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Abstract 

Although a number of foundational natural language 

processing (NLP) tasks like text segmentation are considered 

a simple problem in the general English domain dominated by 

well-formed text, complexities of clinical documentation lead 

to poor performance of existing solutions designed for the 

general English domain. We present an alternative solution 

that relies on a convolutional neural network layer followed 

by a bidirectional long short-term memory layer (CNN-Bi-

LSTM) for the task of sentence boundary disambiguation and 

describe an ensemble approach for domain adaptation using 

two training corpora. Implementations using the Keras 

neural-networks API are available at 

https://github.com/NLPIE/clinical-sentences. 
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Introduction 

In contrast to general English, clinical notes have significant 

differences in structure and content. For instance, clinical text 

often contains units of thought that fit the technical definition 

of sentences that are not terminated by the standard sentence 

boundary symbols or any symbols in many cases. Structures 

such as labels, section headers, text arranged in tables, and 

lists are examples of clinical text that do not follow general 

English rules for sentence termination. Furthermore, clinical 

text contains a disproportionately high number of acronyms, 

abbreviations, and ordinal numbers frequently decorated with 

punctuation symbols and containing variable capitalization. 

Segmentation errors caused by these ambiguities are magni-

fied in downstream processing.  

Previous research has shown that transfer learning in deep 

networks can improve generalization to tasks of related prob-

lems with small data sets [1]. Ensemble methods that engage 

in meta-learning through weighted voting models such as 

boosting, bagging, and stacking also reduce the generalization 

error over standard models [2]. We utilize transfer learning 

both in the use of word embeddings, and in our method for 

domain adaptation of models trained on one corpus to a differ-

ent, but related corpus of clinical text. 

Sentence boundary disambiguation (SBD), also known as sen-

tence segmentation or sentence boundary detection, is a well-

understood and explored problem in the domain of general 

English text. In well-formed general English text, most sen-

tences are terminated by sentence boundary symbols. Ambigu-

ities caused by acronyms, abbreviations, quotations, and ordi-

nal numbers are handled by further rules, or by statistical 

methods such as maximum entropy classification of bounda-

ries. Using these methods on general English text results in 

accuracy performance above 95% [3]. Relying on sentence 

boundary symbols for SBD on the entire text of a clinical doc-

ument leads to errors in detecting non-terminated sentence 

boundaries [4]. Although deep learning is the prevailing ap-

proach for many machine learning problems, it remains under-

utilized in clinical applications, and the generalizability of 

clinical applications using current approaches is limited [5]. 

In this paper we report on applying deep neural network 

methods with the use case of sequence labeling to the SBD 

problem on the entire text of clinical notes with no prepro-

cessing or cleaning. We show that an architecture consisting 

of word embeddings enriched with character information run 

through a bi-LSTM have high accuracy in detecting sentence 

boundaries. We also explore the generalization problem of 

using a trained model for SBD on previously unseen text using 

several implementations, including combining training data, 

resuming training with data from the new corpus, and a stack-

ing method where the hidden layer results of two models 

trained separately on both corpora are summed before predic-

tion using a shared prediction layer. We show that the stacking 

method has the lowest generalization error with 96% F1 score 

for beginning of sentence tags.  

Methods 

Sentence Segmentation 

SBD is often the first step in solving any problem using natu-

ral language processing (NLP). Availability of sentence 

boundaries is necessary both for many general language tasks, 

such as part-of-speech tagging and parsing, and for domain-

specific analytical tasks such as document classification. Er-

rors in sentence detection tend to propagate to many other 

areas in a system making sentence accuracy critical for any 

downstream tasks in a text analysis system. 

In Table 1, some examples of text from Fairview Medical 

Services notes where sentences are not terminated with sen-

tence boundary symbols are shown. 
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Table 1 – Examples of sentences without termination 

Text 

RECOMMENDATIONS FOR MDs/PROVIDERS 

TO ORDER: 

Recommendations already ordered by Registered 

Dietitian (RD): 

Calorie counts reordered 

Diet: dysphagia diet level 2 mechanical, thin liq-

uids, magic cup between meals, Nepro between 

meals 

Pt reported his appetite is getting better, he likes the 

supplements 

(+) No chance of pregnancy C-spine cleared: N/A, 

no H/O Chronic pain,no other significant disability

There are several existing commonly used implementations of 

SBD that rely on or expect sentence boundary symbols and 

perform poorly in their absence. Stanford CoreNLP [6] pro-

vides a rule-based algorithm, which makes decisions based on 

the results of a tokenizer to disambiguate whether sentence 

boundary symbols indicate sentence splits. Natural Language 

Toolkit (NLTK) [7] implements SBD using a method that 

combines rules for sentence boundaries with an unsupervised 

algorithm for the detection of acronyms and abbreviations, a 

common source of errors in SBD [8]. The Apache OpenNLP 

toolkit [9] and Apache cTAKES [10] provide SBD based on 

the maximum entropy method described in Reynar, et. al [3]. 

Previous evaluations have looked at the performance of SBD 

and have noted the difficulty of the task in the domain of clin-

ical notes and have noted the performance issues on non-

terminated sentences [4]. 

Approaches to the NLP problem of sequence tagging are well-

suited for the SBD problem—which can be expressed as a 

tagging task where words beginning sentences are tagged ‘B’ 

and words internal to sentences are tagged ‘I’. The architec-

ture for sequence tagging involving recurrent neural networks 

(RNNs) has shown good results when applied to the tasks of 

part-of-speech (PoS) tagging and named entity recognition 

(NER) [11], and improvements were shown when character 

information is combined with word embeddings via a convo-

lutional neural network (CNN) [12].  

Dataset 

Source Corpora 

We created two source corpora for the sentence detection task. 

The first dataset was drawn from the MIMIC-III (Medical 

Information Mart for Intensive Care) corpus [13], which is a 

de-identified corpus of notes associated with 40,000 intensive 

care unit patients at the Beth Israel Deaconess Medical Center 

between 2001 and 2012. Our MIMIC corpus consisted of 749 

randomly sampled notes. A second, target dataset was drawn 

from the Fairview Health Services (FV) EHR system. We 

used a stratified sampling strategy, in which we created batch-

es of 56 notes made up of 16 inpatient notes and 40 outpatient 

notes. The inpatient notes were selected proportional to the 

distribution of note type (Table 2) and the outpatient notes 

were selected proportional to the distribution of department 

(Table 3). A total of 952 notes from FV were used, 17 com-

plete batches. MIMIC notes were in plaintext while FV notes 

were converted from RTF to plaintext using the BioMedICUS 

system [14]. The MIMIC corpus used in this study contains a 

total of 315,797 tokens, and the FV corpus contained 415,112 

tokens. 

 

Table 2 – Inpatient note types per FV batch 

Note Type Number 

Progress Note 3 

Plan of Care 3 

ED Notes 2 

8 other note types 1 each

Table 3 – Outpatient note departments per FV batch 

Note Type Number 

Family Medicine 5 

Internal Medicine 4 

Pediatrics 3 

Obstetrics and Gynecology 3 

Hematology and Oncology 3 

Urgent Care 3 

Physical Therapy 3 

Cardiovascular Disease 3 

13 other departments 1 each

Manual Annotation of Sentences 

The manual annotation of sentences was performed in the 

BRAT Rapid Annotation Tool [15] by a pair of trained anno-

tators. Annotators were instructed to label all complete 

thoughts, section headers, item labels, list items, and frag-

ments using a “Sentence” annotation. For any data that was 

not groupable into sentence-like units (e.g., purely numeric 

tables, lists of laboratory data, lines of vital signs measures, 

and metadata tables such as those in header information), or 

for any other areas of text for which annotators had low confi-

dence in their ability to correctly label sentences, annotators 

were instructed to use an “Unsure” annotation. After sentences 

were manually annotated, the documents were tokenized and 

converted to tagged sequences where ‘B’ was applied to the 

first token in every sentence, ‘I’ was applied to the rest of the 

tokens in the sentence, and ‘O’ was applied to all the tokens in 

the “Unsure” category. 

Cross-validation structure 

To evaluate generalization error, a cross-validation structure 

was used where 100% of the MIMIC data was used for cross-

validation with 80% as a training split and 20% as a validation 

split; for the FV data 50% was used for cross-validation (again 

using an 80-20 training-validation split) and 50% was held out 

as an unseen test corpus. For architecture and hyper-parameter 

tuning, the MIMIC validation split was used. The FV cross-

validation set was used for training models alone or augment-

ing MIMIC-trained models. During training, the validation 

data was used to provide validation loss as an estimation of 

generalization error to determine when the model has stopped 

improving and training could be halted. 

Model Architecture 

Words were tokenized according to rules that split whenever 

any whitespace, any symbols, or any digits are encountered. 

Words were represented using a 300-dimension word embed-

ding trained using the Facebook fastText software package 

[16] on the entire MIMIC-III corpus preprocessed to replace 

any symbols with spaces, to replace digits with their English 

names in separate words, i.e. “1.23” to “one two three”, and to 

lowercase all letters. These word embeddings are enriched by 

summing with the results of a convolutional neural network 

(CNN) on 30-dimension character embeddings which are 

learned during training on the SBD tagging task. The CNN is 

made up of one convolutional layer with 300 filters, each 

looking at the sequences of the embeddings of four characters, 

followed by global max pooling. The results of the CNN func-
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tion as an adjustment vector to the original word vector for the 

sentence tagging task. The input of the character CNN is all 

characters of the word (including symbols and whitespace) 

along with a context of up to seven characters between the 

previous word and the word; and up to seven characters be-

tween the word and the next word. Special characters were 

inserted for the end of the previous word, the beginning of the 

next word, the beginning and end of the word, as well as the 

beginning and end of the document if those fell into the con-

text. Using all the original characters, including whitespace, 

allows structural information about the document’s formatting 

to be used for SBD decisions. After the word representation is 

constructed the results are batch-normalized before passing to 

the next layer. The architecture of the word representation 

layer is shown in Figure 1. 

Figure 1 – Word Representation Layer 

To encode contextual word representations, we use a bi-

directional long short-term memory (LSTM) layer. LSTM 

units are iteratively run on time-series data (sequences of 

words in the case of text), maintaining an internal cell state as 

it moves from one input to the next. LSTMs are optimized 

during training to learn what information is important to re-

member from previous inputs to the cell. A LSTM layer is 

parameterized by the number of LSTM units, each contrib-

uting one output dimension. In a bi-directional LSTM layer, 

the inputs are run both ways through the layer, with one set of 

LSTM units responsible for seeing the data in order and one 

set responsible for seeing the data in reverse. Dropout and 

recurrent dropout [17] were used to provide regularization of 

the learned weights and prevent overfitting. The results of the 

bi-LSTM layer are batch-normalized before being passed to 

the inference layer. In Figure 2, computation of a bi-LSTM on 

time series data is shown, each node labeled LSTM-F and 

LSTM-R is the same set of units at different points in the time 

series, and the lines drawn between nodes represent the propa-

gation of internal memory states to the next item in the time 

series. The outputs from the forward and backward LSTMs 

are concatenated to a single contextual word representation, an 

embedding of the word and surrounding words. 

 

Figure 2 – Bi-directional LSTM 

After the bi-directional LSTM layer, a sigmoid-activated 

dense NN prediction layer is used on each contextual word 

embedding to output the log-probability that the word is the 

beginning of a sentence. Lasso or L1-norm regularization was 

used on the weights of the prediction layer to prevent overfit-

ting. The complete graph of our architecture is shown in Fig-

ure 3. 

 

Figure 3 – Complete Model Graph 

Domain Adaptation 

In addition to using models trained on each individual corpus, 

we evaluated three methods for domain adaptation of models 

trained on MIMIC to the FV hold-out test set. First, we looked 

at merging the cross-validation data from both corpora. Sec-

ond, we looked at resuming training of the network trained on 

the MIMIC cross-validation data with the FV cross-validation 

data. Third, we looked at using an ensemble stacking method 

for transfer learning where the hidden-layer contextual word 

representations of the network trained on MIMIC were 

summed with the contextual word representations of a new 

network before the sigmoid dense NN prediction layer. In this 

architecture the output of the second network functions as 

corrections to the first network for the FV training data. This 

stacked network architecture is shown in Figure 4. 

 

Figure 4 – Ensemble of Two Networks 

Training 

Based on the results of tuning using CV on the MIMIC cor-

pus, we selected the gradient descent variant ADAM (Adap-

tive Moment Estimation) [18] as the optimizer of network 

weights. During training, only models that were improvements 

on validation loss were saved, and after 5 epochs with no im-
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provement training was terminated. Binary cross-entropy loss 

was used for training, and loss values were weighted by the 

ratio between the target tag probability and an equal distribu-

tion of tags, shown in the equation in Figure 5. Mini-batching 

was used for training, sequences of 32 words were batched 

into groups of 32 for gradient optimization. 

����ℎ������ =
��	
��������

�������� × ��	
��������
 

Figure 5 – Weighting of classes 

Results 

Manually Annotated Corpora 

On an overlap of 100 MIMIC notes annotated by both annota-

tors, ignoring “Unsure” annotations, the Cohen’s kappa of 

Sentence annotations was computed as 0.957 using the irr 

library in R version 3.4.4. The agreement between annotators 

on “Unsure” annotations was 0.646. After conversion, on the 

subset of 100 notes labeled by both annotators Cohen’s kappa 

was 0.71 for all tags and 0.95 after excluding items labeled as 

‘O’ by either annotator. Tables 4 and 5 describe the distribu-

tion of ‘B’, ‘I’, and ‘O’ tags after this conversion. 

Table 4 – Distribution of Tags in MIMIC 

Tag Count Percentage 

B 

I 

O 

23,648 

200,272 

91,877 

7.5% 

63.4% 

29.1% 

Table 5 – Distribution of Tags in FV 

Tag Count Percentage 

B 

I 

O 

43,636 

336,018 

35,458 

10.5% 

80.9% 

8.5% 

In both source corpora, sentences not terminated by sentence 

boundary symbols are highly prevalent. Section headers and 

text labels were common and often ended by the colon sen-

tence boundary symbol. Table 6 shows the quantity of sen-

tences terminated by each symbol. 

Table 6 – Sentence Termination Type 

Type MIMIC FV 

Period 12,698 (53.7%) 13,619 (31.2%)

Exclamation Point 4 19 

Question Mark 24 (0.1%) 261 (0.6%)

Semi-colon 48 (0.2%) 10 

Colon 4,855 (20.5%) 6,180 (14.2%)

Quotation 4 58 (0.1%) 

No symbol 6,018 (25.4%) 23,506 (53.8%)

Evaluation of SBD Approaches 

For our evaluation we ignored all tags that were labeled as ‘O’ 

both during training and during evaluation. Thus, the recall, 

precision, and F1 for ‘B’ and ‘I’ are symmetric, every false 

positive ‘B’ is a false negative ‘I’ and every false negative ‘B’ 

is a false positive ‘I’. We’ve reported only the ‘B’ scores as 

they are directly proportional to the overall accuracy of de-

tected sentences. The best architecture and hyper-parameter 

tuned models from cross validation achieved 98.6% F1 on 

both ‘B’ and ‘I’ tags on the MIMIC validation set and 99.2% 

F1 on ‘B’ and ‘I’ tags in the FV validation set. 

We evaluated our implementation of SBD against the 50% FV 

hold-out data set (476 notes). In addition to the architecture 

described above, we evaluated a maximum entropy / logistic 

regression classifier (listed as LR) using optimization of a 

sigmoid-activated dense NN layer on an input of 7 characters 

before, at the beginning, at the end, and following every word. 

This is an approach like, but not as tuned as individual imple-

mentations of maximum entropy SBD. The primary metrics 

used for evaluation were the precision, recall, and F1-score for 

the beginning of sentence class tag.  

In addition to models trained on MIMIC and FV individually, 

we evaluated three methods to test generalizability against the 

FV test corpus. The models trained solely against one corpus 

are listed as “MIMIC” and “FV.” The results of a model 

trained on a both corpora’s cross-validation set combined are 

listed as “MIMIC+FV.” The continued training of one net-

work is listed as “MIMIC then FV” and the ensemble model is 

listed as “Ensemble.” Results of these evaluations are show in 

Table 7 with best results in bold. 

Table 7 – ‘B’ Tag Accuracy Against FV Hold-out 

Method Precision Recall F1 

LR-MIMIC 0.511 0.840 0.636

LR-FV 0.650 0.948 0.771

MIMIC 0.829 0.971 0.895

FV 0.923 0.991 0.956

MIMIC+FV 0.919 0.995 0.956

MIMIC then FV 0.910 0.992 0.949

Ensemble 0.933 0.989 0.96 

Discussion 

The complexity, grammatic idiosyncrasies, and domain varia-

bility of clinical text lead to significant hurdles in designing 

and training generalizable models for NLP tasks. This com-

mon challenge necessitates the use high-capacity, complex 

machine learning models such as the deep neural network ap-

proach described here. Leveraging transfer learning and do-

main adaptation, such as the ensemble method used here, is an 

important tool to regularize models created from smaller do-

main-specific corpora with data from external corpora. In the 

SBD task, the clinical-specific structuring of sentences in our 

target corpus led us to applying these approaches. 

In all experiments, recall was higher than precision, which can 

be explained by the class weighting structure. Models are pe-

nalized much higher for missing a ‘B’ tag than for replacing 

an ‘I’ with a ‘B’ tag, leading to models being overeager in 

splitting sentences. Adaptation of models trained on one cor-

pus to another corpus of text show clear but relatively small 

losses in performance—we can see that the MIMIC trained 

model has an F1-score approximately 0.06 lower than the FV 

trained model. 

The ensemble method slightly improves the F1 score against 

the other domain adaptation methods, increasing precision at a 

slight cost to recall. The ensemble method was the best per-

forming overall with a 0.96 F1 score on B-tags. This F1-score 

is on par with the 0.957 Cohen’s Kappa inter-rater agreement 

on the MIMIC data that represents a “ceiling” for performance 

of SBD algorithms. As shown in the information about our 

corpora, the FV corpus has different distribution of sentence 

‘B’, ‘I’, and ‘O’ tags than the MIMIC corpus, demonstrating 

that these methods are successful in adapting to a corpus with 

significant syntactic differences. 
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There is a loss in performance in the continued training meth-

od versus the MIMIC+FV method. In this method, weights 

may not be able to recover from sub-optimal positions for 

predicting FV data from the training on MIMIC data. The gra-

dient descent may not be able to find a path from the current 

position of the weights to the more optimal position of weights 

found by the FV-only and the MIMIC+FV trained models. 

Conclusions 

Our study shows that there are improvements in SBD using 

deep networks over using traditional classification methods, 

and that these networks can perform well even against differ-

ent corpora and against corpora with large proportions of sen-

tences that are not terminated by sentence boundary symbols. 

We’ve also shown that transfer learning approaches for do-

main adaptation such as the ensemble model have lower gen-

eralization error than combining training sets or continued 

training. 

Further Work 

The generalization performance gains from using a two-

network ensemble indicate further exploration into meta-

learning and ensemble approaches may be fruitful. Further-

more, usage of this or other transfer learning ensemble meth-

ods with general-domain English corpora included as training 

data for base models remains an unexplored possibility. 

The accuracy of automatically detected sentences can have 

substantial consequences on downstream components in a 

processing pipeline. These benefits are significant on face but 

have not been formally quantified, and these effects are a po-

tential target for future research.  
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