CDM standard, and thus could not be used in Atlas. 

The reference cohort selected with the same criteria in the 

Pauá database has 27,698 patients (30% less than our first 

result), indicating the need of further refinement. 

Initial Evaluation 

All subject_ids in the cohort defined in Atlas were compared 

to the set of patient ids in the Pauá cohort. This comparison 

was executed by computing confusion matrices against the 

Pauá cohort result as a gold standard, then the derived scores: 

true and false positive ratios (TPR/FPR), positive and negative 

predictive power (PPV/NPV), accuracy (ACC) and F1-score. 

The confusion matrix the cohort #1 is given in Table 7, and 

derived scores make the first row of Table 8. 

Table 7– Confusion matrix for cohort #1 (in Table 2). 

 Pauá 

InCor-CDM 

P N Total 

P 25,423 12,290 37,713

N 2,651 282,887 285,538

Total 28,074 295,177 323,251

 

Parameter refinement 

Therefore, we noted cohort accuracy variations by creating 

additional cohorts with slightly adjusted parameters for the 

CVD criteria. Table 4 displays the attrition reports with 

increased periods for the qualifying criteria of CVD 

occurrence start date after index end date. Table 5 displays the 

attrition reports with increased periods for the qualifying 

criteria of Cardiopathy occurrence start date. We observe that 

increasing the collapse gap size to 7 and 14 days had no 

substantial effect on the results (Table 4). 

Table 4– Varying condition start after index event (days). 

Criteria \ days 7 14 21 30 

Initial 778,015 

Dx, 18+, M/F 303,847 

CVD 44,967 45,255 45,484 45,710

People 39,055 39,203 39,342 39,498

 Table 5– Varying condition start periods (years). 

Criteria \ days 2003-2013 2000-2013 2000-2016 

Initial 778,015

Dx, 18+, M/F 303,847

CVD 45,710 49,942 63,656

People 39,498 43,293 54,126

Table 6– Varying 2nd visit event start after index (days). 

Criteria \ days All 365 180 90 

Initial 778,015

Dx, 18+, M/F 303,847

CVD 45,710 44,228 43,950 43,667

People 39,498 35,457 32,767 29,414

 

Then we evaluated all the patients selected in each cohort 

(from Tables 4, 5 and 6) by comparing them to the reference 

Pauá study, using the private Keys table to map the CDM 

person_ids to the SI³ patient ids (confidential to the 

institution), whose results are presented in Table 8. It should 

be noted that Pauá had an update in October 2016, after the 

reference study was published, and so we re-executed the 

query for its patient cohort, resulting in P=28,074 patients 

selected in the cohort (1.4% increase) and overall total 

P+N=323,251 patients included (3.0% increase). 

Table 8– Predictive scores for each cohort. 

# TPR FPR PPV NPV ACC F1 

1 .905 .041 .674 .990 .953 .772

2 .901 .040 .678 .990 .954 .774

3 .903 .040 .677 .990 .954 .774

4 .904 .041 .676 .990 .954 .773

5 .905 .041 .674 .990 .953 .772

6 .907 .052 .623 .990 .944 .738

7 .907 .052 .622 .990 .944 .738

8 .907 .052 .620 .990 .943 .736

9 .889 .040 .680 .990 .954 .775

10 .877 .031 .727 .988 .960 .795 

11 .829 .027 .743 .983 .960 .784

12 .754 .023 .752 .976 .957 .753

 

Evaluation of the ROC curve 

We complete the evaluation by plotting the ROC curve from 

the predictive scores in Table 8. Only the patients existing in 

the Pauá database were used, i.e., only 37,713 patients of 

those retrieved in the cohort #1 also existed in the Pauá 

database. The highest scores of each column are highlighted in 

bold, e.g., cohort #10 exhibited the highest F1-score. 

 

Figure 2– Empirical ROC curve for Table 8. 
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In this section we presented the results of the cohorts selected 

with Atlas from the InCor-CDM database. We also presented 

the effect of tweaking cohort parameters in the quality of the 

results (Table 8), which exhibited up to 80% F1-score, 75% 

Precision (PPV) and 91% Recall (TPR) at different settings. 

Figure 2 summarizes our results in an empirical ROC curve, 

exhibiting 0.938 of area under curve (AUC). 

Discussion 

The resulting InCor-CDM exhibits high agreement with the 

previous gold standard study [9]. This means that it is possible 

to estimate the same population-level effects (e.g. different 

medications) in both databases. InCor-CDM additionally 

benefits from the quality analyses implemented in the OHDSI 

Achilles tool, which warns about inconsistencies and errors 

found in the transformed data, and can be used for more 

advanced analysis in comparison with external CDM-based 

databases. For future work, we envision the comparison of 

patient cohorts between InCor-CDM and external CDM-based 

databases from other OHDSI work groups, further studying 

data quality, subpopulation characteristics between different 

institutes and evaluating risk scores for InCor patients. 

Conclusions 

We presented details of the migration process of a huge 

clinical database, the InCor’s SI3, to the OMOP CDM 

standard, an international format aimed at improving research 

in computer-aided medical systems. We presented the method 

used to extract, transform and load data between the databases 

commenting on the challenges regarding models, formats, 

terminology, and tools. We evaluated the quality of the 

resulting database, named InCor-CDM, by comparing cohorts 

obtained with the software OHDSI Atlas. We considered a 

previous cohort selection study used as ground truth; for a 

systematic comparison, we computed several information 

retrieval statistics and a ROC curve. The cohorts defined in 

Atlas exhibited from 62% to 75% precision, 75% to 91% of 

recall, 74% to 80% F1-score, and 0.938 of area under the ROC 

curve (AUC). The results indicate that the method that we 

employed was able to produce a new database that was both 

consistent with the original data and in accordance to the 

OMOP standard. The new database shall support a wide range 

of new research initiatives within the Heart Institute.  
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