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Abstract 

Early detection of Alzheimer’s disease (AD) has become 

increasingly important. Healthy monitoring technology 

focusing on behavioral changes is a promising approach in 

this vein. Among such technologies, handwriting features 

measured by digital tablet devices have attracted attention as 

potential indicators for detecting AD and mild cognitive 

impairment (MCI). However, previous studies have mainly 

investigated features in single tasks, and it remains unclear 

whether combining the features of multiple tasks could 

improve the performance of detecting AD and MCI. In this 

study, we investigated features in five representative tasks 

used in neuropsychological tests collected from 71 seniors 

including some diagnosed with MCI and AD. We found that 

our three-class classification model improved diagnosis 

accuracy by up to 11.3% by combining features of multiple 

tasks, for a final accuracy of 74.6%. We also suggested that 

drawing behaviors during multiple tasks might be useful for 

estimating disease progression simply by utilizing the labels of 

disease groups. 
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Introduction 

As the world’s elderly population increases, the number of 
people living with dementia is rising rapidly, making dementia 
an increasingly serious health and social problem. According 
to a previous survey, around 47 million people globally were 
living with dementia as of 2015, corresponding to about 7.6% 
of the world’s over-65-year-olds [1]. At the same time, 
diagnostic coverage worldwide remains low and dementia is 
often undiagnosed. Even in high-income countries, only 40–
50% of dementia sufferers have received a diagnosis [2, 3]. 
The low diagnosis coverage makes it difficult for many 
patients and their families to receive appropriate support and 
care. In addition, while dementia affects the individuals with 
the disease, it also affects their supporters—including relatives 
and the wider society—because people with dementia require 
constant and costly care for years. In fact, healthcare costs 
have risen significantly, reaching over $818 billion USD in 
2015, and this figure is estimated to rise to $2 trillion USD by 
2030 [4]. One strategy to reduce some of this cost is early 
intervention at the mild cognitive impairment (MCI) or 
preclinical stages. In fact, longitudinal studies suggest the 
possibility of early intervention at the MCI stage to reduce the 
progression to dementia [5]. An intervention that could delay 
the onset of Alzheimer’s disease (AD) by five years is 

estimated to result in a 57% reduction in the number of AD 
patients and to reduce 45% of the projected Medicare costs 
[6]. 

Health monitoring technology focusing on behavioral features 
is expected to help improve diagnosis coverage and to detect 
AD at an earlier stage by expanding opportunities for 
receiving assessment from the clinical setting to more varied 
situations including everyday situations. For example, 
previous lab studies have suggested that behavioral features in 
gait, speech, and eye movement can be useful indicators for 
identifying AD and MCI [7]. Being able to infer AD and MCI 
from these behaviors with better accuracy and wider 
applicability would be tremendously useful. 

One promising behavior to explore is drawing behavior. An 
advantage of this approach is ease of data collection brought 
about by the popularization of portable devices such as tablets 
and smartphones. Drawing behavior assessments such as the 
Clock Drawing Test (CDT) [8] and the Trail Making Test 
(TMT) [9] have proven useful for measuring cognitive decline 
and detecting AD and are commonly used in conventional in-
clinic neuropsychological tests. Recent research on drawing 
behaviors using tablet devices has shown the possibility of 
automatic detection of patients with cognitive or motor 
impairments [10–22]. For example, [10] extracted pressure 
and kinematic features during several tasks including the 
CDT, while [11] investigated frequencies, velocities, and 
temporal features during a variant of the TMT. These features 
have been shown as differentiating healthy subjects and AD 
patients. Although previous studies have demonstrated how 
we can build a model for detecting AD and/or MCI by using 
behavioral features during individual drawing tasks, whether 
and how we can improve the model performance by 
combining behavioral features during multiple tasks remains 
unexplored. In addition, most of these studies focused on 
developing a classification model for differentiating patients 
with MCI and AD. Being capable of inferring disease 
progression on a scalar or ordinal scale defined by in-clinic 
cognitive assessment scores or biomarkers such as amyloid 
beta and tau deposition would extend the scope of application, 
for example, through visualization of the effects of 
intervention and prevention. 

In this study, we investigated drawing behaviors during five 
representative tasks used in in-clinic neuropsychological tests 
collected from 71 Japanese seniors including some diganosed 
with MCI and AD. We extracted a series of drawing 
behavioral features including pressure, velocity, acceleration, 
jerk, and in-air and on-screen durations and then built a three-
class classification model to distinguish healthy controls 
(HCs), patients with MCI, and patients with AD. Through 
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comparison, we found that the model using features in all five 
tasks could improve accuracy by up to 11.3% by combining 
the features of multiple tasks, achieving a final accuracy of 
74.6% (chance rate 40%). We next investigated using the 
model for inferring disease progression on a continuous scale. 
Specifically, we first trained our model to differentiate three 
groups using only drawing features and disease labels (HC, 
MCI, and AD), and then we investigated whether the model 
could estimate in-clinic cognitive assessment scores. The 
results showed that the scores estimated by the model were 
significantly correlated with in-clinic cognitive assessment 
scores, even though we did not use the assessment scores 
themselves. These results indicate that our approach focusing 
on drawing behaviors during multiple tasks might be useful 
for inferring AD progression. 

Materials and Methods 

Participants 

A total of 71 participants were enrolled by the University of 
Tsukuba Hospital. Ten participants were patients with AD, 25 
were patients with MCI, and 36 were HCs. All participants 
were evaluated with the Mini-Mental State Examination 
(MMSE), a screening measure of global cognitive functioning 
[23]. Table 1 shows the number of participants (female), mean 
age, and mean MMSE score for the HC, MCI, and AD groups.  

None of the participants in the HC group were diagnosed as 
having MCI or dementia before the experiment. The defini-
tions of the MCI and AD groups were based on diagnosis by 
psychiatrists through medical examinations including structur-
al magnetic resonance imaging, blood tests, and neuropsycho-
logical tests. More specifically, the doctors followed the 
guidelines and criteria in [24] for MCI and [25] for AD. In-
formed consent was obtained from all participants in accord-
ance with a procedure by the ethics committee, the University 
of Tsukuba Hospital (H29-65). 

Apparatus 

A digital drawing tablet (Wacom Cintiq Pro 16) was used to 
acquire handwriting movements. The detailed specifications 
of the tablet are as follows: external dimensions (width × 
depth × height) 410 × 265 × 17.5 mm, spatial resolution 3840 
× 2160 dots, pixel size 0.090 × 0.090 mm, temporal resolution 
30 ms, and pressure levels 8,192.  

The data include 3D coordinates (x, y, z) and the pressure of 
the pen-tip, altitude and azimuth of the pen, a binary variable 
(1 for writing state and 2 for erasing state), and timestamp. 

When the stylus touches the start button, the software starts 
acquiring the data, and a black line reproducing the written 
trace appears. Thus, participants can monitor in real-time what 
they are writing. 

 

 

Figure 1 – Example of writing a spontaneous sentence. 

 

Experimental procedure 

Participants were seated on a chair with the digital tablet 
placed on a desk and could freely adjust the position of the 
device. Each participant was asked to perform five tasks:  

1. Writing spontaneous sentences. This task is included in 
the Mini-Mental State Examination (MMSE) [23]. 
Paticipants are asked to write any complete sentences 
on a sheet. 

2. Drawing crossed pentagons. This is also a part of the 
MMSE. At first, participants see a figure of two 
intersecting pengagons. Then they are asked to draw 
the same figure as shown on a sheet. 

3. Trail Making Test (TMT) part A. This task requires 
participants to draw lines connecting consecutive 
numbers randomly distributed on a sheet [9]. 

4. TMT part B. This is similar to the TMT part A, but 
instead of just linking numbers, participants are 
required to draw lines connecting numbers and letters 
alternately in their respective sequence [9].  

5. Clock Drawing Test. This test asks participants to draw 
an analog clock-face showing 10 minutes after 10 on a 
blank sheet [8]. 

Figure 1 shows an example of writing a spontanous sentence 
on our tablet device.  

Data analysis 

Pressure profiles were obtained from the apparatus as a raw 
dataset. Numbers of segments were counted to characterize 
the handwriting behaviors. As kinematic parameters, velocity 
(m/s), acceleration (m/s2), and jerk (m/s3) of the pen-tip 
movements over the 2D coordinates (x, y) on the tablet surface 
were computed. The durations (s) of on-screen and in-air sty-
lus pen movements were considered as timing parameters. 
Figures 2 and 3 show examples of the handwriting behavioral 
features. 

After completion of all five tasks, a three-class classification 
analysis using the handwriting parameters calculated to distin-
guish HC, MCI, and AD was performed. To investigate 
whether the model can be used to estimate in-clinic cognitive 
assessment scores, correlation analysis between MMSE scores 
and our model scores was also conducted. 

 

Table 1 – Demographics of participants. 

Status No. of 

participants 

(Female) 

Mean age 

(SD) 

Mean 

MMSE score 

(SD) 

HC 36 (21) 70.0 (5.0) 28.3 (1.5) 

MCI 25 (15) 75.9 (5.3) 26.8 (3.1) 

AD 10 (7) 76.7 (6.0) 18.8 (3.9) 
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(a) Left: final outcome and right: extracted on-screen (black) 

and in-air (blue) trajectories 

 

(b) On-screen pen-tip velocity and in-air duration 

 (shaded area) 

Figure 2 – Example of handwriting behavioral features of an 

MCI patient in TMT part A. 

 

 

(a) Disturbed pressure history of MCI 

 

(b) Smooth pressure history of HC 

Figure 3– Example of a difference of pressure  features during 

circle drawing in CDT between MCI and HC regardless of the 

similarity of the final outcomes. 

Results 

Three-class classification models 

On the basis of the extracted handwriting features, classifica-

tion analysis using a generalized linear model with a logit link 

function was performed. In order to differentiate HC, MCI, 

and AD, we assigned 0, 1, and 2 as targeted values, respec-

tively. Explanatory variables were selected by means of a 

stepwise method to optimize the Akaike’s Information Crite-

rion (AIC). We evaluated three-class classification perfor-

mances of the models using features of single tasks and all 

tasks.  

Tables 2 and 3 show the accuracy and the selected features of 

the resultant classification models. As shown, the model that 

used features of all tasks improved the diagnosis accuracy by 

up to 11.3% and achieved an accuracy of 74.6% (chance rate 

40%). The classification performance of this best model is 

presented in Table 4. 

Table 2 – Classification performance. 

Tasks Accuracy (%) 

MMSE sentences 67.6 

MMSE pentagons 66.2 

TMT part A 69.0 

TMT part B 63.3 

CDT 67.6 

All tasks 74.6 

Table 3 – Selected variables in classification models. 

Tasks Selected variables 

MMSE sentences Age, mean velocity, and mean 

pressure 

MMSE pentagons Age, mean pressure, CV of pressure, 

in-air duration, and mean velocity

TMT part A Age, in-air duration, and CV of 

acceleration 

TMT part B Age, CV of pressure, CV of jerk, 

and on-screren duration

CDT Age, number of segments, in-air 

duration, and CV of jerk

All tasks Mean velocity and mean pressure 

(MMSE sentences), mean pressure 

(MMSE pentagons), on-screen 

duration (TMT part A), CV of 

pressure (TMT part B), and number 

of segments, in-air duration, and 

mean pressure (CDT) 

Table 4 – Classification performance of the model using 

features from all tasks. 

 Actual

HC MCI AD

 

Estimated 

HC 35 11 1 

MCI 1 10 1 

AD 0 4 8 

 

 

Estimation of in-clinic cognitive assessment scores from 

the classification models 

We next investigated whether the three-class classification 

model could estimate in-clinic cognitive assessment scores. 

Specifically, we explored the relationship between a parameter 

in the classification model and the MMSE score.  

The generalized linear model with the logit link function 

estimates a continuous and ordinal score that can be 

interpreted as a probability parameter of a Bernoulli trial. 

Here, we may regard this as a predicted disease progression 

score of AD. A correlation analysis was performed between 

the disease progression scores predicted with the models and 

the MMSE scores. According to the Pearson’s correlation 

coefficients, our predicted disease progression score obtained 

from the model combining features of multiple tasks was most 

strongly correlated with the MMSE scores among all models 

(r = –0.70, Table 5).  

Figure 4 shows the best predicted scores according to the 

labels of the groups. Figure 5 indicates the relationship 

between the best predicted scores and  MMSE scores. 
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Table 5 – Pearson’s correlation coefficients between 

predicted disease progression scores and MMSE scores. 

Tasks r p-value 

MMSE sentences –0.38 <1.0 × 10-3 

MMSE pentagons –0.51 <1.0 × 10-5 

TMT part A –0.59 <1.0 × 10-7 

TMT part B –0.60 <1.0 × 10-7 

CDT –0.65 <1.0 × 10-9 

All tasks –0.70 <1.0 × 10-11 

 

Discussion 

As stated in the introduction, healthy monitoring technology 

focusing on behavioral changes has shown promise for early 

detection of AD. Among these technologies, handwriting be-

haviors measured by digital tablet devices are attracting atten-

tion as potentially useful indicators. The objectives of the 

present study were to investigate the effectiveness of combin-

ing behavioral features of multiple drawing tasks for detecting 

AD and MCI and the possibility of estimating disease pro-

gression by using such features. We collected and analyzed a 

series of behavioral features of five representative handwriting 

tasks used in MMSE, TMT, and CDT from 71 participants 

including some diagnosed with MCI and AD.  

First, although the selected predictive features in our analysis 

were different depending on the tasks, we found tendencies 

that features relating to fine motor controls such as velocity, 

acceleration, and pressure were selected for the MMSE tasks 

and features relating to attention or cognitive performances 

such as durations and number of segments were selected for 

the TMT and the CDT. These results may reflect the 

characteristics of the different tasks and suggest that 

exploiting the combined features of multiple tasks may 

improve the performance of predictive models. We 

demonstrated that our three-class classification model 

combining features of multiple tasks improved the accuracy.  

Next, we demonstrated that the classification model can also 

estimate in-clinic cognitive assessment scores via correlation 

analysis between the model estimated score that can be 

regarded as a predicted disease progression and the MMSE 

assessment score. It should be noted that the predicted disease 

progression scores were obtained just from the labels of 

disease groups and behavioral features without any 

progression measures. A more accurate validation of disease 

progression might require biomarkers such as amyloid beta in 

the brain and tau in cerebrospinal fluid (CSF), especially when 

we attempt to build a model for detecting patients at the 

preclinical AD stage. It would be difficult or impossible to use 

these biomarkers for training a model, considering the cost 

and/or invasiveness for assessing positron emission 

tomography (PET) and CSF. Our approach, which attempts to 

predict the level of disease progression by using just disease 

stage information instead of these biomarkers, should reduce 

the amount of required sample data (e.g., just validation data 

would be needed).  

Some limitations exist in this study. First, since the number of 

participants was relatively small, generalizability of our results 

may be limited. Further study with a larger number of partici-

pants is our future work. Second, we evaluated the handwrit-

ing features using just disease labels and neuropsychological 

assessment scores. Further study is needed to investigate 

whether our model for estimating scores can predict known 

biomarkers for AD such as amyloid beta and tau deposition. 

 

Figure 4 – Strip plot of predicted disease progression scores 

obtained from model combining multiple tasks. 

 

Figure 5 – Scatter plot with the line of best fit between the 

predicted disease progression scores obtained from the model 

combining multiple tasks and MMSE score. 
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