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Abstract 

Laboratory data collected in the electronic health record as 

part of routine care can be used in secondary research. For 

example, the US Department of Veterans Affairs maintains a 

data warehouse covering over 20 million individuals and 6.6 

billion lab tests. However, data aggregation in such a data 

warehouse can be difficult. In order to retrieve all or nearly all 

of one type of lab result with a high degree of precision, we 

perform clinical concept adjudication, which is the process of 

an expert determining which database records correspond to a 

target clinical concept. In this work, we develop an interactive 

machine learning tool to "extend the reach" of expert 

laboratory test adjudicators. Our tool provides access to 

automatic laboratory classification in a user-facing front end 

that covers all steps in an adjudication workflow, in order to 

lower barriers to collaboration, increase transparency of 

adjudication, and to promote efficiencies and data reuse. 
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Introduction 

Clinical laboratory data are crucial to medical research, 
including retrospective studies and clinical trials. Laboratory 
data collected in the electronic health record (EHR) during the 
care process can be used in research (termed "secondary use") 
[1]. For example, serum creatinine lab test results, collected 
during routine clinical care, serve as safety endpoints for a 
"point of care" trial comparing the efficacy of antihypertensives 
[2]. Research requires all serum creatinine results to be 
retrieved using a unique database identifier, but reality is not 
this simple. 

The United States Department of Veterans Affairs (VA) 
maintains a data warehouse covering 20 million individuals and 
6.6 billion lab tests (as of 2014) [3], but as others have noted 
"data aggregation across the VHA is highly problematic" [4]. 
As one example, if we search for "creatinine" in the 
warehouse's LabChemTest dimension table, we find >1000 
matching lab test types, many of which are not truly serum 
creatinine. If the query requires "creatinine" followed by 
"serum," it retrieves a shorter (64 lab types) and much more 
specific list, but many true positives are missed. Therefore, in 
order to retrieve all or nearly all the serum creatinine results 
with a high degree of precision, we perform clinical concept 

adjudication, which is the process of an expert determining 
which database records correspond to a target clinical concept. 

The clinical concept adjudication process currently used in our 
research center has been previously described [5] and is 
designed to harmonize lab test results from 144 independent 
VA clinical laboratories (Figure 1). In brief: (1) Clinical subject 
matter experts (SMEs) design a search for appropriate 
laboratory test names. For example, if hemoglobin is the target 
concept, search terms might include "HGB" or "Hemoglobin", 
and several Logical Observation Identifiers Names and Codes 
(LOINCs). (2) Database technicians retrive candidate database 
records. For each record, the technicians also pull associated 
metadata, including specimen types (e.g. whole blood, urine, 
cerebrospinal fluid), units, distribution of numeric results, and 
laboratory test names. Many SMEs do not have technical 
expertise to perform a database pull, or they do not have 
permission to execute such a pull. Database technicians deliver 
these results to SMEs using an Excel spreadsheet that can be 
sorted and filtered (Table 1). (3) Two SMEs label each record, 
evaluating for appropriate specimen types, units, distribution, 
and test names. (4) SMEs resolve disagreements, producing a 
consensus labelling. (5) Database IDs and consensus labels of 

Figure 1– Sequence diagram. The workflow between 

subject matter experts, data technicians, the database, and 

the study team is illustrated. 
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"yes" or "no" for each record are stored in a new database table, 
and the spreadsheet is stored for future reference. Note that 
steps (1)-(3) are often iterated if the search terms need 
refinement. 

Several drawbacks to this process exist. First, several steps in 
this process are time-consuming. Step (2) can take hours to run, 
because it may require computing on millions of values for each 
database ID. Step (3) requires SMEs ultimately to address each 
row (often about 1000) of a spreadsheet. The current process 
requires manual transmission of information and requires the 
SME and database technician to wait on each other. Second, the 
adjudicated concept can go out-of-date as new database records 
are added. Third, it is difficult for the final consumer (i.e. the 
study team performing  analyses) to understand, validate, or 
adapt the new database table that contains the final adjudicated 
concept. This is partly because of the manual transmission of 
work products, which can result in the initial search terms (or 
other work products) being lost, or at least not available to final 
consumers. 

Therefore, we sought to develop a machine learning tool to 
"extend the reach" of expert laboratory test adjudicators, so that 
they do not need to classify each data element manually. We 
aimed to provide access to automatic laboratory classification 
in a SME-facing front end for continued use by adjudicators. 
We intend our tool to cover all steps in the workflow (including 
the initial search for laboratory test names, the consensus 
process, and the database storage of SME decisions), in order 
to lower the barrier to collaboration among the group, to 
increase transparency of the adjudication process, and to 
promote efficiencies and reuse of adjudicated laboratory tests 
across the entire VA. 

Prior work. Previous authors have faced similar lab result 
harmonization problems. For instance, the LOINC standard has 
been developed to identify clinical laboratory test results [6], 
and previous authors have described mapping their local data to 
this standard [7], but mappings of local laboratory tests to 
LOINC may be erroneous [8]. In another example, the Mini-
Sentinel program received laboratory results from twelve data 
partners and encountered inconsistent units and LOINC 
availability, among other challenges, many of which were 
addressed by manual quality checking [9]. As an example from 
VA data, we found LOINC wrongly coded as body fluid 
sodium (2950-4) when it should be coded as serum/plasma 
(Table 1). This means that LOINC alone cannot be used to 
accurately retrieve all test types for a single clinical concept. 

Early work has shown that lexical comparison of test names 
followed by subject matter expert review can integrate a more 
detailed set of laboratory test codes (LOINC) with a less 
detailed one (SNOMED procedures) [10]. To facilitate the 
mapping of local lab terms to LOINC, The Regenstrief LOINC 
Mapping Assistant (RELMA) was developed [11,12]. As a 
practical example of lab test harmonization, a large group of 44 
European hospitals developed an internal  dictionary of 
laboratory observations and mapped it to LOINC, but they 
found that some tests were not referenced in LOINC [13]. More 
advanced work has been been done to share results for LOINC 
mapping, to take advantage of "crowdsourcing"  [14,15], and to 
perform automated mapping to LOINC using machine learning, 
which assigned about 70-80% of local terms to the correct 
LOINC [16]. Finally, work has been performed to address 
laboratory unit conversions [17] and standardizing laboratory 
test results across multiple institutions, as distinct from 
standardizing simply the type of test [18]. 

In our data warehouse, lab tests are already mapped to LOINC, 
but imperfectly. We also often need to aggregate several 
granular LOINCs into one more general concept. Our current 
lab adjudication process accomplishes this, but with many roles 
and manual steps (Figure 1). 

Methods 

We developed a machine learning system to predict whether a 
candidate lab test type clinically belongs within the concept of 
interest, based on a set of lab tests already labelled by SMEs as 
belonging or not. Seven lab tests were studied: alkaline 
phosphatase (ALP), alanine transaminase (ALT), albumin 
(ALB), high-density lipoprotein cholesterol (HDLC), sodium 
(Na), magnesium (Mg), and hemoglobin (HGB). We chose the 
following initial features for use by these algorithms. We used 
a bag-of-words encoding for longer textual fields like the test 
name, topography, component, and specimen. We used a 
categorical encoding for short textual fields, including the VA 
hospital site identifier, the lab result units, and the LOINC. We 
used as-is the numerical fields describing the number of results 
and their distribution. We included as a feature a Kolmogorov-
Smirnov statistic that compares, for one lab test type, the 
distribution of its results to the distribution of all positive 
training examples' results [19]. 

Table 1– Example data used in adjudication. The task is to label each row, identified by the ID column, with a label, shown in the 

SME Label column, based on data in the remaining columns. The Lab Test Name, Topography, and LOINC columns identify the 

name and specimen type of the lab test. The Count column shows the number of lab test results associated with the ID, and  p1, 

p50, and p99 (as well as others not shown) describe the first, 50th, and 99th percentiles of values of these results. 

ID SME 

Label 

Lab Test Name Topography LOINC Count p1 p50 p99 

1 Yes SODIUM SERUM Missing 115053 126 140 149 

2 No RANDOM URINE 
SODIUM 

URINE Missing 734 6 52 194.1 

3 No SODIUM URINE Missing 89 5 49.5 155.9 

8 Yes SODIUM SERUM 2947-0 126 133.2 140 144.7 

9 No SODIUM URINE,24HR 2947-0 98 13.8 150 877.7 

92 No SODIUM PERITONEAL 2950-4 10 124 132 138.8 

461 Yes SODIUM*IA BLOOD 2950-4 714 125 139 170.9 
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We evaluated this basic system using seven datasets that had 
been already adjudicated by VA experts (Table 2), and using 
three algorithms: logistic regression with an L1 penalty (also 
known as the least absolute shrinkage and selection operator, or 
LASSO), support vector machines (SVM), and random forests. 
Initial development and testing of learning algorithms was 
performed in Python using the scikit-learn package [20]. We 
used 10-fold cross validation to evaluate the accuracy of the 
system using each algorithm. 

After the basic learning system was developed and validated, 
an interactive adjudication interface was implemented as a web 
application, as described in detail below. This system is 
available to VA SMEs in a hosted environment, as well as to 
the public at https://github.com/nfillmore/active-adjudication. 

Results 

Machine learning 

Ten-fold cross-validation accuracy was high for all seven 
laboratory tests, and for all three methods (Table 2). For 6 out 
of 7 laboratory tests, random forests achieved the top cross 
validation accuracy, and LASSO achieved second place or 
better. Random forests achieved the fastest convergence per 
training example, and LASSO consistently achieved >90% 
cross validation accuracy at 100 or fewer training examples 
(Figure 2). 

Operationalizing as web application 

After the basic learning system was developed, an interface was 
designed as a web application, with a front-end written in 
JavaScript (Figure 3). We implemented the back-end (including 
LASSO) entirely in Java, which we found removes the need for 
any research group to install their own machine learning 
pipeline. The application covers the the laboratory adjudication 
workflow from initial assignment of the lab concept to a SME 
and generating search terms, to saving the final consensus 
adjudication for study use. The web application is hosted in a 
secure environment where VA SMEs can access it, and its 
source code is available for use by the public at 
https://github.com/nfillmore/active-adjudication. 

Support for search term generation 

Recall that in the current process for lab adjudication, data pull 
personnel must wait on SMEs to generate search terms, and 
SMEs then wait to receive an Excel spreadsheet. In order to 

avoid this inefficiency, we integrated the initial search into our 
interactive tool. The SME specifies search terms and can see 
results immediately. We accelerate this process with pre-
computed value percentiles for all lab test identifiers in the VA 
system (this took over a month of wall clock time). After 
refining the search terms, the SME can begin labelling 
examples, although the query can be modified later without 
losing any labels already input. 

Support for adjudication 

The labeling interface allows SMEs to view both the original 
table of data elements and the feature matrix for the learning 
algorithm. These tables can be viewed separately or side-by-
side, with support for sorting by any column. As the SME labels 
examples, statistics are recomputed in real time. The default 
feature matrix is as described above for the basic system, but 
SMEs may add or remove any features (a process termed 
feature engineering), including features corresponding to a 

 

Figure 2– Learning curves for LASSO (LR), random 

forests (RF) and support vector machines (SVM) 
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Table 2– Machine learning results (accuracy) for each of 7 lab tests, using 3 different learning methods: LASSO (LR), support 

vector machines (SVM), and random forests (RF). Also shown are the total number of database IDs, the number of IDs labelled 

positive in the “ground truth” SME labelling, and the number of associated observations (lab test results). 

 
Data Set Number of 

Database 

IDs 

Number of 

Positive 

Database 

IDs 

Number of 

Observations 

LR SVM RF 

ALP 1588 747 38,297,131 0.98 0.97 0.98 
ALT 716 341 84,180,150 0.98 0.94 0.92 
ALB 3351 601 114,613,056 0.97 0.92 0.98 
HDLC 742 358 79,767,824 0.98 0.91 0.98 
Na 322 153 7,821,081 0.97 0.98 0.99 
Mg 2066 502 17,768,685 0.97 0.95 0.99 
HGB 1737 830 135,382,741 0.97 0.95 0.99 
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single word or phrase. For example, if the SME needs to 
retrieve measurements of serum immunoglobulin free light 
chains, the phrase "free light" is more specific than either "free" 
or "light" by itself, and thus the SME may want to add this two-
word feature, which is not available to the learning system by 
default. 

Support for consensus labelling 

The current adjudication process requires SMEs to resolve 
labelling conflicts. Our application facilitates this by displaying 
any conflicts and prompting for a consensus label. As in the 
main labelling interface, the application uses machine learning 
to predict the consensus label. 

Support for finalizing and sharing results 

Because lab adjudication does not involve any protected health 
information, adjudicated labels can be freely shared among 
different researchers, but there is currently no simple 
mechanism to do this within VA's nationwide network of 
researchers. Therefore, our tool offers such a mechanism. Each 
adjudication can be published to a searchable list of "Completed 
Adjudications", tagged with the target lab, the group that 
carried out the adjudication, the date of completion, and other 
information. These adjudications can be viewed and exported 
for use in individual research projects. In some cases, an 
adjudication might be close to what a research group is looking 
for, but not an exact match for their target concept. Thus, the 
tool also allows published adjudications to be "forked", i.e., 
copied into a new adjudication instance, where labels and 
search criteria can be modified as needed, exactly as if the 
adjudication had been created from scratch by the new 
researcher. The lineage of forking is tracked and displayed to 
users, to promote appropriate credit as well as transparency. To 
promote division of labor, even incomplete adjudications are 
viewable and forkable by other researchers, but these are clearly 
marked as incomplete. 

Discussion 

We have developed a tool that uses interactive machine 
learning to assist lab adjudication experts. Among the three 
learning methods tested, LASSO performed nearly as well as 
the others, with the advantage that it is easier to interpret the 
model's predictions. We found no large differences in classifier 
performance among the seven lab tests for which we simulated 
annotation. Because of the rapid convergence of the learning 
methods, only about 100 lab data elements need to be 
adjudicated, and the rest (about 1000, depending on the lab test) 
can be inferred with high accuracy, which is theoretically a 10-
fold improvement in adjudication time. In practice, the expert 
could label all data elements with > 1000 observations and 
allow the system to predict the rest. 

SMEs within the VA now have access to machine learning 
assistance for laboratory data integration, without the need to 
implement a learning pipeline. In addition, we have 
precomputed and stored percentiles of numerical laboratory 
values, so these are available rapidly to SMEs. Our web 
application covers all steps of the laboratory adjudication 
workflow (Figure 1, Figure 3), including capturing the initial 
query, and writing to the database for future use.  

Our system can also be used by SMEs outside the VA, after 
creation of an appropriate backing database of precomputed 
metadata and percentiles of laboratory values. Creating such a 
database is straightforward and instructions are available with 
the software. 

We envision several feasible improvements to our system. First, 
a quantitative study of SME time saved could be undertaken. 
To facilitate this, we have already incorporated time-stamp 
logging of user actions into the software. Second, we could 
adapt the system to monitor the database for updates and ask 
for new labels as appropriate to keep concepts up-to-date. 
Third, we could use an approximation scheme for streaming 
computation of percentiles, so that the precomputed numerical 
distributions do not go out of date as new observations are 
collected [21]. 

In comparison to RELMA, we incorporate collaboration among 
multiple roles (e.g. SME, database technician), and we 
incorporate the aggregation of multiple potential LOINC code 
points. Machine learning has been applied to lab data cleaning 
[16], but to our knowledge interactive machine learning has 
not. Our web application covers all parts of the clinical 
laboratory test adjudication workflow, greatly decreasing the 
work required of SMEs, and it introduces further advantages by 
capturing work products that otherwise could be lost, increasing 
transparency, and encouraging sharing.  

Conclusions 

In this work, we developed an interactive machine learning tool 
for laboratory test adjudicaton. Our tool provides access to 
automatic laboratory classification in a SME-facing front end 
for continued use by adjudicators. The tool covers all steps in 
an adjudication workflow, and in doing so, lowers barriers to 
collaboration, increases transparency of adjudication, and 
promotes efficiencies and data reuse. 
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