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Abstract 

De-identification aims to remove 18 categories of protected 
health information from electronic health records. Ideally, de-
identification systems should be reliable and generalizable. 
Previous research has focused on improving performance but 
has not examined generalizability. This paper investigates both 
performance and generalizability. To improve current state-of-
the-art performance based on long short-term memory (LSTM) 
units, we introduce a system that uses gated recurrent units 
(GRUs) and deep contextualized word representations, both of 
which have never been applied to de-identification. We 
measure performance and generalizability of each system using 
the 2014 i2b2/UTHealth and 2016 CEGS N-GRID de-
identification datasets. We show that deep contextualized word 
representations improve state-of-the-art performance, while 
the benefit of switching LSTM units with GRUs is not 
significant. The generalizability of de-identification system 
significantly improved with deep contextualized word 
representations; in addition, LSTM units-based system is more 
generalizable than the GRUs-based system. 
Keywords:  

Data Anonymization, Natural Language Processing, Machine 
Learning 

Introduction 

Removing identifiable information from personal data is 
important for protecting privacy. The General Data Protection 
Regulation (GDPR) in the European Union (EU) prohibits 
processing of personal data without obtaining explicit consent 
unless identifiable information is first removed from the data. 
In the United States, the Health Insurance Portability and 
Accountability Act (HIPAA) requires removal of 18 categories 
of protected health information (PHI) from electronic health 
records (EHRs) in order to protect the privacy of patients. The 
task of removing such information is often referred to as de-
identification. This task is often the first step that must be 
performed before EHRs can be shared. In this paper, we focus 
on the de-identification of EHRs for HIPAA compliance.  This 
task can be accomplished both manually and automatically. 
However, manual de-identification is non-reusable, time-
consuming, and costly. For example, Dorr et al.[1] assessed the 
difficulty and time costs of manual de-identification in clinical 
notes. On average, manual de-identification of a clinical note, 
with an average note length of 261 ± 352 words, required 87.3 
± 61 seconds. Douglass et al.[2] found that each human 
annotator could read 16,000 to 20,000 words hourly and was 
paid $50 per hour. Given the vast amount of EHRs and the time 
and financial cost of manual de-identification, fully manual de-
identification is not feasible and must benefit from automated 
methods. 
The earliest automated de-identification systems were 
primarily rule-based [3–5]. Researchers utilized external 

knowledge resources, such as lists of personal names and 
addresses, as well as medical term dictionaries. They also 
implemented regular expressions to capture morpho-lexical 
features of PHI.  
Recently, machine-learning systems have made significant 
contributions to de-identification. Most machine learning 
models interpret de-identification as a sequence-labeling 
problem [6–11]. These models can handle sequences of 
characters, words, or sentences. For the 2014 i2b2/UTHealth 
shared task on de-identification [12], Yang and Garibaldi [7] 
earned the highest F1-score among participants using a 
sequence-labeling classifier based on conditional random fields 
(CRFs) which were complemented with customized rules. All 
the systems that ranked among the top five in this shared task 
were based on CRFs. More recently, artificial neural networks 
(ANNs), which are also sequence labelers, have been used for 
de-identification. Among various architectures of ANNs, 
recurrent neural networks (RNNs) have been the most common. 
A type of RNNs, referred to as long short-term memory 
(LSTM) units combined with CRFs along with manually 
encoded rules [11] have displayed the best performance in the 
2016 CEGS N-GRID de-identification shared task [13]. 
Interestingly, the best systems in both shared tasks 
complemented their machine learning solutions with hand-
crafted rules that were optimized to their datasets. 
Independently of these shared tasks, Dernoncourt et al. [14] 
built NeuroNER, and achieved state-of-the-art performance on 
the 2014 i2b2/UTHealth dataset. NeuroNER is also based on 
bi-directional LSTM (bi-LSTM) units and CRFs but includes 
no hand-crafted features or external resources other than GloVe 
word embeddings [15]. NeuroNER implements the bi-LSTM 
units on a character-level input to get character embeddings and 
concatenates character embeddings with pre-trained token 
embeddings. The resulting character-enhanced token 
embeddings are fed into the bi-LSTM units again and the 
sequence of probabilities are then tuned with the CRF sequence 
optimizer to produce the system output. 
The success of NeuroNER prompts some follow up questions. 
The first concerns the use of different recurrent units. Although 
RNN with traditional neural units could handle sequence-based 
problems such as de-identification, they cannot effectively 
handle tasks that contain long-term dependencies. This is often 
referred to as the vanishing gradient problem. To mitigate the 
vanishing gradient problem, researchers have devised either 
enhanced learning algorithms [16] or more sophisticated 
activation functions [17, 18]. Among these activation functions, 
LSTM units are the most popular. However, in 2014, Cho et al. 
[18] proposed a different type of gating mechanism, namely the 
gated recurrent units (GRUs). Like LSTM units, GRUs can 
address the vanishing gradient problem, but they also have 
simpler structure relative to LSTM units. While LSTM units 
contain “forget,” “update,” and “output” gates, GRUs merely 
have “reset” and “update” gates. Despite this structural 
advantage and comparable performance [19], GRUs have not 
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been evaluated in de-identification. 
The second question entails the benefit of incorporating 
different combinations of embeddings. Although basic word 
representations such as GloVe [15] and Word2Vec [20] have 
become the core of most recent natural language-processing 
(NLP) research, they face challenges when handling out-of-
vocabulary (OOV) words and ambiguity, i.e., words that do not 
have an embedding (such as misspellings, dates, telephone 
numbers, and ID numbers) and words that are ambiguous (such 
as the word ‘can’ as a modal in the sentence “I can do it” and 
the same word as a noun in the sentence “this is a trash can”). 
Character embeddings could compensate for some of the 
weaknesses of these representations providing character-level 
information that can encapsulate the semantics of words. In 
their ablation test to investigate the contribution of each 
component to the performance of NeuroNER, Dernoncourt et 
al. [14] determined that their system performed reasonably well 
using only character-level embeddings (i.e., without word 
embeddings). However, both word embeddings and character 
embeddings contain limited or no information about context, 
which can be pivotal for capturing the true semantics of words. 
Recently, Peters et al. [21] devised word representations that 
can incorporate context into token embeddings. These “deep 
contextualized word embeddings” are calculated from a bi-
directional language model (biLM) and are evaluated in our 
experiments.  
Finally, despite the high performance of existing machine-
learning-based de-identification systems, these systems do not 
generalize well to new types of data. The result of the 2016 
CEGS N-GRID shared task on “sight unseen” data supports this 
observation. This task tested the performance of existing, 
unmodified de-identification systems on new types of data 
consisting of psychiatry records and was the first shared task of 
its type that utilized psychiatry data. Nine teams participated in 
this task. Each team could train their system on any data of their 
choosing. All systems were evaluated on the same previously 
unseen test data. The highest-performing team on this task 
could not reach 0.80 in terms of strict entity-based F1-
score [13].  
To reliably remove PHI from EHRs in practice, however, de-
identification systems should generalize to new types of data 
that are different from what they trained on. Systems tested on 
the 2016 CEGS N-GRID shared task on “sight unseen” data 
were each trained on different sets of data, which rendered 
comparison of generalizability of their models impossible. 
Here, we present a systematic evaluation of generalizability of 
our systems. To the best of our knowledge, this is the first use 
of GRUs and deep contextualized word representations in de-
identification and provides a systematic assessment of 
generalizability of discussed solutions.  

Methods 

State-of-the-art in de-identification was developed by 
Dernoncourt et al. [14]. This system, NeuroNER, consists of 
four layers, including a character-embedding layer, a token-
embedding layer, a label-prediction layer, and a label-
sequence-optimization layer. NeuroNER utilizes bi-LSTM 
units on character-level input to get character embeddings and 
concatenates character embeddings with pre-trained token 
embeddings. The resulting character-enhanced token 
embeddings are fed into bi-LSTM units again, and the resulting 
sequence of probabilities are then tuned with a CRF label 
sequence optimizer. 
We selected NeuroNER as our baseline model. We maintained 
its overall pipeline, and modified its components (as described 

in the following experiments) to evaluate GRUs and deep 
contextualized word representations in de-identification, and to 
assess generalizability of the resulting models. 

Datasets 
We evaluated de-identification performance on the 2014 
i2b2/UTHealth and the 2016 CEGS N-GRID de-
identification data. The 2014 i2b2/UTHealth de-
identification dataset (henceforth, the 2014 dataset) consists 
of 1,304 medical records, including discharge summaries, 
progress notes, doctor’s notes, doctor-patient 
communications from 296 diabetic patients. These records 
contain 28,872 PHI entities in 28 types (including subtypes 
for some HIPAA PHI categories) [12]. The 2016 CEGS N-
GRID de-identification dataset (henceforth, the 2016 
dataset) includes 1,000 psychiatric intake records 
containing 34,364 PHI entities with the same types [13]. 
Table 1 summarizes the statistics of each dataset. As 
indicated in the table, the 2016 dataset contains more tokens 
and PHI per record. Considering the ratio between the 
average token per document and the average PHI per 
document, the 2014 dataset is denser than the 2016 dataset. 

Both the 2014 and 2016 datasets consisted of training (60%) 
and test (40%) sets. We divided each of the training sets into 
training (40%) and validation (20%) sets. We used the training 
and validation sets for system development. We report results 
on the test sets. 

Table 1 – Overview of the 2014 and 2016 Datasets 
 2014 

Dataset 
2016 

Dataset 
Records 1,304 1,000 
Total # of tokens 805,118 1,862,452 
Average # of tokens per record 617 1,862 
Total # of PHI entities 28,872 34,364 
Average # of PHI per record 22 34 

Evaluation Metrics 
For evaluation, we used micro-averaged precision, recall, 
and F1-score computed using the following equations: 

� Precision (P) = true positives / (true positives + false 
positives) 

� Recall (R) = true positives / (true positives + false 
negatives) 

� F1-score (F1) = 2*P*R / (P+R)  
Organizers of the 2014 and 2016 de-identification shared tasks 
measured multiple versions of these metrics 
(strict/relaxed/overlap with token-based/entity-based 
matching) over two sets of PHI types (i2b2 PHI vs. HIPAA 
PHI). Strict, relaxed, and overlap measurements differ in terms 
of their acceptance of exact or inexact textual spans 
corresponding to PHI. Token-based versus entity-based 
evaluation refers to whether the complete string or individual 
words in the string are considered for de-identification. i2b2 
PHI and HIPAA PHI differ in terms of granularity of PHI.  i2b2 
categories classify the 18 HIPAA categories into sub-types 
(e.g., a location HIPAA PHI type can be classified into street, 
city, state, zip i2b2 types). In this paper, we evaluate 
performance with the strictest settings—strict entity-based 
matching over i2b2 PHI. 

System Structure 

NeuroNER serves as both the starting point and the benchmark 
for the experiments presented in this paper. Our goal is to 
improve performance of this state-of-the-art system on de-
identification and to assess its generalizability under different 
conditions. We experiment with different RNNs and 
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embeddings in order to evaluate the contribution of each to 
system performance and generalizability. 
Our system accepts tokenized narrative text as input. For this, 
the narratives are first pre-processed using spaCy [22] for 
sentence detection and tokenization. Given the pre-processed 
narratives and NeuroNER, we experimented with bi-LSTM 
units and bi-GRUs. LSTM units and GRUs are alike in that they 
both incorporate history into their predictions. But as 
previously mentioned, GRUs have simpler structure than 
LSTM units. As a result, GRUs have fewer parameters than 
LSTM units, and can converge faster [19]. In terms of their 
performance, the superiority or inferiority of either LSTM units 
or GRUs remains a matter of debate [19, 23], while the merits 
of both units relative to the traditional RNNs units (for example, 
tanh) are undeniable [24,25]. 
In order to evaluate the performance of these units, we tested 
three different types of embeddings with them. Pre-trained 
word embeddings [12,17] are widely used and have become a 
core element in recent machine-learning-based NLP research; 
however, they can fall short on OOV and ambiguous words. 
One way of resolving these cases would entail the use of 
character-enhanced token embeddings or deriving from deep 
contextualized word representations. Rather than training a 
word vector for each token, deep contextualized word 
representations train a context function that is based on two-
layer biLMs with character convolutions and that returns a 
flexible word vector [21]. This function assigns a different 
vector to each word based on its morphological features and 
context; even the same two words in the same sentence can have 
different word vectors. Deep contextualized word 
representations can mitigate both OOV and ambiguous word 
problems. We used 1,024-dimensional deep contextualized 
word representations in addition to character embeddings and 
word embeddings. We processed our datasets (using only the 
training and validation portions) with a pre-trained model 
(which is a context function trained on the 1B Word Benchmark 
[26]) to extract deep contextualized word representations. 
To investigate the contribution of different embeddings to 
different RNNs on de-identification, we experimented with all 
possible combinations of items within the four layers of 
NeuroNER architecture. The layers are summarized in Table 2. 

Table 2 � Experiment Items in Each Architectural Layer of 
NeuroNER 

Location Experiment items 
4th layer CRF label sequence optimizer 
3rd layer bi-LSTM units vs. bi-GRUs 
2nd layer word embeddings (WEs) and/or deep 

contextualized word representations (DEs) 
1st layer character embeddings (CEs) 

Training and Hyperparameters 

We tuned our hyperparameters using the training set of each 
dataset. NeuroNER accomplished its optimal performance on 
both datasets with these parameters: 

� character-embedding dimension: 25 
� character-based token-embedding dimension: 25 
� token-embedding dimension: 100 
� label-prediction dimension: 100 
� dropout probability: 0.5 

In addition to the above hyperparameters, the dimension of the 
deep contextualized word representations was 1,024. 
Therefore, the inputs to the label-prediction layer entail a 
minimum of 25 dimensions (in the case that only character 

embeddings are tested) and a maximum of 1,149 dimensions 
(in the case that all three embeddings are tested). When training, 
iteration was stopped if there was no improvement in the F1-
score on the validation set for 10 epochs. 

Results 
Performances of both LSTM units-based and GRUs-based 
RNNs are presented in Tables 3 and 4. The statistical 
significance of F1-score difference from the baseline model 
was tested using approximate randomization [27] with 9,999 
shuffles. Statistically significant F1-score differences at the 
level of 0.01 are asterisked.  
Table 3 indicates the performance of LSTM units-based RNNs 
with different combinations of embeddings. The baseline 
performance of NeuroNER is underlined, and the precision, 
recall, and F1-score of the highest-performing combination for 
each dataset is in bold font. In the 2014 dataset, the role of 
character embeddings was pivotal. Without word embeddings, 
LSTM units-based RNNs accomplished 89.70 for F1-score. 
Any combinations that included deep contextualized word 
representations significantly outperformed the combination of 
character embeddings and word embeddings, which were our 
baseline, in F1-score. Even the system that used deep 
contextualized word representations alone could outperform 
this baseline in F1-score. The highest F1-score achieved with 
LSTM units-based RNNs was 92.82, which is 1.15 higher than 
the baseline. In the 2016 dataset, the system with only character 
embeddings underperformed relative to the system with only 
word embeddings. Deep contextualized word representations 
worked effectively on the 2016 dataset as well, but it did not 
surpass the baseline system until it was combined with the other 
two embeddings. The highest F1-score was 89.00. In both the 
2014 and 2016 datasets, the optimal performances were 
observed when all three embeddings were combined. 

Table 3 � Performance of LSTM Units-Based RNNs 

Embeddings 2014 Dataset 2016 Dataset 
P R F1 P R F1 

CEs 92.83 86.77 89.70* 84.96 78.58 81.65* 
WEs 85.46 79.09 82.15* 85.92 79.99 82.85* 
DEs 93.50 90.79 92.13* 88.23 86.56 87.39* 
CEs+WEs 92.39 90.97 91.67 89.15 87.09 88.11 
CEs+DEs 93.14 90.84 91.98* 88.65 86.95 87.79 
WEs+DEs 93.34 90.91 92.11* 87.99 87.92 87.95 
All three 94.33 91.36 92.82* 90.88 87.20 89.00* 

Table 4 � Performance of GRUs-Based RNNs 

Embeddings 
2014 Dataset 2016 Dataset 

P R F1 P R F1 
CEs 91.98 87.30 89.58* 84.77 77.20 80.81* 
WEs 86.86 77.81 82.09* 84.66 78.73 81.59* 
DEs 93.04 91.23 92.13* 88.48 85.99 87.22* 
CEs+WEs 93.77 90.49 92.10* 89.66 86.39 87.99* 
CEs+DEs 93.63 90.33 91.95* 90.57 86.58 88.53* 
WEs+DEs 94.07 90.74 92.37* 89.97 87.51 88.72* 
All three 93.59 91.65 92.61* 89.11 87.10 88.09 

Table 4 indicates the performance of the GRUs-based RNNs. 
Here, character embeddings were pivotal in the 2014 dataset but 
not on the 2016 dataset. The combination of GRUs with deep 
contextualized word representations achieved a good 
performance. The optimal F1-score in the 2014 dataset was 
received when all three embeddings were combined, while the 
combination of word embeddings and deep contextualized 
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word representations exhibited the second highest performance. 
The differences in F1-score are statistically significant at 
P=.008. Regarding the 2016 dataset, the optimal performance 
was produced when word embeddings and deep contextualized 
word representations were combined; combining character 
embeddings with these two embeddings deteriorated the 
performance of the system. 
Comparing Tables 3 and 4, we see that GRUs demonstrated a 
comparable performance relative to the LSTM units and even 
outperformed the LSTM units in some combinations. Notably, 
the F1-score increased by 0.43 merely as a result of substituting 
the LSTM units with the GRUs for the 2014 dataset (which 
does not occur in the 2016 dataset). The differences in F1-score 
are statistically significant at P=0.002. However, the highest 
performance with the GRUs-based RNNs could not surpass that 
of the LSTM units-based RNNs for both datasets. The 
differences in F1-scores are statistically significant at P=0.004. 
We also investigated the generalizability of both LSTM units-
based and GRUs-based RNNs systems. To test the 
generalizability of each combinatio, we evaluated the 
performance of the model trained using the 2014 training set on 
the 2016 test set.  

Table 5 � Generalizability of LSTM Units-Based RNNs 

Embeddings 2014→2016 2016→2014 
P R F1 P R F1 

CEs 67.25 55.17 60.61* 57.67 62.76 60.11* 
WEs 57.57 59.81 58.67* 57.08 42.65 48.82* 
DEs 74.56 69.97 72.19* 70.95 69.51 70.22* 
CEs+WEs 70.62 66.01 68.24 68.62 67.09 67.85 
CEs+DEs 75.95 70.96 73.37* 69.37 70.84 70.10* 
WEs+DEs 74.97 70.79 72.82* 70.92 70.42 70.67* 
All three 77.51 68.30 72.61* 71.98 70.90 71.44* 

Table 6 � Generalizability of GRUs-Based RNNs 

Embeddings 2014→2016 2016→2014 
P R F1 P R F1 

CEs 72.85 54.02 62.04* 64.24 63.46 63.85* 
WEs 61.08 58.87 59.95* 50.62 44.36 47.28* 
DEs 71.78 70.17 70.97* 68.76 66.11 67.40* 
CEs+WEs 76.68 66.82 71.41* 66.95 66.20 66.57* 
CEs+DEs 74.55 71.04 72.75* 70.81 69.09 69.94* 
WEs+DEs 76.82 69.19 72.81* 69.58 69.37 69.47* 
All three 72.75 71.72 71.93* 73.18 69.12 71.09* 

As Tables 5 and 6 demonstrate, combinations that performed 
effectively on training data also work effectively on new types 
of data. In addition, the introduction of deep contextualized 
word representations significantly increased the 
generalizability of both LSTM units and GRUs-based systems 
on both datasets. The differences in F1-score of the baseline and 
the models that include deep contextualized word 
representations are statistically significant at P<0.001. The gain 
in generalizability over the baseline is more significant than the 
gain in performance. The performance increase from the 
baseline to the highest F1-score of LSTM units-based system 
within the 2014 dataset was 1.15, while the increase in the 
performance while going across datasets was 5.13. 
Discussion 
Error Analysis 

The distribution of PHI found by each  
RNN is shown in Table 7. Overall, both RNNs succeeded in 
finding 9,871 entities from the 2014 test set and 9,950 entities 

from the 2016 test set. In contrast, both units missed 1,302 
entities in the 2014 test set and 3,339 entities in the 2016 test 
set. To investigate the strengths and weaknesses of each RNN, 
the number of entities found by only one of the units were 
counted. For example, “only GRUs found” indicates the 
number of PHI entities that all embeddings combinations with 
LSTM units failed to detect, but all embeddings combinations 
with the GRUs could find. These entities can be only found by 
GRUs regardless of embedding types, and they may reveal the 
empirical difference between LSTM units and GRUs. 

Table 7 � Distribution of PHI by RNNs 

 2014 Dataset 2016 Dataset 
Total PHI in the test set 11,462 13,519 
Both found 9,871 9,950 
Both failed 1,302 3,339 
Only GRUs found 243 104 
Only LSTM units found 46 126 

We extracted the sentences that include “only LSTM units 
found” and “only GRUs found” PHI entities and manually 
reviewed their characteristics. In many “only GRUs found” 
PHIs, the entities were directly adjacent to special characters 
such as slashes (/), colons (:), commas (,), and hyphens (-). For 
example, 102 DOCTOR entities, which are typically in the 
form of ‘initial/name1/name2’ or ‘initial:name’, could be found 
only by GRUs-based systems. It appears that GRUs are less 
sensitive to directly adjacent tokens in predicting the label of 
the current token. In contrast, PHI only found by LSTM units 
contain more contextually complex sentences. For example, in 
41 cases, seasons and years (both are in DATE category) in 
sentences such as “healthy until spring of 0314 2126,” “in the 
spring of 2128,” and “in the summer of 2096” could not be 
found by GRUs, but they were detected by LSTM units. 
However, these findings need to be taken with a grain of salt 
given the small sample size. 

Table 8 � Distribution of PHI by Embeddings 

 2014 Dataset 2016 Dataset 
Total PHI in the test set 11,462 13,519 
Found only without CEs 347 175 
Found only with CEs 131 249 

Table 8 indicates the distribution of PHI for deep 
contextualized word representations with both RNNs.  A total 
of 380 PHI entities were additionally found with these 
embeddings. These PHI entities were primarily centered around 
several entity types, such as PROFESSION (19%), HOSPITAL 
(15%), ORGANIZATION (15%), PATIENT (12%), and 
DOCTOR (11%). This distribution differs from the original 
PHI distribution of the test set: PROFESSION (5%), 
HOSPITAL (9%), ORGANIZATION (3%), PATIENT (7%), 
and DOCTOR (14%). From a practical perspective, 
‘PATIENT-DOCTOR’ and ‘HOSPITAL-ORGANIZATION’ 
pairs are difficult to be differentiated from each other because 
of the semantic similarity between these PHI categories. 
Through manual review, we found these PHI entities were in 
complete sentences in most cases. This illustrates that a pre-
trained context function returns better word representations 
when inputs are lengthy and sufficiently informative to make a 
machine understand context. Gains in the 2016 dataset are 
nearly twice as abundant as those in the 2014 dataset perhaps 
because EHRs in the 2016 dataset are more organized and 
structured than those in the 2014 dataset. As a result, the 
sentence detector worked more effectively on the 2016 dataset, 
providing cleaner input to the RNNs.  
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Miscellaneous  

On average, GRUs show higher per-category F1-score on entity 
types CITY, COUNTRY, DOCTOR, HOSPITAL, IDNUM, 
PHONE, PROFESSION, and STATE whereas LSTM units 
perform better on AGE, DATE, MEDICALRECORD, 
ORGANIZATION, PATIENT, STREET, USERNAME, and 
ZIP. Interestingly, deep contextualized embeddings achieve 
higher per-category F1-score than both character and word 
embeddings regardless of entity types. Theoretically, the 
convergence of GRUs-based systems should be faster than 
LSTM units-based systems because GRUs have simpler 
structure and fewer parameters than LSTM units. This was 
confirmed by the experiments. For the 2014 dataset, 
convergence required an average of 37 epochs for the LSTM 
units-based systems, whereas for GRUs-based systems, 
convergence required an average of 28 epochs. Similarly, in the 
2016 dataset, LSTM units required an average of 32 epochs, 
whereas GRUs required 30 epochs. 

Conclusions 
To automate de-identification tasks, de-identification must be 
highly accurate and generalizable. State-of-the-art de-
identification systems are based on RNNs with bi-LSTM units. 
This study investigated avenues for improving the state-of-the-
art by modifying types of recurrent units and embeddings. It 
also investigated how these modifications affect 
generalizability. We found that substituting LSTM units with 
the GRUs cannot significantly improve performance or 
generalizability. However, this does not imply the inferiority of 
GRUs relative to LSTM units on de-identification. GRUs 
outperformed LSTM units in some PHI types and could 
complement LSTM units in an ensemble.  They could also 
converge to optimal parameters faster than LSTM units. The 
introduction of deep contextualized word representations on top 
of character embeddings and word embeddings was certainly 
helpful in increasing both the state-of-the-art performance and 
generalizability. 
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