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Abstract 

Secondary use of electronic health records using data 
aggregation systems (DAS) with standardized access interfaces 
(e.g. openEHR, i2b2, FHIR) have become an attractive 
approach to support clinical research. In order to increase the 
volume of underlying patient data, multiple DASs at different 
institutions can be connected to research networks. Two 
obstacles to connect a DAS to such a network are the 
syntactical differences between the involved DAS query 
interfaces and differences in the data models the DASs operate 
on. The current work presents an approach to tackle both 
problems by translating queries from a DAS using openEHR’s 
query language AQL (Archetype Query Language) into queries 
using the query language CQL (Clinical Quality Language) 
and vice versa. For the subset of queries which are expressible 
in both query languages the presented approach is well 
feasible. 
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Introduction 

The secondary use of electronic health records (EHR) has 
become an important field in medical informatics [1]. Routine 
clinical data is reused for various scientific purposes, like 
prospective estimation of study cohort sizes or support of study 
cohort acquisition. When this routine data is scattered in various 
data sinks in various heterogeneous data formats, it is difficult 
to access. In order to improve access to the EHR, solutions have 
been developed to aggregate the routine data and to make it 
accessible via a standardized interface. Two paradigms are 
possible when constructing such a data aggregation system 
(DAS): The first method is to leave the data in its original place 
and to provide a standardized access by aggregating the 
requested data chunks on the fly using appropriate extraction 
transformation load (ETL) pipelines. SMART on FHIR [2] 
projects for example realize this paradigm by aggregating 
requested FHIR resources on the fly. This approach works well 
for patient centered access (i.e. queries operating on the data of 
a single patient). However, for population centered access (i.e. 
queries operating on data of all patients) this approach lacks 
indices covering the involved data sources. Without such 
indices, query speed performance does not scale related to the 
amount of queried patient data. On large volumes of EHR data 
this would heavily afflict the usability of FHIR related query 
languages like FHIR-REST-API1 or CQL (Clinical Quality 
Language)2. The second method to provide access to 
                                                           
1 https://www.hl7.org/fhir/search.html 
2 https://cql.hl7.org 

aggregated routine data is to provide an additional data sink 
with a generic data model, into which the heterogeneous routine 
data is persistently transferred via an ETL pipeline. The data 
sink is supplied with appropriate indices, so it can be efficiently 
queried via a standardized query language. Examples of this 
architecture are i2b2 [3], openEHR [4] or OMOP [5]. HAPI3 
and VONK4 are data sink servers that do not only use FHIR as 
an access interface in patient centered mode, but they also use 
it as the data model in which the EHR data is stored, so it can 
be queried in population centered mode using query languages 
like FHIR-REST-API or CQL. 

Clinical Research Networks 

In order to increase the volume of underlying patient data for 
larger and thus more expressive query results, DASs at different 
institutions can be connected to clinical research networks. 
Examples for such networks are PCORnet, the OHDSI research 
network or EHR4CR. In a DAS network a query is distributed 
to connected nodes, where it is independently evaluated. Each 
node’s results are returned and combined to an aggregated 
result. Systems like SHRINE [6] for i2b2 or SNOW [7] for 
openEHR perform the query distribution and result aggregation 
automatically. Each network, however, only allows DASs 
having the same query language to be part of the network. If a 
DAS with a different query language is intended to be 
integrated into the network, the data from that DAS has to be 
transferred (like in [8]) into a new dedicated DAS supporting 
the networks query language. However, parallel support of 
multiple DASs containing the same redundant data at one 
institution creates an overhead in support and hardware. 
An alternative approach is to translate queries of an 
incompatible DAS into the query language required by the DAS 
network. The current work examines the feasibility of 
translating queries formulated in the query language CQL into 
AQL (Archetype Query Language, the query language of 
openEHR) and vice versa. To accomplish this task, the query is 
first translated into an intermediate query graph model, then 
potentially necessary graph transformation are applied on the 
query graph and, finally, the graph is translated into the desired 
target query language. 

Methods 

Query Languages 

Before going into detail about the translation process, the two 
languages shall be briefly introduced: 
CQL is a functional query language. A CQL script is defined as 
a so called library in which, besides the actual queries, also 

3 http://hapifhir.io 
4 https://fire.ly/vonk/vonk-fhir-server 
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meta information related to the queries can be defined. CQL is 
independent of a concrete data model, as the model to be used 
is explicitly defined in each CQL library. The CQL data model 
elements can be composed of the following data types: 
primitives (Booleans, Strings, numbers and timestamps), 
clinical codes, quantities, intervals, lists and structured types. 
Structured data objects, which can again contain other 
structured data objects, can be accessed with a path syntax (e.g. 
patient.contact[0].name.family). Besides the data model, a 
CQL library can define its search context, which is either 
Patient or Population centered. The main functional part in a 
CQL library are the statements. Each statement can be seen as 
an individual query. Usually a statement defines which data 
sources the query is operating on (e.g. [Patient] A or 
[Observation] B), how the elements of the queried sources are 
constrained (e.g. B.valueString = ‘x’), how the various data 
sources have to be related to each other (e.g. [Patient] A with 
[Observation] B such that B.subject = A) and which elements 
of potential matches have to be returned as results (e.g. Return 
Tuple {id:A.identifier, B.valueString}). CQL provides a rich 
repertoire of operators (e.g. comparison, logical, arithmetic, list 
access, aggregation) to perform calculations on the data model. 
OpenEHR’s query language AQL is SQL-inspired and as well 
a functional language. It operates on a data model that is defined 
by the openEHR data modeling language ADL. OpenEHR’s 
root data model elements are called archetypes. An archetype 
can be composed of the following data element types: 
primitives (Booleans, Strings, numbers and timestamps), other 
archetypes and generic container structures (e.g. lists). 
Structured data objects are accessed via a path syntax. An AQL 
query mainly consists of three parts: The FROM part defines 
which archetypes are queried and how these archetypes are 
related to each other concerning meronymity relations (e.g. 
EHR A contains Observation B). The WHERE part constrains 
the archetype elements (e.g. B/value > 1). The SELECT part 
defines which elements have to be returned in the results (e.g. 
select A/ehr_id, B/value). Compared to CQL, AQL provides a 
smaller set of operators (comparison, logical, matches, exists). 
For the sake of brevity archetype names in the following 
chapters are shortened (e.g. openEHR-EHR-
OBSERVATION.LabResult.v1 → Observation[LabResult]). 
Currently, the CQL translation has the following constraints: 1. 
The CQL queries may only contain a single statement and 2. 
The CQL queries are defined in the context Population. If a 
CQL query with context Patient has to be translated to AQL, 
the given patient identifier has to be integrated into the CQL 
statement as a constrained Patient.identifier. 

Queries as Graphs 

Queries can be seen as graphs. In order to perform the query 
translation, the CQL/AQL (depending on the translation 
direction) query to be translated is transformed into an 
intermediate graph model. The graph is subsequently translated 
into the desired target query language. The graph model is 
depicted in Figure . A graph contains a set of data model 
elements that are connected via relations. Although the type of 
these relations is not specifically defined, they could be 
interpreted as meronymity (i.e. contains) relations. 
Additionally, a graph contains a set of operators, which contain 
as parameters either other operators, data model elements or 
literals. A similar same approach has already been applied in 
[9] where AQL was translated into the query language of i2b2. 
For parsing AQL queries the parser from the AQL-processor of 
the EtherCIS project5 was taken and combined with a graph 
builder written by the authors. The parser for CQL libraries was 

                                                           
5 http://ethercis.org 

taken from the cql-2-elm project6 and combined with a graph 
builder also written by the authors. The graphs retain 1. the 
structure of data model elements mentioned in the query, 2. the 
constraints and operators on data element values and 3. which 
data elements have to be contained in the returned results. 
Whenever elements in a query are named with an alias, all 
references to that alias create IsRelatedTo/ HasParameter 
relations to the graph node identified with that alias. 

 
Figure  – Model of graphs, which are used as intermediate 

data model during query translation. 

Graph Transformations 

Because of properties of CQL/AQL that do not exist in the 
respective other language or non-matching properties of the 
incorporated data models, the graph has to be appropriately 
transformed, in order to fit all required properties of the target 
language. Currently there exist the following types of 
transformations: Meronyminity-Equality-Transformations and 
their reverse, Path-Transformations, Concept-Code-Mappings, 
Operator-Mappings, Resolve-Quantity-Transformations, 
Resolve-Interval-Transformations (see Figure ). 

 

Figure  – Query graph transformations 

Meronyminity-Equality-Transformations 

Meronyminity-Equality-Transformations are needed because 
in CQL the connection between two root data model elements 
is represented by an equality constraint between one root 
element and a child element of the other root element (e.g. 
[Patient] A with [Observation] B such that B.subject = A). The 
definition of both involved element types ([Observation] and 
[Patient]) determine the type for the element B.subject, which 
would otherwise not be specified. In contrast, in AQL the main 
mechanism to define structural relationships between data 
model elements are meronymity relations, which also define the 
type of the contained elements (e.g. Ehr A contains 
Observation[LabResult] B). Meronyminity-Equality-
Transformations are parameter free. The transformation looks 
for any three data model elements A, B and C, with a relation 
between B and C and an Equals operator containing A and C as 
parameters. The element C and the Equals operator are deleted 
and the element A gets connected to the element B. The reverse 
Equality-Meronyminity-Transformation requires a 
parametrization because only a defined set of related elements 
A and B should be transformed and the name of the newly 

6 https://github.com/cqframework/clinical_quality_language 
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created element C has to be given. For all directly connected 
elements A and B the connection gets removed and instead a 
new element C gets created and connected to B. Furthermore, a 
new Equals operator gets created receiving A and C as 
parameters. 
Path-Transformations 

Path-Transformations provide the possibility to shorten or 
lengthen data model element paths. They are needed because 
elements from the source data model, which have to be mapped 
to their semantically identical counterparts in the target data 
model, might be encapsulated in additional element wrappers. 
These wrappers have to be removed if they do not exist in the 
target data model. E.g. the intermediate element valueQuantity 
in Observation.valueQuantity.value (FHIR) has no counterpart 
in Observation[LabResult]/value (openEHR). The 
transformation can be configured to either shorten or lengthen 
a path. In order to shorten a path, the transformation searches 
for nodes Q and R connected by a list of nodes B and removes 
the intermediate nodes. The reverse transformation introduces 
new intermediate nodes B into the graph between two directly 
connected nodes Q and R. 
Concept-Code-Mappings 

Concept-Code-Mappings map element identifiers of the source 
data model to element identifiers of the target data model by 
renaming nodes. 
Operator-Mappings 

Operator-Mappings map operators of the source query 
language to operators of the target query language by renaming 
nodes. 
Resolve-Quantity-Transformations 

AQL does not contain quantities as build in types. Therefore, 
operators on quantity types have to be exchanged by and-
connected clauses that check the requested value as well as the 
requested quantity type (e.g. days, cm) (e.g. [Encounter] A 
where A.length > 120 days → [Encounter] A where 
A.length.value > 120 and A.length.unit = ‘days’). The 
transformation looks for data model elements A contained as a 
parameter in an operation Op (with potential further 
parameters). The node A get connected to two newly created 
data model elements value and unit and gets removed from the 
parameters of Op. Additionally, a new equals operator is 
created which gets the new unit node and a newly created literal 
Y as parameters. The value of Y has to be given as a 
transformation configuration and defines the unit of the 
quantity to be computed. The new equals node and the Op node 
get connected in a newly created and. 
Resolve-Interval-Transformations 

Similar to quantity types, AQL does not contain intervals as 
build in types. Operators on interval types have to be exchanged 
by and-connected clauses, that check the requested constraints 
(e.g. [Patient] A where A.birthDate in 
A.contact[0].address.period → [Patient] A where A.birthDate 
> A. contact[0].address.period.low and A.birthDate < A. 
contact[0].address.period.high). 

Graphs to Queries 

After all necessary graph transformations have been executed, 
the graph can be translated into the desired target query 
language via respective Graph2QueryString writers 
implemented by the authors. 
The proposed method was tested on manually designed 
AQL/CQL queries and on queries contained in the AQL/CQL 
documentation. A query was (when translatable) translated into 
its respective counterpart and re-translated into its original 
language. The original query was compared for semantic 

equality to its translated counterpart as well as to its re-
translation into the original query language. 

Results 

Translations Constraints 

The proposed methodology using the currently available set of 
graph transformations allows the translation of all CQL/AQL 
queries having the following properties: A query has to contain 
the data type Patient (EHR in AQL) as a query source. The 
query may contain an arbitrary amount of additional data 
sources of arbitrary type. A query may return an arbitrary subset 
of query sources or data model elements that are reached from 
the data sources via paths. The paths can have arbitrary length. 
Data model elements can be constrained using the logical 
comparators listed below, parametrized with literals or with 
other data model elements. A query may contain the data types 
Boolean, String, Integer, Decimal, Timestamp, Date, 
DateTime, Quantity and Interval. Data model elements or 
literals can be processed with operators from the set of mutual 
operators listed below. 
Translations are only possible for queries containing 
exclusively operators which exist in both query languages with 
the same semantics and the same interface. These operators 
(using their CQL-displaynames) grouped into operator 
categories are:  

� Boolean operators { and, or, not } 
� comparator operators on numeric/date/timestamp 

types { =, <, <=, >, >=, != } 
� comparator operators on Strings { =, !=, matches }  
� operators on lists/iterators { in, exists, with, without }. 

All other operators either have to be substituted by appropriate 
graph transformations or render a query untranslatable. 
CQL does not contain an equivalent to AQL’s contains 
operator. This operator, which performs a type matching on a 
given to be contained data type, returns the matched child data 
element. The operator is substituted by Meronyminity-
Equality-Transformations. 
The mutual set of operators is reduced by the following 
limitations of the two languages, which could not be substituted 
by graph transformations: 
AQL contains no arithmetic operators (e.g. +, -, *, /). AQL 
comprises a limited set of list operators (e.g. first, last, sort, 
count do not exist). It is only possible to access specific list 
elements via a given index or via the matches operator. The 
contains operator can only be used to constrain the data model 
structure and not to check the containment of a single element 
in a list (e.g. [ProcedureRequest] A where A.notes contains 'x'). 
AQL allows no aliased valueset definitions. All valuesets have 
to be directly given as parameters to the operator using them, 
instead of having the possibility to reference a previously 
defined valueset with an alias. CQL, on the other hand, allows 
only valueset aliases based on valueset ids but no definition of 
valuesets by listing their contained codes. As the current 
implementations is restricted to CQL statements instead of 
CQL libraries, the usage of valuesets or therein contained codes 
still has to be resolved. 

Table 1 shows a selection of example queries that have been 
automatically translated given proper graph transformation 
configurations. 
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[Patient] A where A.active = true 
and A.gender = ‘male’ 

select e from EHR e where e/active = 
true and e/gender = ‘male’ 

[Patient] A where exists(A.name 
B where B.given = ‘John’) 

select e from EHR e contains 
composition a[HumanName] where 
a/given = ‘John’ 

[Patient] A with [Encounter] B 
such that 
not(exists(B.discharge)) and 
B.subject = A 

select e from EHR e contains 
composition a[Encounter] where not 
exists a/content[Discharge] 

[Patient] A with [Observation] B  
such that B.code = ‘Calcium’ and  
B.valueQuantity > 10’mg’ and 
B.subject = A 

select e from ehr e contains 
observation a[LabResult] where 
a/code = ‘Calcium’ and 
a/valueQuantity/value > 10 and 
a/valueQuantity/unit = ‘mg’ 

 
Figure  pictures an example of an CQL query being 
transformed into AQL. The query represents a request for 
patients having at least one Calcium laboratory measurement 
with a value of more than 10. The CQL query is parsed into the 
uppermost graph depicted in Figure . Successively, 
Meronymity-Equality-Transformations, Path-Transformations 
and Concept-Code-Mappings are applied to the graph 
(parametrized with the configurations from Table 1, CQL → 
AQL). The Meronymity-Equality-Transformation links the 
Patient node with the Observation node, which is the required 
representation in AQL. The Path-Transformation removes the 
valueQuantity node, because in the openEHR data model the 
value element is a direct child element of the LabResult 
archetype. The Concept-Code-Mappings rename the nodes 
Patient and Observation as Ehr and Observation[LabResult], 
as those are the semantically equivalent data elements in the 
openEHR data model. Finally, the transformed graph is 
translated into an AQL query String. 

Table 2 – Manually defined configurations used in the 
example in Figure . The column headings reference the 

nodes from Figure . 

CQL → AQL 
Path-Shorten-Transformations 
Q B R 

Observation[LabResult] {valueQuantity} value 
Concept-Code-Mappings 

Q R 
Ehr Patient 

Observation[LabResult] Observation 
AQL → CQL 

Equality-Meronymity-Transformations 
A B C 

Patient Observation subject 
Path-Lengthen-Transformations 
Q B R 

Observation[LabResult] {valueQuantity} value 
Concept-Code-Mappings 

Q R 
Ehr Patient 

Observation[LabResult] Observation 

 
Figure  – Translation of an CQL query into AQL. Underlined 

nodes denote elements that have to be included in the result  

The translation from AQL to CQL goes accordingly with the 
transformation configurations from Table 1, AQL → CQL. It is 
noted that the order of the execution of the different 
transformation types remains the same, so the re-translation is 
not according to the reverse direction in Figure , which has to 
be considered in the transformation configurations. The AQL 
query is first parsed into a graph. Subsequently the Equality-
Meronymity-Transformation creates the child node subject, 
connects it to the Observation[LabResult] node, removes the 
relation between Ehr and Observation[LabResult] and adds a 
new Equals operator with subject and Ehr as parameters. The 
Path-Transformation adds the node valueQuantity between 
Observation[LabResult] and value. The Concept-Code-
Mappings rename the nodes Ehr and Observation[LabResult] 
as Patient and Observation. Finally, the graph is translated into 
a CQL query String. 

3

3

3
2

3

3

Table 1 – Automatically translated example queries  

CQL AQL 
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Discussion 

The approach to translate a query into another query to improve 
or facilitate its evaluation is known as query rewriting [10]. The 
early work on query rewriting is related to view-based 
relational database querying and deals with the translation of 
queries formulated in the same language for both, source and 
target. In recent years query rewriting was as well used in 
conjunction with graph data query system, e.g. [11] resembles 
the presented approach, whereas there XQuery was translated 
into SPARQL. 
The discussed graph model and the graph transformations have 
been specified and implemented by the authors. Both elements 
could be exchanged by a standard from the graph computing 
community like e.g. Owl to model graphs and graph 
transformation frameworks like GROOVE to model the 
transformations.  
Although the used graph model is similar to the parser graphs 
produced by each of the systems, it was more convenient for 
the authors to use a separate model in order to be independent 
of possible system specific modeling paradigms. 
The concept-mappings and path-transformations could be 
substituted by a mechanism using FHIR ConceptMaps, which 
encode the mappings from elements of one data model to 
equivalent data model elements in a target system. 
When applying the presented approach on productive data 
models, the configuration of the various transformations could 
become cumbersome when the data models are large. It would 
be beneficial if some configurations could be automatically 
deduced by an analysis of the source and the target data model. 
When both data models are annotated with terminology codes, 
the configuration of concept-mappings could be deduced 
automatically by identifying equivalent data model elements 
annotated with the same codes. 
An issue that could appear when applying query translations in 
combination with concrete query engines system 
implementations could be that the translations are semantically 
equivalent, but they can contain differences in their syntactical 
structure. E.g. the two CQL queries [Patient] A with 
[Encounter] B such that B.patient = A and [Patient] A where 
exists [Encounter] B where B.patient = A are semantically 
equivalent, but a query execution engine could handle the 
execution of a with-such-that expression differently than a 
where-exists with a nested sub query. 
An aspect not yet covered by the presented approach is the 
translation of valueset, concept, code and codesystem 
definitions. Due to the omnipresence of valueset references in 
the query examples of both query languages, the presented 
approach could have difficulties to be applied in productive 
systems without this issue being solved.  
A further aspect not tackled in the presented approach is how 
query results are returned by the respective systems. Both 
systems have their own method and syntactical encoding for 
delivering results. For that topic, proper adapters would have to 
be developed as well. The example from Figure  for example 
returns complete patient objects, which are serialized 
differently by the respective systems. In order to prevent 
differences in serializations, the return types of translatable 
queries could be restricted to primitive types (e.g. patient ids 
instead of complete patient objects). 
As the presented approach is still work in progress, it can be 
extended whenever the query language specifications are 
changed or extended and thus set of mutual operators grows. 
E.g. the AQL specification already contains announcements of 
future language elements like arithmetic operators, an extended 
matches operator or alias definitions (i.e. let). 

Conclusions  

An approach was presented to translate Clinical Quality 
Language (CQL) queries into Archetype Query Language 
(AQL) queries and vice versa. Several examples were shown to 
illustrate the capabilities of the presented apprach and for one 
example the translation process was illustrated in detail. As 
CQL and AQL do not comprise the same sets of operations, the 
translation capabilities of the presented approach are restricted 
to a subgroup of possible queries, which have to be composed 
of a set of common operators of both query languages. Despite 
this limitation, queries expressible in both languages can be 
automatically translated, which would allow both query 
systems to be transparently included in a distributed research 
network of the other type. 

Acknowledgements 

An implementation of the presented approach in Java is 
available at https://gitlab2.informatik.uni-wuerzburg.de 
/gef18bg/cdw_querymapper. The authors thank B. Haarbrandt, 
A. Zautke and G. Vella for helpful comments. This research 
was funded by grant of German Federal Ministry of Education 
and Research (Comprehensive Heart Failure Center Würzburg, 
grants #01EO1004 and #01EO1504).  

References 

[1] Prokosch H, Ganslandt T, Perspectives for medical 
informatics. Reusing the electronic medical record for 
clinical research, Methods Inf Med 48(1) (2009), 38-44. 

[2] Mandel JC, Kreda DA, Mandl KD, et al, SMART on 
FHIR: a standards-based, interoperable apps platform for 
electronic health records, J Am Med Inform Assoc 23(5) 
(2016), 899-908. 

[3] Murphy S, Weber G, Mendis M et al, Serving the 
Enterprise and beyond with Informatics for Integrating 
Biology and the Bedside (i2b2), J Am Med Inform Assoc 
17(2) (2010), 124-30. 

[4] Kalra D, Beale T, Heard S, The openEHR Foundation. 
Stud Health Technol Inform 115 (2005), 153-73. 

[5] Overhage JM, Ryan PB, Reich CG et al, Validation of a 
common data model for active safety surveillance research, 
J Am Med Inform Assoc 19(1) (2012), 54-60. 

[6] Weber GM, Murphy SN, McMurry AJ, et al, The Shared 
Health Research Information Network (SHRINE): a 
prototype federated query tool for clinical data 
repositories, J Am Med Inform Assoc 16(5) (2009), 624-30. 

[7] Hailemichael MA, Marco-Ruiz L, Bellika JG, Privacy-
preserving Statistical Query and Processing on Distributed 
OpenEHR Data, Stud Health Technol Inform 210 (2015), 
766-70. 

[8] Haarbrandt B, Tute E, Marschollek M, Automated 
population of an i2b2 clinical data warehouse from an 
openEHR-based data repository, J Biomed Inform, 63 
(2016), 277-94. 

[9] Fette G, Kaspar M, Liman L, et al. Query Translation 
between openEHR and i2b2. (in press) Stud Health 
Technol Inform (2019) 

[10] Calvanese D, De Giacomo G, Lenzerini M, et al. What is 
query rewriting?, Proc. of KRDB (2000), 17–27. 

[11] Droop M, Flarer M, Groppe J, et al. Embedding Xpath 
Queries into SPARQL Queries, ICEIS (2008). 

 

Address for Correspondence 
Georg Fette, georg.fette@uni-wuerzburg.de 

3

G. Fette et al. / Query Translation Between AQL and CQL132


