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Abstract 

We devised annotation guidelines for the de-identification of 

German clinical documents and assembled a corpus of 1,106 

discharge summaries and transfer letters with 44K annotated 

protected health information (PHI) items. After three iteration 

rounds, our annotation team finally reached an inter-annotator 

agreement of 0.96 on the instance level and 0.97 on the token 

level of annotation (averaged pair-wise F1 score). To establish 

a baseline for automatic de-identification on our corpus, we 

trained a recurrent neural network (RNN) and achieved F1 

scores greater than 0.9 on most major PHI categories.  
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Introduction 

Natural Language Processing (NLP) research, in general, has 

greatly benefited from sharing software resources (tools) and 

datasets (corpora, lexical repositories, etc.), as well as 

organizing challenge competitions to evaluate this research 

infrastructure [1]. This role model has also been adopted by 

biomedical NLP [2], including clinical NLP [3]. The i2b2 series 

of competitions1 mark the cornerstone for the development of 

numerous clinical datasets2 and the offspring of specialized 

software solutions3 that shape the current state-of-the-art in 

clinical NLP–yet, for the English clinical language only. Still, 

almost all of these (de-identified) datasets are accessible to the 

international research community under the legal conditions of 

Data Use Agreements (DUA) building on less restrictive data 

privacy law in the US than in many other parts of the world. 

National privacy law in Europe and the General Data Protection 

Regulation (EU) 2016/679 pose a number of obstacles on the 

way to extramural sharing clinical corpora. Yet, the minimal 

prerequisite for all shared clinical corpora is de-identification, 

i.e., the removal of any patient-identifying information from 

clinical data. In Germany, one of the top representatives of a 

particularly restrictive data privacy legislation, the heavily 

funded Medical Informatics research Initative (MII)4 was 

launched recently whose goal is, among others, to empower 

interoperability of and transparent access to data (including 

clinical document corpora) and software resources within and 

across different clinical sites at the national level, in 

conformance with valid data privacy regulations. Our team 

                                                           
1 https://www.i2b2.org/ 
2 Accessible via http://dbmi.hms.harvard.edu/programs/health-care-
data-science-program/clinical-nlp-research-data-sets 
3 Most notably, the cTAKES system: http://ctakes.apache.org/ 

heads the NLP acitivities within one of the four funded 

consortia, Smart Medical Information Technology for 

Healthcare (SMITH)5 [4]. One of the early outcomes of these 

efforts is 3000PA [5], a German-language clinical corpus made 

of 3,000 discharge summaries and transfer notes from three 

national university hospitals located in Jena, Leipzig and 

Aachen. Moreover, we are also involved in developing 

automated workflows for Healthcare Integrated Biobanking 

(STAKI2B2) where de-identification of clinical corpora is a 

prerequisite when it comes to workflow validation across 

different biobanks. In this paper, we report on the de-

identification of a list of protected health information (PHI) 

categories reflecting US law criteria (Health Insurance 

Portability and Accountability Act (HIPAA)),6 and their 

adaptation to national requirements and clinical particularities 

in German hospitals.  

Related Work 

Many systems for automatic de-identification have been 

developed, especially for the English language, but only a few 

large de-identification gold-standard corpora are reported in the 

literature–even fewer are publicly available, typically protected 

by DUAs. In this paper, we report on our efforts in creating a 

de-identification gold-standard corpus for the German 

language. To put this work in perspective, we focus on previous 

work on the creation of corpora annotated with PHI categories. 

For clinical English, several corpora have been compiled and 

annotated for the purpose of de-identification. Building on 

manual de-identification work by Douglass et al.  [6; 7], 

Neamatullah et al. [8] assembled an automatically de-identified 

gold-standard corpus of 2,434 nursing progress notes of 

patients from intensive care units collected in the MIMIC II 

project [9]. The final corpus consists of almost 340K tokens, 

contains 1,779 instances of PHI and is available on PhysioNet.7 

Two different gold-standard corpora for de-identification were 

assembled for the i2b2 de-identification challenges in 2006 and 

2014. For the first challenge [10], 889 medical discharge 

summaries consisting of almost 550K tokens were annotated 

semi-automatically, with almost 20K instances of PHI. For the 

second challenge [11], a corpus of 1,304 longitudinal medical 

records consisting of more than 800K tokens was annotated, 

with more than 28K PHI items. The authors report an averaged 

token-based F1 score of 0.927 between the annotators and the 

gold standard. For the CEGS N-GRID shared task on de-

identification [12], a corpus of 1,000 psychiatric intake records 

4 http://www.medizininformatik-initiative.de/ 
5 http://www.smith.care/?lang=en 
6 https://www.hhs.gov/hipaa/index.html 
7 https://www.physionet.org/  
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consisting of more than 1,8M tokens was annotated, with more 

than 34K PHI instances. Token-level agreement of 0.91 F1 

score between the annotators and the gold standard was slightly 

worse than for the i2b2 annotation campaign in 2014. After 

surrogate replacement, all three challenge corpora were made 

publicly available via DUAs. The 2006 i2b2 corpus (training 

set) and a carefully genre-balanced corpus from the Veterans 

Health Administration (800 documents, with 5.5K PHI items; 

test set) formed the basis for an “out-of-the-box” evaluation of 

five operational text de-identification systems [13]. 

Deléger et al. [14; 15] annotated 3,503 clinical notes of more 

than 22 different types (more than 1M tokens) with about 30K 

PHI. They report an inter-annotator agreement of 0.92 F1 score. 

In a later publication [16] they modify the corpus such that it 

can be shared for research purposes. Similar annotated corpora 

(albeit not always publicly available) exist for a few other 

languages, such as French [17] and Swedish [18; 19]; synthetic 

(fictional) data were created for Japanese [20]. 

Unfortunately, no shareable de-identified corpus exists for the 

German language–in general, there has been only little work on 

the de-identification of German clinical data. Seuss et al. 

evaluate a commercial de-identification tool on German clinical 

reports [21] and to this end assemble a large semi-automatically 

annotated corpus. They manually correct the output of the tool 

on 1,400 documents  consisting of 5M tokens, identifying more 

than 23K PHI items (in nine categories pre-defined by the tool), 

and report high recall values for the system. However, the 

manual annotation process is tightly coupled with the tool and 

there is no evaluation of inter-annotator agreement between the 

three human annotators. Recently, Richter-Pechanski et al. [22] 

presented a de-identification tool that combines an off-the-shelf 

named entity recognizer (German Stanford NER tool, retrained 

on non-medical data), regular expressions and gazetteers with 

spelling variation detection. For evaluation purposes, they 

annotated a set of 15 notes (~ 14K tokens) with ten different 

categories, identifying 680 PHI entities overall.  

Manual Annotation 

In this section, we describe in detail the manual annotation 

campaign we conducted: our data, annotation guidelines, 

evaluation measures, the rationale for several annotation 

iterations, and the final annotated corpus. All annotations were 

created using the Brat Rapid Annotation Tool (BRAT) [23]. 

Data 

Annotations were based on the Jena slice of the 3000PA corpus 

[5], a collection of 1,106 discharge summaries, short summaries 

and transfer letters. All documents were extracted from EPRs 

of deceased patients (due to privacy concerns) who were treated 

in either internistic or ICU units for at least five days between 

2010 and 2015. The extraction included a conversion from a 

proprietary data format to plain text (for details see [24]). Our 

work on this data was approved by the local ethics committee 

(4639-12/15) and the Data Protection Officer of the Jena 

University Hospital. 

Annotation Guidelines 

Our annotation guidelines are based on the 18 PHI categories 

defined in HIPAA and subsequent manual and automatic 

annotations of these PHI types, most notably as part of the i2b2 

de-identification challenges [10-12; 25]. We iteratively 

developed and updated our guidelines in three preliminary 

                                                           
8 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/  

annotation rounds, adjusting them to our data, common clinical 

requirements and the particularities of the German language. 

The final guidelines define eight broad categories, three of 

which are further divided into more specific annotation types: 

• Age: age of patient or relative (any age) 

• Contact: URL, IP address, email, phone or fax number  

• Date: any date (excluding single days of the week and 

times of the day) 

− Birthdate: date of birth 

• ID: any ID or code (patient id, medical record number, 

codes with unknown semantics that might be PHI)  

− Typist: shorthand symbols for medical typists 

• Location: place names (mainly addresses, including 

street, house number, zip code, city, district, state) 

• MedicalUnit: medical units (hospital names, names of 

hospital departments and ambulant medical units) 

• Person: names of persons 

− Patient: patient names 

− Relative: names of relatives 

− Staff: names of medical staff 

• Other: any remaining PHI 

Each category is also an annotation type by default; thus, we 

come up with 13 annotation types. Annotators were required to 

select only the most specific applicable type for each entity. For 

instance, if they found the name of a physician, they were 

instructed to assign it the type Staff, not Person. Only if the 

context was unclear about whether a name belongs to a patient, 

a relative or a member of staff, or if the person denoted by a 

name belongs to neither of these three groups, the annotators 

were instructed to assign it the generic Person type. 

Our scheme collapses several of the HIPAA-defined types of 

PHI because they are infrequent or indistinguishable in our 

data: ID comprises social security, medical record, account, 

certificate/license, patient-related serial numbers, and any 

numbers or codes that may directly or indirectly identify a 

patient or member of staff. Since we work with plain texts, we 

dropped the category for photographic images. On the other 

hand, we introduced some more fine-grained distinctions, e.g., 

between names of patients, relatives and staff. The Typist 

category was introduced after the second pre-iteration (see 

below) to resolve systematic disagreement among annotators. 

Evaluation Measures 

In the following, we report inter-annotator agreement (IAA) as 

pair-wise averaged F1 score [26], both on instance level and on 

token level. An instance is a single annotation, possibly 

spanning multiple tokens, e.g., “Jane Smith” denotes one 

instance of a patient’s name comprised of two tokens. Tokens 

are based on the tokenization script of the TreeTagger8 with 

minor post-processing. To obtain token-based agreement, we 

annotate each token overlapping with an annotation with the 

annotation’s type, sub-token annotations are expanded to full 

tokens. Due to missing spaces, we got two annotation types per 

token in 13 cases–we kept both annotation types for each of 

these tokens when calculating agreement, but used only one as 

input to the classifier described in the second part of this paper. 

Annotation Iterations 

We ran three preliminary annotation iterations (summarized in 

Table 1) before we started the final annotation project. Iterated 

annotation rounds for building de-identification gold standard 

corpora have also been suggested by Browne et al. [27] as a 

strategy to cope with the complexities of this task that are 

T. Kolditz et al. / Annotating German Clinical Documents for De-Identification204



meticulously described in their paper. The number of 

annotations in this table includes redundant annotations from 

different annotators on the same documents. In the first 

iteration, eight medical students and two physicians worked on 

the full set of 1,106 documents, covering all protected health 

information with generic annotations according to a first set of 

guidelines based on the list of PHI items defined in HIPAA and 

the i2b2 de-identification challenges [11; 25]. We automatically 

pre-annotated dates with a regular expression covering standard 

numerical date representations. Annotators at this stage could 

focus on finding PHI items in the text and were not supposed to 

categorize them. These first annotations were intended to serve 

as pre-annotations for later iterations (ensuring that each 

document was checked for false negatives at least twice) and 

formed the empirical basis for a refined set of annotation 

guidelines. After a qualitative analysis of the results, we further 

specified the extent of each annotation type, defined a list of 12 

types of PHI (the types listed in the previous section, excluding 

Typist) and added illustrative examples for each category. 

Table 1 – Annotation iteration setups and results 

Annotation Pre-1 Pre-2 Pre-3 Final 

# documents 1,106 25 12 1,106 

# agr. docs 0 25 12 50 

# annotators 10 4 4 5 

# ann. types 1 12 13 13 

# annotations 40,664 4,347 2,556 51,814 

Avg. F1 (token) - 0.91 0.96 0.97 

Avg. F1 (inst.) - 0.87 0.92 0.96 

Using simple patterns and keywords, the generic annotations 

from the first iteration were automatically categorized 

according to the new guidelines. These data served as pre-

annotations for the second iteration in which four medical 

students each worked on the same set of 25 pre-annotated 

documents. Their task was to identify missing PHI items and 

correct both extent and type of the existing annotations. They 

achieved an inter-annotator agreement of 0.87 (σ = 0.02) on 

instance level and 0.91 (σ = 0.02) on token level.  

To further train our annotators and achieve even higher 

agreement values, a third pre-iteration was conducted with four 

annotators (one of the previous annotators had to leave the team 

temporarily and was replaced by a new annotator). We defined 

an additional category, Typist, for shorthand symbols 

                                                           
9 Shorthand symbols or initials denote persons but are different from 
typical person names. 
10 The fourth annotator received 12 new documents. 

identifying medical typists to resolve the ambiguity between ID 

and Person9 and added more examples to the annotation 

guidelines to resolve cases of systematic disagreement among 

annotators. Each annotator was provided with six documents 

with annotations he or she had created in the previous iteration10 

and six documents with semi-automatically generated pre-

annotations. Inter-annotator agreement improved on both the 

old and the new documents. For the full set of documents, the 

averaged pair-wise F1 score reached 0.92 (σ = 0.04) on instance 

level and 0.96 (σ = 0.02) on token level. 

For the main annotation, five annotators worked on the 1,106 

Jena documents of 3000PA. A subset of 50 documents (cf. 

Table 1, ‘# agr. docs’) was annotated by all five annotators and 

served as the basis for the computation of IAA which improved 

further to 0.97 (σ = 0.01) on token level and 0.96 (σ = 0.01) on 

instance level. We also noticed an increase in IAA within the 

final annotation hinting towards a training effect over time. 

Final Corpus 

The final corpus consists of roughly 1.4M tokens for which our 

annotators created more than 44K annotations, excluding 

redundant agreement annotations.11 Table 2 gives an overview 

of instance and token frequencies by annotation type for the 

entire corpus, as well as instance- and token-level agreement by 

annotation type on 50 multiply annotated agreement 

documents. Looking at the instance frequencies, we notice that 

almost half of the PHI items in our corpus are dates, followed 

by medical units, locations and staff names, each accounting for 

more than ten percent of all annotations. The large share of 

dates is partially a consequence of our broad definition of Date 

which only excludes days of the week without month or year 

and times of the day. At the other end of the frequency 

spectrum, we find the generic types Person and Relative. The 

fact that only few instances fall under the Person category 

indicates that most names could be assigned unambiguously to 

either Patient, Relative or Staff. The low frequency of Relative 

is probably an artifact of our data sampling criteria–most of the 

deceased patients were elderly people for which family history 

is less important, hence names of relatives occur rarely. The 

frequency distribution of tokens mirrors that of instances and 

gives information about the average length of each annotation 

type. The share of Dates is lower as they usually consist of only 

one token, whereas instances of the types Location, 

MedicalUnit and Staff often span multiple tokens, raising their 

relative frequency at the token level.  

11 Of all annotations created for the 50 multiply annotated agreement 
documents, the final corpus only contains those created by the annota-
tor who achieved the highest IAA. 

Table 2 – Number of instances and tokens per annotation type in the final corpus. Instance-level and token-level agreement (Avg. F1) 

on 50 multiply annotated agreement documents. 

Category Type Instances Tokens 

  Frequency Avg. F1 Frequency Avg. F1

Age Age 498 1.00 500 1.00 

Contact Contact 613 0.97 2,009 0.98
Date Date 20,603 0.98 24,277 0.99
 Birthdate 1,103 1.00 1,103 1.00
ID ID 398 0.81 424 0.82
 Typist 655 0.86 1,418 0.93
Location Location 5,429 0.98 11,286 0.99
MedicalUnit MedicalUnit 6,189 0.90 12,499 0.95
Person Person 14 - 23 -
 Patient 3,180 0.99 5,167 1.00
 Relative 36 0.80 62 0.88
 Staff 5,231 0.95 10,003 0.97
Other Other 218 0.28 271 0.26

Total * 44,167 0.96 69,042 0.97
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Instance and token-level agreement lie between 0.8 and 1 for 

most annotation types. However, for Relative, Other, and ID 

each annotator found 11 or less instances on average. These 

values thus cannot be considered reliable. Person occurred 14 

times in the whole corpus, none of these occurrences are in the 

50 agreement documents. Low agreement for Other does not 

come as a surprise (independent of IAA reliability problems), 

as annotators were supposed to assign this category whenever 

they found information that they considered confidential, but 

could not match with any other annotation type. This vague 

definition led to a number of varying subjective judgements. 

For many annotation types (especially MedicalUnit, Typist, and 

Staff), token-level agreement is higher than instance-level 

agreement, indicating that there is disagreement about the exact 

extent of some annotations: partially overlapping annotations 

raise agreement on token level, but not on instance level. We 

also observe cases where one annotator decided to create one 

long annotation while another one created two short ones 

covering the same tokens. For the task of de-identification, the 

latter kind of disagreement is less severe, as we are mainly 

interested in covering all sensitive information. 

Automatic De-Identification 

In order to provide a first baseline for automatic de-identifica-

tion on our annotated data and to submit the quality of our an-

notations to an empirical test, we trained and evaluated a neu-

ral network for named entity recognition (NER) designed by 

Sterbak [28] on the final corpus. 

Methods 

We randomly sampled 80% of the documents for training and 

used the remaining 20% as test set. Splitting the corpus on 

documents rather than sentences ensures a representative share 

of out-of-vocabulary (OOV) tokens. We provide only tokens 

and characters as input. The network employs a unidirectional 

LSTM [29] to learn word representations based on character 

embeddings. These character-based representations are 

concatenated with word embeddings (all embeddings were 

initialized randomly). The resulting complex word 

representations serve as input to a bidirectional LSTM. At each 

timestep, the output of the bidirectional LSTM is fed into a 

densely connected layer of units with a softmax activation 

function. Each unit of the last layer represents one possible 

classification result (the annotation types and an additional 

outside tag, O, for non-PHI data). The softmax function 

provides a probability distribution over these possible results. 

For each token, we predict the type with maximal probability.  

To obtain reliable results despite randomly initialized weights, 

we train five different models on the same train-test split. We 

compute standard NER evaluation measures for each model and 

report averages over all five models. Additionally, we 

determine the percentage of OOV tokens for an annotation type 

T, that is, tokens that occur in the test set labeled as T, but do 

not occur in the training set with the same annotation type T. 

Results 

Table 3 yields the classifier’s precision, recall and F1 score on 

the test set, as well as the support (the number of expected 

occurrences) and the percentage of OOV tokens for each 

annotation type and the outside tag (O). Totals are averages 

over all types weighted by support. For most annotation types, 

we achieve F1 scores between 0.88 and 0.98. 14% of all PHI 

tokens are OOV, whereas only 4% of all tokens are OOV. 

Disregarding confusions between different PHI types and only 

considering the binary distinction between PHI and non-PHI, 

the classifier achieves a precision of 0.98 and a recall of 0.96.  

Table 3 – Automatic de-identification results on the test set: 

token-level precision, recall, and F1 score, support and 

percentage of out-of-vocabulary tokens per annotation type. 

Type Prec Rec F1 Supp OOV 

Age 0.885 0.910 0.897 89 25% 

Birthdate 0.959 0.992 0.975 222 68% 

Contact 0.966 0.945 0.956 435 7% 

Date 0.959 0.970 0.964 4,969 15% 

ID 0.693 0.385 0.480 95 91% 

Location 0.977 0.940 0.958 2,188 11% 

MedicalUnit 0.967 0.938 0.952 2,424 4% 

O 0.998 0.999 0.999 269,337 3% 

Other 0.592 0.384 0.463 63 46% 

Patient 0.952 0.962 0.957 990 35% 

Person 0.000 0.000 0.000 5 80% 

Relative 0.000 0.000 0.000 16 100% 

Staff 0.975 0.961 0.968 2,015 7% 

Typist 0.898 0.862 0.879 245 12% 

Total 0.996 0.996 0.996 283,093 4% 

Total w/o O 0.959 0.947 0.952 13,756 14% 

Discussion 

We observe a clear drop in performance for smaller classes, 

especially ID, Other, Person, and Relative. The latter two 

together contribute only 85 tokens in the whole corpus, 21 of 

which are in the test set. So, we cannot expect the network to 

learn these rather difficult types. The confusion matrix reveals 

that, on average, around 43 out of 95 ID tokens were 

misclassified as Dates which suggests that the internal 

representations learned by the network are rather shallow–

combinations of digits and punctuation marks may be IDs or 

Dates depending on the context–and to a large extent explains 

the low recall for ID. Furthermore, we find that low IAA scores 

are reflected in the classifier’s performance for Other and ID. 

The overall F1 score (without the outside tag O) is slightly 

below the token-level results reported by Stubbs et al. [25] 

where the best system achieves an F1 score of 0.961 for the 

i2b2-PHI categories and 0.976 for the HIPAA-PHI categories. 

However, this comparison has to be taken with a grain of salt 

since both our annotation types and the data are different. The 

percentage of OOV tokens in the last column of Table 3 gives  

an idea about the recall a lazy learner might achieve by just 

remembering tokens occurring in the training set. Since our 

dataset stems from two units of a single hospital, the percentage 

of OOV tokens for MedicalUnit and Staff is low which puts the 

results for these types into perspective. For Patient, we observe 

a high percentage of OOV tokens, but for this type of PHI we 

sometimes find clear contextual cues (e.g., German equivalents 

of Mr. or Ms./Mrs.) which facilitate automatic recognition. 

Conclusions 

We annotated 13 PHI categories on the Jena slice of the 

German-language 3000PA corpus (1,106 documents) based on 

annotation guidelines that evolved over three annotation pre-

iterations. The annotation process ensured that each document 

was checked twice for PHI and high inter-annotator agreement 

scores suggest that the resulting annotations are of very good 

quality. The neural baseline model we trained on the final 

annotated corpus achieved promising results, indicating that the 

annotation types defined in our guidelines lend themselves well 

to a data-driven approach to automatic de-identification. Future 

work will be directed at incorporating the 1,000 document 
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slices from the other two clinical sites, Leipzig and Aachen. 

With these more heterogeneous data, the classifier will be 

further tuned to maximize recall while ensuring generalizability 

to provide reasonable input for the planned pseudonymization 

engine as a resilient basis for the DUA-controlled distribution 

of a large corpus of German clinical documents. 
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