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Abstract 

PICO (Population/problem, Intervention, Comparison, and 
Outcome) is widely adopted for formulating clinical questions 
to retrieve evidence from the literature. It plays a crucial role 
in Evidence-Based Medicine (EBM). This paper contributes a 
scalable deep learning method to extract PICO statements from 
RCT articles. It was trained on a small set of richly annotated 
PubMed abstracts using an LSTM-CRF model. By initializing 
our model with pretrained parameters from a large related 
corpus, we improved the model performance significantly with 
a minimal feature set. Our method has advantages in 
minimizing the need for laborious feature handcrafting and in 
avoiding the need for large shared annotated data by reusing 
related corpora in pretraining with a deep neural network. 
Keywords:  

Natural Language Processing, Evidence-Based Medicine, 
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Introduction  

Evidence-Based Medicine (EBM) is the conscientious, explicit, 
judicious and reasonable use of modern, best evidence in 
making decisions about the care of individual patients [1]. 
However, the evidence base has been growing exponentially. It 
is practically impossible to catch up with the explosion of the 
biomedical scientific literature and realize fast and effective 
evidence retrieval and decision making for EBM practitioners 
[2; 3]. Evidence adoption at clinical practice remains 
suboptimal due to poorly formulated clinical questions, 
ineffective evidence search strategies, and disconnected 
databases preventing access to the best evidence. 
Successfully retrieving relevant evidence begins with a well-
structured question. Thus, the ability to question formulation is 
fundamental to locate and synthesize related resources . PICO 
(Population/problem, Intervention, Comparison, and Outcome) 
is widely adopted for formulating clinical questions to retrieve 
evidence from the literature. PICO stands for : 
P – Population/Problem. What are the most critical 
characteristics of the enrolled population? What is the 
primary disease? 
I – Intervention. What is the primary intervention considered? 
C – Comparison. To what the intervention is compared? 
O – Outcome. What are the anticipated measures, 
improvements or effects? 
The PICO framework is specialized to help break down the 
need for evidence into searchable keywords and to formulate 
answerable research questions [4]. A prior study has shown that 
utilization of the PICO framework can improve evidence search 
against PubMed [5]. However, due to high demands for 
technical skills and medical domain knowledge for using PICO, 
practitioners and the general public who require searching 
evidence may find it either time consuming to incorporate into 

their busy clinical workflow, or difficult to learn.  Automatic 
extraction of PICO statements in the biomedical literature is 
desired to facilitate evidence retrieval, appraisal and synthesis 
by clinicians and the public [6; 7].  
Natural language processing (NLP) in particular promises to 
help us achieve this goal. Previous work has explored the use 
of NLP techniques to identify PICO elements in biomedical 
text. During the last decade, the primary solutions have evolved 
from knowledge-based to statistical-based such as Support 
Vector Machine (SVM) and Conditional Random Field (CRF) 
[8-11]. However, this area has attracted less attention than it 
should have from the NLP community, primarily caused by the 
lack of publicly available, annotated corpora [12], and systems 
almost all heavily rely on laborious handcrafted features 
including those specifically designed to incorporate domain 
knowledge. 
In practice, there also lacks modularized fundamental NLP 
tools to support different aspect of evidence synthesis and 
EBM, such as tools for Named Entity Recognition (NER) to 
recognize PICO elements and their attributes in literature for 
indexing, information extraction (IE) systems for parsing and 
structuring study design and results from free-text literature, as 
well as information retrieval (IR) tools based on the PICO 
framework to support effective searching in literature.  
With rapid advances in neural network and deep learning, 
recent state-of-the-art NLP systems have been developed using 
neural models, including some for the biomedical domain. For 
the Named Entity Recognition (NER) task, the best 
performance is achieved by biLSTM-CRF [13-15]. And 
transfer learning attracts increasing attention to solve high 
demand of large data for training neural networks [16; 17].  
Recently a corpus of 5000 RCT abstracts with multi-level 
annotations of Patient, Intervention, and Outcomes was 
published, enabling new NLP application development for 
EBM research [12]. 
Compared to prior work, our PICO extraction method makes 
the following three significant and innovative contributions. 
First, it is the initial publicly available open-source NLP system 
for recognizing PICO elements and their attributes/measures in 
RCT abstracts. PICO elements are normalized with UMLS 
CUIs (https://github.com/Tian312/PICO_Parser). Second, this 
tool is developed with the minimum human labor but achieves 
comparable and even better performance in some categories: 
only a small size of gold standards is created with high inter-
annotator agreement; only word feature, and no laborious 
handcrafted features, is used. Third, we contribute a method to 
reuse a large related corpus [12] under annotation guidelines 
different from ours to improve our model performance.  

Methods 

Our PICO statement extraction tool processes RCT literature 
following these steps: 1) Named Entity Recognition for PICO 
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elements and attributes; 2) UMLS encoding; 3) XML output 
formatting. An overview of our workflow to develop the model 
and tool is shown in Figure 1. 

 
Figure 1 - Overview of the PICO recognition tool 

development. We compared two optional ways for training the 
LSTM-CRF model (in blue): 1) with random initialization of 

model parameters (green, on the left); 2) “pretrain” the model 
with the same architecture on EBM-NLP corpus, resulting in a 

better parameter initialization. 

Data Collection 

Small Size of Gold Standards from Manual Annotation  

We randomly retrieved 170 RCT publications using indexed 
metadata from the MEDLINE database. Abstracts were 
retrieved from the articles and prepared in brat, a web server 
based collaborative annotation tool [18]. One medical 
professional (ZS) and one informatic researcher (TK) designed 
the annotation guideline for entity and attribution using an 
iterative process. Entity classes included in the annotation: 
Population, Intervention (Comparison is merged with 
Intervention as a subclass), and Outcome, each strictly 
following standard definition from the PICO framework [4].  
The context for PICO elements consists of 2 types of attributes: 
Qualifier, a qualitative description of PICO elements (e.g., 
“difference”, “similar”, “higher”), and Measure, a 
quantitative description of PICO elements (e.g., “138 +/- 13 mg 
daily”). During the annotation process, both annotators 
followed the guideline for asking answerable research question 
[19]: each RCT abstract is first classified into one of 5 common 
clinical question types: Treatment, Prevention. Diagnosis, 
Prognosis, and Etiology, then annotated with PICO elements 
based on research type. Attributes are also identified in order to 
form PICO statements in entity-operator-value triplets. Each 
abstract is annotated at least twice by two annotators in order to 
ensure it strictly follows the guideline. As a rule, annotators 
skip annotating background and implication sections in 
abstracts since those parts do not usually describe study design 
or report objective results. An example annotation interface in 
brat is shown in Figure 2. This step is aimed to create a small 
size of annotation with a high inter-annotator agreement and 
high quality, serving as gold standards and core training set.  
A Related, Large Publicly Available Corpus 

A corpus of 5000 abstracts with multi-level annotation of PIO 
(C is categorized as a subclass in I as well) has recently been 
published by a group of EBM researchers [12] (referred as 
EBM-NLP corpus later in this paper). The annotation was 
generated primarily by laypersons from Amazon Mechanical 

Turk (AMT) and a small part by medical professionals. The 
average inter-annotator agreement is measured by F1 score as 
0.3, 0.18, 0.1 in span annotation and 0.5, 0.6, 0.69 in the 
hierarchical annotation for P, I, O classes, respectively. After 
reviewing this corpus, we decided that this annotated corpus 
cannot be directly used for our task for two major reasons. First, 
the annotation guidelines, primarily in part of defining element 
boundary and granularity, are different. In the EBM-NLP 
corpus, identified PICO tend to be the longest description 
within a sentence. While our guideline is designed to break 
down abstracts into the most basic elements, which can be used 
as “building block” for PICO statements and encoded to 
represent study design and results of each RCT article. For 
example, “Seventy-two consecutive anti-HBe-positive chronic 
hepatitis B patients (59 male and 13 female, median age 41 yr 
)” (PMID 10235220) was annotated as one Population element 
in EBM-NLP. While in our annotation, we recognize 
“consecutive anti-HBe-positive chronic hepatitis B”, “male”, 
“female” and “median age” as 4 independent Population 
entities, and “59”, “13”, “41yr” as measures. Second, as 
aforementioned, the EBM-NLP corpus combines measured 
values descriptive statistics with the PICO terms, while we have 
separated classes. Instead of directly training on this corpus, we 
believe it can be helpful for modeling a similar context as a 
pretrain and guide the next model training on our small gold 
standards. 

 

Figure 2 – Example of our annotation in brat 

Base model learning and pretraining  

We model the task to identify PICO statements, which comprise 
PICO elements and their attributes in the biomedical literature, 
as a sequence labeling task for Named Entity Recognition 
(NER).  NER is fundamental in general text mining, as well as 
in biomedical domain, e.g., recognizing problems, drug names 
in clinical notes, or protein, gene names in literature. As deep 
learning based approaches to this tasks have been gaining 
attention in recent years, NLP researchers now tend to prefer 
those methods over traditional models alone such as Support 
Vector Machine (SVM) or Condition Random Field (CRF) 
since the parameters can be learned end-to-end without the need 
for hand-engineered features [15]. This is particularly true in 
biomedical domain where traditional biomedical NLP systems 
heavily rely on hand-made rules and ontologies in order to 
reach a good performance. Deep learning methods also start 
attracting biomedical NLP researchers. However, these 
approaches are usually built upon large, high-quality labeled 
data, which is expensive to obtain especially in the biomedical 
domain because labeling biomedical text requires special 
medical training.  
To address the lack of training corpus, recent researches start 
focusing on training multi-task models [20], and conducting 
data augmentation or transfer learning [16; 17]. Inspired by 
their work, we explore the feasibility and the potential way to 
overcome such two challenges (i.e., hand-engineered features 
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and large, high-quality data) in a small training set and simple 
feature with the help of the public data. We adopt the 
bidirectional Long short-term memory (LSTM), a kind of 
recurrent neural network as our base model, and decode with a 
linear chain CRF in the output layer (biLSTM-CRF). This 
architecture now achieves state-of-the-art performance in NER 
tasks. The model details are illustrated in Figure 3. We use 
classical “BIO” tags to represent the boundary of terms of 
interest: “O” means it is outside the target terms. “B” represents 
the beginning word, and “I” tags all the inside words. We 
compare the results trained with raw tagging to BIO tagging 
methods. Tagged output for the example in Figure 3 is: 

� Pre-operative/B-Intervention short-term/I-
Intervention pulmonary/I-Intervention 
rehabilitation/I-Intervention for patients … 

 

Figure 3 - Base model detailed architecture. It's used to train 
both PICO recognition model and EBM-NLP corpus. 

The base model is similar to [14], and is also used in EBM-NLP 
corpus paper to generate task baseline for identifying PICO 
span. The dark green in Fig. 3 represents modules learned 
during training. While the light green, namely word embedding 
is pretrained on an entire collection of abstracts on PubMed 
from 1990-2018 using word2vec toolkit [21]. During the 
learning phase, the model first generates a character-based 
representation of each word and concatenate it with pretrained 
word vectors. In other words, each input word is represented by 
two concatenated vectors in both word level and character level. 
In the next step, each sentence as sequenced word vectors is 
then fed into a bidirectional LSTM to extract the contextual 
representation of each word.  

At this step, we can get a likelihood at word level through a 
decoder layer. A significant drawback of optimizing by word-
level likelihood is that it doesn’t consider dependencies 
between neighboring in the sentence. Thus, a CRF layer is 
added to model the entire sentence structure. CRF is a log-linear 
graphical model that additionally considers the transition score 
from one tag to the next. This characteristic makes it a classic 
model in traditional NER tasks. After decoding by CRF, the log 
likelihood is maximized for the entire sentence in order to select 
the best tag for the target word. Like in Figure 3, when the target 
word is “pulmonary”, all the neighbor words in a window are 
considered to generate the tag. Only word features, i.e., word 
vectors and character vectors, are used in this model, without 
any feature engineering.  

Without pretraining, biLSTM in the base model is randomly 
initialized and then optimized using the Adam optimizer. For 
pretraining, we use the entire 5000 abstracts in EBM-NLP 
corpus with “starting span” annotation (only in PICO level, no 
further hierarchical labeling) in the same model architecture, 
and then transfer the learned weights to the PICO recognition 
model. Next, we fine-tune the PICO recognition model to reach 
the best performance. All models are trained using TensorFlow 
(https://www.tensorflow.org/). 

Concept Normalization and Output Structuring 

We select the best model as the backend support of our PICO 
recognition tool. Given one or a set of free text abstracts as 
input, the tool automatically recognizes Patient, Intervention 
(including Comparison), Outcome elements and corresponding 
attributes. In order to support further computational tasks, the 
recognized PICO elements are encoded with the Unified 
Medical Language System (UMLS, 
https://www.nlm.nih.gov/research/umls/), an integrated 
biomedical terminology, by applying a UMLS concept 
extraction tool QuickUMLS [22]. Extracted semantics are 
further organized into a structured format. The default output 
format is XML, while users can also choose JSON, as more 
recently published APIs use JSON as standard data format. 

Results 

Descriptive Statistics of the Annotated Corpus 

We created a sharable, finely annotated corpus for PICO 
extraction with its descriptive statistics provided in Table 1.  

Table 1. Descriptive statistics of the annotated corpora 

 
The inter-annotator agreement is evaluated by cohen’s κ 
statistic. The overall agreement between the two annotators for 
5 categories is 0.83. The category-specific κ measures is 
reported in Table 1. Our goal in this step is to create a corpus of 
high-quality annotation with high agreement. Thus, our 
annotation team spent much time on iterative annotation 
guideline design and test run in sample corpus for multiple 
rounds to resolve discrepancies between annotators and arrive 
at consensus understandings for each class and required 
granularity. Compared to the related NLP work, we have a 
relatively small corpus to minimize human labors. We plan to 
achieve satisfactory performance with such small corpus.  

Model Performance  

For evaluation purpose, 6-fold cross-validation is applied. 170 
abstracts are equally divided into 6 groups. Among each run of 
model learning and testing, 4/6 of the data used as training set, 
1/6 as validation set and 1/6 as test set. We report the 
performance on test sets.  
Classic evaluation metrics are generated for evaluating NER 
tasks: precision, recall and, F1 score, to evaluate model 
performance in two different levels: word level and token level 
and use represent the two by span and trunk. In word level or 
span evaluation, the basic unit is the word, while in trunk 
evaluation, basic unit is a token. Using an intervention element 
with BIO tagging as an example, “short-term/B-Intervention 
pulmonary/I-Intervention rehabilitation/I-Intervention”, in 
span evaluation, there are 3 predictions for each word. A true 
positive is counted when both BI tag and class are predicted 
correctly. There are 3 true positives at most. While in trunk 
evaluation, “short-term pulmonary rehabilitation” is counted as 
one token, 1 true positive is counted only if both boundary and 
class of this token are correctly predicted.  
The model performance is reported based on the test set in 
Table 2. We test performance with different tagging methods 
(raw/BIO tagging) and pretrain or not. For each model setting, 
we report the best evaluation among 6 sets for cross-validation 

 Entity class Attribute class 
 P. I. (+C.) O. Qualifier Measure 
Count 1185 2027 2140 766 904 
Agreement 0.916 0.844 0.727 0.955 0.954 
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and also averaged measures. In summary, using BIO tagging 
and pretrain can both improve model performance. In word-
level, span evaluation, the best performance comes from the 
model using pretrain and raw tagging with 0.78 in averaged F1 
score, and the best F1 in the subset is 0.89. Compared to the 
model setting with raw tagging as well but using no pretrain, 
the F1 score has been improved about 10%. With pretrain and 
BIO tagging, the performance is also improved, but not as much 
as using raw tagging. It’s a reasonable result as in BIO tagging 
a word is counted as true positive requiring both BI tags and 
class are correct while raw tagging only require class 
prediction. On the other hand, BIO tagging provides more 

information for learning to help identify the boundary of each 
element. This is reflected by the evaluation in trunks/token 
level. The best performance in token level is generated by 
model with pretrain and BIO tagging (average F1 score 0.62, 
best 0.64). Compared to the two model only trained on 170 
abstracts (0.52/0.54 for average F1), pretraining on EBM-NLP 
corpus and transferring learned parameters also help improve 
the model performance significantly by 10%. Therefore, 
applying pretrain and BIO tagging can best improve the 
recognition of PICO elements boundaries and predicting PICO 
classes.

Table 2. Model performance in different training settings. 

  No Pre + Raw No Pre + BIO Pre + Raw Pre + BIO 
  Best Ave. Best Ave. Best Ave. Best Ave. 
Test set (Span) Precision 0.78 0.76 0.84 0.85 0.93 0.87 0.86 0.83 

Recall 0.62 0.63 0.68 0.66 0.80 0.70 0.71 0.7 
F1 score  0.69 0.66 0.75 0.74 0.89 0.78 0.78 0.73 

Test set (Trunk) Precision 0.54 0.52 0.58 0.53 0.74 0.61 0.63 0.63 
Recall 0.53 0.51 0.56 0.52 0.74 0.56 0.64 0.61 
F1 score 0.53 0.52 0.57 0.54 0.74 0.58 0.64 0.62 

 

We further analyzed the individual performance from one of 
the 6 sets using the best model setting (Pre+BIO). The details 
are shown in Table 3. As evaluated by F1 score, entities with B 
tags are generally better than I tags, indicating the model is 
better at predicting if there is an entity, but need to be improved 
to predict the span of it. I tag prediction is especially poor in 
evaluation for Modifier, with F1 score only 0.25. We retrieved 
raw prediction results for Modifier class. We found due to the 
fact that we have a small gold standard set, and only 1/6 used 
for testing, there are only 166 Modifier tokens in the test set, 
among which only 6 are not unigram (have I tags). Modifiers 
are usually one-word token such as “higher”, “rise”, and 
“similar”. Among 6 modifiers with I tags in the test set, the 
model predicts 2 I-modifier tags and 1 of them is correct. Thus, 
precision/recall is 0.5/0.16 and F1 is calculated as low as 0.25, 
but actually caused by its small total number in entire corpus. 

Table 3. Detailed evaluation for one set in PICO/attribute 
 B-Pop. I-Pop. B-Int. I-Int. B-Out. I-Out. 

Precision 0.82 0.84 0.82 0.78 0.88 0.85 

Recall 0.68 0.65 0.70 0.50 0.75 0.42 

F1 score 0.75 0.74 0.75 0.61 0.81 0.56 

 B-Mea. I-Mea. B-Qua. I-Qua.   

Precision 0.77 0.85 0.91 0.5   

Recall 0.65 0.65 0.60 0.17   

F1 score 0.71 0.74 0.72 0.25   

 

Sample output 

The models are trained with following parameters: mini batch 
(size of 5) and Adam optimizer are selected for training; the 
dimensions of the word and character vectors are 200 and 100; 
the learning rate is set as 0.001with a decay of 0.9. Pretrain 
converges within 50 epochs and the training on 170 abstracts 
within 10 epochs. A sample recognition result in XML format 
is shown in Figure 4 It contains rich parsed semantic and 
positional information that can support further computational 
tasks such as relation extraction and information retrieval. 
Sample JSON output can be found in our github repository. 

 
Figure 4 - Sample output for our PICO extraction method 

Discussion 

Error Analysis 

The most common error happens when multiple PICO terms 
appear in conjunction. For example, an RCT paper titled 
“Perioperative enteral nutrition and quality of life of severely 
malnourished head and neck cancer patients: a randomized 
clinical trial”, and one Population entity recognition result is: 
<entity class=Population UMLS='C0278996:head and neck 
cancer,C0162429:malnourished,C0205082:severely' 
index='T3' start='8'> severely malnourished head and neck 
cancer </entity> 

Although we define the PICO elements to be the annotated as 
the most basic concepts (should be “malnourished” and “head 
and neck cancer” the two P entities in this case), there was 
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variance in what annotators considered, also causing 
inconsistency when calculating inter-annotator agreement. 

Comparative Performance Evaluation Results 

In the EBM-NLP corpus, the best performance for the baseline 
model trained on 5000 abstracts for P, I, O classes are 0.71, 0.65 
and 0.63 by F1 score respectively (mathematical mean: 0.66) at 
the word level. In contrast, with a small gold standard set (170 
abstracts) and without any hand-engineered features, our model 
reaches 0.78 for the best average F1 score at word level and 
0.62 at the token level. Our results prove the effectiveness of 
pretraining in minimizing human efforts in annotation and 
features engineering while reaching satisfactory performance. 

Future Work 

We have not yet related the attributes to their PICO elements 
nor distinguished PICO elements by arms. To further complete 
the structured information, negation and semantic relations 
need to be identified. We will progressively complete the 
functions of this tool, and eventually turn it to comprehensive 
information extraction system to computationally represent 
abstracts describing RCTs. 

Conclusions 
In this study, we demonstrate the early promise of pretraining 
to improve model performance tuned on a small training set, 
with only word feature, and we achieve better performance than 
conventional machine learning models trained on a larger 
corpus. This result is significant in showing the feasibility of 
overcoming the challenges in the dearth of annotated data and 
laborious feature handcrafts in biomedical NLP. We also 
contribute an open source NLP tool to automatically recognize 
PICO elements and their attributes from RCT abstracts. This 
tool, can be used to structure study design and results and can 
further enhance evidence retrieval and synthesis from 
biomedical literature to facilitate evidence-based medicine.  
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