
Query Translation etween AQL and CQL

Georg Fettea,b, Mathias Kasparb, Leon Limana, Maximilian Ertlb, Jonathan Krebsa, Georg Dietricha,
Stefan Störkb, Frank Puppea

a Chair of Computer Science 6, University of Würzburg, Würzburg, Germany,
b Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany

Abstract

Secondary use of electronic health records using data
aggregation systems (DAS) with standardized access interfaces
(e.g. openEHR, i2b2, FHIR) have become an attractive
approach to support clinical research. In order to increase the
volume of underlying patient data, multiple DASs at different
institutions can be connected to research networks. Two
obstacles to connect a DAS to such a network are the
syntactical differences between the involved DAS query
interfaces and differences in the data models the DASs operate
on. The current work presents an approach to tackle both
problems by translating queries from a DAS using openEHR’s
query language AQL (Archetype Query Language) into queries
using the query language CQL (Clinical Quality Language)
and vice versa. For the subset of queries which are expressible
in both query languages the presented approach is well
feasible.
Keywords:

Electronic Health Records, Data Warehousing, Information
Systems

Introduction

The secondary use of electronic health records (EHR) has
become an important field in medical informatics [1]. Routine
clinical data is reused for various scientific purposes, like
prospective estimation of study cohort sizes or support of study
cohort acquisition. When this routine data is scattered in various
data sinks in various heterogeneous data formats, it is difficult
to access. In order to improve access to the EHR, solutions have
been developed to aggregate the routine data and to make it
accessible via a standardized interface. Two paradigms are
possible when constructing such a data aggregation system
(DAS): The first method is to leave the data in its original place
and to provide a standardized access by aggregating the
requested data chunks on the fly using appropriate extraction
transformation load (ETL) pipelines. SMART on FHIR [2]
projects for example realize this paradigm by aggregating
requested FHIR resources on the fly. This approach works well
for patient centered access (i.e. queries operating on the data of
a single patient). However, for population centered access (i.e.
queries operating on data of all patients) this approach lacks
indices covering the involved data sources. Without such
indices, query speed performance does not scale related to the
amount of queried patient data. On large volumes of EHR data
this would heavily afflict the usability of FHIR related query
languages like FHIR-REST-API1 or CQL (Clinical Quality
Language)2. The second method to provide access to

1 https://www.hl7.org/fhir/search.html
2 https://cql.hl7.org

aggregated routine data is to provide an additional data sink
with a generic data model, into which the heterogeneous routine
data is persistently transferred via an ETL pipeline. The data
sink is supplied with appropriate indices, so it can be efficiently
queried via a standardized query language. Examples of this
architecture are i2b2 [3], openEHR [4] or OMOP [5]. HAPI3
and VONK4 are data sink servers that do not only use FHIR as
an access interface in patient centered mode, but they also use
it as the data model in which the EHR data is stored, so it can
be queried in population centered mode using query languages
like FHIR-REST-API or CQL.

Clinical Research Networks

In order to increase the volume of underlying patient data for
larger and thus more expressive query results, DASs at different
institutions can be connected to clinical research networks.
Examples for such networks are PCORnet, the OHDSI research
network or EHR4CR. In a DAS network a query is distributed
to connected nodes, where it is independently evaluated. Each
node’s results are returned and combined to an aggregated
result. Systems like SHRINE [6] for i2b2 or SNOW [7] for
openEHR perform the query distribution and result aggregation
automatically. Each network, however, only allows DASs
having the same query language to be part of the network. If a
DAS with a different query language is intended to be
integrated into the network, the data from that DAS has to be
transferred (like in [8]) into a new dedicated DAS supporting
the networks query language. However, parallel support of
multiple DASs containing the same redundant data at one
institution creates an overhead in support and hardware.
An alternative approach is to translate queries of an
incompatible DAS into the query language required by the DAS
network. The current work examines the feasibility of
translating queries formulated in the query language CQL into
AQL (Archetype Query Language, the query language of
openEHR) and vice versa. To accomplish this task, the query is
first translated into an intermediate query graph model, then
potentially necessary graph transformation are applied on the
query graph and, finally, the graph is translated into the desired
target query language.

Methods

Query Languages

Before going into detail about the translation process, the two
languages shall be briefly introduced:
CQL is a functional query language. A CQL script is defined as
a so called library in which, besides the actual queries, also

3 http://hapifhir.io
4 https://fire.ly/vonk/vonk-fhir-server

B

MEDINFO 2019: Health and Wellbeing e-Networks for All
L. Ohno-Machado and B. Séroussi (Eds.)

© 2019 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI190197

128

meta information related to the queries can be defined. CQL is
independent of a concrete data model, as the model to be used
is explicitly defined in each CQL library. The CQL data model
elements can be composed of the following data types:
primitives (Booleans, Strings, numbers and timestamps),
clinical codes, quantities, intervals, lists and structured types.
Structured data objects, which can again contain other
structured data objects, can be accessed with a path syntax (e.g.
patient.contact[0].name.family). Besides the data model, a
CQL library can define its search context, which is either
Patient or Population centered. The main functional part in a
CQL library are the statements. Each statement can be seen as
an individual query. Usually a statement defines which data
sources the query is operating on (e.g. [Patient] A or
[Observation] B), how the elements of the queried sources are
constrained (e.g. B.valueString = ‘x’), how the various data
sources have to be related to each other (e.g. [Patient] A with
[Observation] B such that B.subject = A) and which elements
of potential matches have to be returned as results (e.g. Return
Tuple {id:A.identifier, B.valueString}). CQL provides a rich
repertoire of operators (e.g. comparison, logical, arithmetic, list
access, aggregation) to perform calculations on the data model.
OpenEHR’s query language AQL is SQL-inspired and as well
a functional language. It operates on a data model that is defined
by the openEHR data modeling language ADL. OpenEHR’s
root data model elements are called archetypes. An archetype
can be composed of the following data element types:
primitives (Booleans, Strings, numbers and timestamps), other
archetypes and generic container structures (e.g. lists).
Structured data objects are accessed via a path syntax. An AQL
query mainly consists of three parts: The FROM part defines
which archetypes are queried and how these archetypes are
related to each other concerning meronymity relations (e.g.
EHR A contains Observation B). The WHERE part constrains
the archetype elements (e.g. B/value > 1). The SELECT part
defines which elements have to be returned in the results (e.g.
select A/ehr_id, B/value). Compared to CQL, AQL provides a
smaller set of operators (comparison, logical, matches, exists).
For the sake of brevity archetype names in the following
chapters are shortened (e.g. openEHR-EHR-
OBSERVATION.LabResult.v1 → Observation[LabResult]).
Currently, the CQL translation has the following constraints: 1.
The CQL queries may only contain a single statement and 2.
The CQL queries are defined in the context Population. If a
CQL query with context Patient has to be translated to AQL,
the given patient identifier has to be integrated into the CQL
statement as a constrained Patient.identifier.

Queries as Graphs

Queries can be seen as graphs. In order to perform the query
translation, the CQL/AQL (depending on the translation
direction) query to be translated is transformed into an
intermediate graph model. The graph is subsequently translated
into the desired target query language. The graph model is
depicted in Figure . A graph contains a set of data model
elements that are connected via relations. Although the type of
these relations is not specifically defined, they could be
interpreted as meronymity (i.e. contains) relations.
Additionally, a graph contains a set of operators, which contain
as parameters either other operators, data model elements or
literals. A similar same approach has already been applied in
[9] where AQL was translated into the query language of i2b2.
For parsing AQL queries the parser from the AQL-processor of
the EtherCIS project5 was taken and combined with a graph
builder written by the authors. The parser for CQL libraries was

5 http://ethercis.org

taken from the cql-2-elm project6 and combined with a graph
builder also written by the authors. The graphs retain 1. the
structure of data model elements mentioned in the query, 2. the
constraints and operators on data element values and 3. which
data elements have to be contained in the returned results.
Whenever elements in a query are named with an alias, all
references to that alias create IsRelatedTo/ HasParameter
relations to the graph node identified with that alias.

Figure – Model of graphs, which are used as intermediate

data model during query translation.

Graph Transformations

Because of properties of CQL/AQL that do not exist in the
respective other language or non-matching properties of the
incorporated data models, the graph has to be appropriately
transformed, in order to fit all required properties of the target
language. Currently there exist the following types of
transformations: Meronyminity-Equality-Transformations and
their reverse, Path-Transformations, Concept-Code-Mappings,
Operator-Mappings, Resolve-Quantity-Transformations,
Resolve-Interval-Transformations (see Figure).

Figure – Query graph transformations

Meronyminity-Equality-Transformations

Meronyminity-Equality-Transformations are needed because
in CQL the connection between two root data model elements
is represented by an equality constraint between one root
element and a child element of the other root element (e.g.
[Patient] A with [Observation] B such that B.subject = A). The
definition of both involved element types ([Observation] and
[Patient]) determine the type for the element B.subject, which
would otherwise not be specified. In contrast, in AQL the main
mechanism to define structural relationships between data
model elements are meronymity relations, which also define the
type of the contained elements (e.g. Ehr A contains
Observation[LabResult] B). Meronyminity-Equality-
Transformations are parameter free. The transformation looks
for any three data model elements A, B and C, with a relation
between B and C and an Equals operator containing A and C as
parameters. The element C and the Equals operator are deleted
and the element A gets connected to the element B. The reverse
Equality-Meronyminity-Transformation requires a
parametrization because only a defined set of related elements
A and B should be transformed and the name of the newly

6 https://github.com/cqframework/clinical_quality_language

1

1

2

2

G. Fette et al. / Query Translation Between AQL and CQL 129

created element C has to be given. For all directly connected
elements A and B the connection gets removed and instead a
new element C gets created and connected to B. Furthermore, a
new Equals operator gets created receiving A and C as
parameters.
Path-Transformations

Path-Transformations provide the possibility to shorten or
lengthen data model element paths. They are needed because
elements from the source data model, which have to be mapped
to their semantically identical counterparts in the target data
model, might be encapsulated in additional element wrappers.
These wrappers have to be removed if they do not exist in the
target data model. E.g. the intermediate element valueQuantity
in Observation.valueQuantity.value (FHIR) has no counterpart
in Observation[LabResult]/value (openEHR). The
transformation can be configured to either shorten or lengthen
a path. In order to shorten a path, the transformation searches
for nodes Q and R connected by a list of nodes B and removes
the intermediate nodes. The reverse transformation introduces
new intermediate nodes B into the graph between two directly
connected nodes Q and R.
Concept-Code-Mappings

Concept-Code-Mappings map element identifiers of the source
data model to element identifiers of the target data model by
renaming nodes.
Operator-Mappings

Operator-Mappings map operators of the source query
language to operators of the target query language by renaming
nodes.
Resolve-Quantity-Transformations

AQL does not contain quantities as build in types. Therefore,
operators on quantity types have to be exchanged by and-
connected clauses that check the requested value as well as the
requested quantity type (e.g. days, cm) (e.g. [Encounter] A
where A.length > 120 days → [Encounter] A where
A.length.value > 120 and A.length.unit = ‘days’). The
transformation looks for data model elements A contained as a
parameter in an operation Op (with potential further
parameters). The node A get connected to two newly created
data model elements value and unit and gets removed from the
parameters of Op. Additionally, a new equals operator is
created which gets the new unit node and a newly created literal
Y as parameters. The value of Y has to be given as a
transformation configuration and defines the unit of the
quantity to be computed. The new equals node and the Op node
get connected in a newly created and.
Resolve-Interval-Transformations

Similar to quantity types, AQL does not contain intervals as
build in types. Operators on interval types have to be exchanged
by and-connected clauses, that check the requested constraints
(e.g. [Patient] A where A.birthDate in
A.contact[0].address.period → [Patient] A where A.birthDate
> A. contact[0].address.period.low and A.birthDate < A.
contact[0].address.period.high).

Graphs to Queries

After all necessary graph transformations have been executed,
the graph can be translated into the desired target query
language via respective Graph2QueryString writers
implemented by the authors.
The proposed method was tested on manually designed
AQL/CQL queries and on queries contained in the AQL/CQL
documentation. A query was (when translatable) translated into
its respective counterpart and re-translated into its original
language. The original query was compared for semantic

equality to its translated counterpart as well as to its re-
translation into the original query language.

Results

Translations Constraints

The proposed methodology using the currently available set of
graph transformations allows the translation of all CQL/AQL
queries having the following properties: A query has to contain
the data type Patient (EHR in AQL) as a query source. The
query may contain an arbitrary amount of additional data
sources of arbitrary type. A query may return an arbitrary subset
of query sources or data model elements that are reached from
the data sources via paths. The paths can have arbitrary length.
Data model elements can be constrained using the logical
comparators listed below, parametrized with literals or with
other data model elements. A query may contain the data types
Boolean, String, Integer, Decimal, Timestamp, Date,
DateTime, Quantity and Interval. Data model elements or
literals can be processed with operators from the set of mutual
operators listed below.
Translations are only possible for queries containing
exclusively operators which exist in both query languages with
the same semantics and the same interface. These operators
(using their CQL-displaynames) grouped into operator
categories are:

� Boolean operators { and, or, not }
� comparator operators on numeric/date/timestamp

types { =, <, <=, >, >=, != }
� comparator operators on Strings { =, !=, matches }
� operators on lists/iterators { in, exists, with, without }.

All other operators either have to be substituted by appropriate
graph transformations or render a query untranslatable.
CQL does not contain an equivalent to AQL’s contains
operator. This operator, which performs a type matching on a
given to be contained data type, returns the matched child data
element. The operator is substituted by Meronyminity-
Equality-Transformations.
The mutual set of operators is reduced by the following
limitations of the two languages, which could not be substituted
by graph transformations:
AQL contains no arithmetic operators (e.g. +, -, *, /). AQL
comprises a limited set of list operators (e.g. first, last, sort,
count do not exist). It is only possible to access specific list
elements via a given index or via the matches operator. The
contains operator can only be used to constrain the data model
structure and not to check the containment of a single element
in a list (e.g. [ProcedureRequest] A where A.notes contains 'x').
AQL allows no aliased valueset definitions. All valuesets have
to be directly given as parameters to the operator using them,
instead of having the possibility to reference a previously
defined valueset with an alias. CQL, on the other hand, allows
only valueset aliases based on valueset ids but no definition of
valuesets by listing their contained codes. As the current
implementations is restricted to CQL statements instead of
CQL libraries, the usage of valuesets or therein contained codes
still has to be resolved.

Table 1 shows a selection of example queries that have been
automatically translated given proper graph transformation
configurations.

G. Fette et al. / Query Translation Between AQL and CQL130

[Patient] A where A.active = true
and A.gender = ‘male’

select e from EHR e where e/active =
true and e/gender = ‘male’

[Patient] A where exists(A.name
B where B.given = ‘John’)

select e from EHR e contains
composition a[HumanName] where
a/given = ‘John’

[Patient] A with [Encounter] B
such that
not(exists(B.discharge)) and
B.subject = A

select e from EHR e contains
composition a[Encounter] where not
exists a/content[Discharge]

[Patient] A with [Observation] B
such that B.code = ‘Calcium’ and
B.valueQuantity > 10’mg’ and
B.subject = A

select e from ehr e contains
observation a[LabResult] where
a/code = ‘Calcium’ and
a/valueQuantity/value > 10 and
a/valueQuantity/unit = ‘mg’

Figure pictures an example of an CQL query being
transformed into AQL. The query represents a request for
patients having at least one Calcium laboratory measurement
with a value of more than 10. The CQL query is parsed into the
uppermost graph depicted in Figure . Successively,
Meronymity-Equality-Transformations, Path-Transformations
and Concept-Code-Mappings are applied to the graph
(parametrized with the configurations from Table 1, CQL →
AQL). The Meronymity-Equality-Transformation links the
Patient node with the Observation node, which is the required
representation in AQL. The Path-Transformation removes the
valueQuantity node, because in the openEHR data model the
value element is a direct child element of the LabResult
archetype. The Concept-Code-Mappings rename the nodes
Patient and Observation as Ehr and Observation[LabResult],
as those are the semantically equivalent data elements in the
openEHR data model. Finally, the transformed graph is
translated into an AQL query String.

Table 2 – Manually defined configurations used in the
example in Figure . The column headings reference the

nodes from Figure .

CQL → AQL
Path-Shorten-Transformations
Q B R

Observation[LabResult] {valueQuantity} value
Concept-Code-Mappings

Q R
Ehr Patient

Observation[LabResult] Observation
AQL → CQL

Equality-Meronymity-Transformations
A B C

Patient Observation subject
Path-Lengthen-Transformations
Q B R

Observation[LabResult] {valueQuantity} value
Concept-Code-Mappings

Q R
Ehr Patient

Observation[LabResult] Observation

Figure – Translation of an CQL query into AQL. Underlined

nodes denote elements that have to be included in the result

The translation from AQL to CQL goes accordingly with the
transformation configurations from Table 1, AQL → CQL. It is
noted that the order of the execution of the different
transformation types remains the same, so the re-translation is
not according to the reverse direction in Figure , which has to
be considered in the transformation configurations. The AQL
query is first parsed into a graph. Subsequently the Equality-
Meronymity-Transformation creates the child node subject,
connects it to the Observation[LabResult] node, removes the
relation between Ehr and Observation[LabResult] and adds a
new Equals operator with subject and Ehr as parameters. The
Path-Transformation adds the node valueQuantity between
Observation[LabResult] and value. The Concept-Code-
Mappings rename the nodes Ehr and Observation[LabResult]
as Patient and Observation. Finally, the graph is translated into
a CQL query String.

3

3

3
2

3

3

Table 1 – Automatically translated example queries

CQL AQL

G. Fette et al. / Query Translation Between AQL and CQL 131

Discussion

The approach to translate a query into another query to improve
or facilitate its evaluation is known as query rewriting [10]. The
early work on query rewriting is related to view-based
relational database querying and deals with the translation of
queries formulated in the same language for both, source and
target. In recent years query rewriting was as well used in
conjunction with graph data query system, e.g. [11] resembles
the presented approach, whereas there XQuery was translated
into SPARQL.
The discussed graph model and the graph transformations have
been specified and implemented by the authors. Both elements
could be exchanged by a standard from the graph computing
community like e.g. Owl to model graphs and graph
transformation frameworks like GROOVE to model the
transformations.
Although the used graph model is similar to the parser graphs
produced by each of the systems, it was more convenient for
the authors to use a separate model in order to be independent
of possible system specific modeling paradigms.
The concept-mappings and path-transformations could be
substituted by a mechanism using FHIR ConceptMaps, which
encode the mappings from elements of one data model to
equivalent data model elements in a target system.
When applying the presented approach on productive data
models, the configuration of the various transformations could
become cumbersome when the data models are large. It would
be beneficial if some configurations could be automatically
deduced by an analysis of the source and the target data model.
When both data models are annotated with terminology codes,
the configuration of concept-mappings could be deduced
automatically by identifying equivalent data model elements
annotated with the same codes.
An issue that could appear when applying query translations in
combination with concrete query engines system
implementations could be that the translations are semantically
equivalent, but they can contain differences in their syntactical
structure. E.g. the two CQL queries [Patient] A with
[Encounter] B such that B.patient = A and [Patient] A where
exists [Encounter] B where B.patient = A are semantically
equivalent, but a query execution engine could handle the
execution of a with-such-that expression differently than a
where-exists with a nested sub query.
An aspect not yet covered by the presented approach is the
translation of valueset, concept, code and codesystem
definitions. Due to the omnipresence of valueset references in
the query examples of both query languages, the presented
approach could have difficulties to be applied in productive
systems without this issue being solved.
A further aspect not tackled in the presented approach is how
query results are returned by the respective systems. Both
systems have their own method and syntactical encoding for
delivering results. For that topic, proper adapters would have to
be developed as well. The example from Figure for example
returns complete patient objects, which are serialized
differently by the respective systems. In order to prevent
differences in serializations, the return types of translatable
queries could be restricted to primitive types (e.g. patient ids
instead of complete patient objects).
As the presented approach is still work in progress, it can be
extended whenever the query language specifications are
changed or extended and thus set of mutual operators grows.
E.g. the AQL specification already contains announcements of
future language elements like arithmetic operators, an extended
matches operator or alias definitions (i.e. let).

Conclusions

An approach was presented to translate Clinical Quality
Language (CQL) queries into Archetype Query Language
(AQL) queries and vice versa. Several examples were shown to
illustrate the capabilities of the presented apprach and for one
example the translation process was illustrated in detail. As
CQL and AQL do not comprise the same sets of operations, the
translation capabilities of the presented approach are restricted
to a subgroup of possible queries, which have to be composed
of a set of common operators of both query languages. Despite
this limitation, queries expressible in both languages can be
automatically translated, which would allow both query
systems to be transparently included in a distributed research
network of the other type.

Acknowledgements

An implementation of the presented approach in Java is
available at https://gitlab2.informatik.uni-wuerzburg.de
/gef18bg/cdw_querymapper. The authors thank B. Haarbrandt,
A. Zautke and G. Vella for helpful comments. This research
was funded by grant of German Federal Ministry of Education
and Research (Comprehensive Heart Failure Center Würzburg,
grants #01EO1004 and #01EO1504).

References

[1] Prokosch H, Ganslandt T, Perspectives for medical
informatics. Reusing the electronic medical record for
clinical research, Methods Inf Med 48(1) (2009), 38-44.

[2] Mandel JC, Kreda DA, Mandl KD, et al, SMART on
FHIR: a standards-based, interoperable apps platform for
electronic health records, J Am Med Inform Assoc 23(5)
(2016), 899-908.

[3] Murphy S, Weber G, Mendis M et al, Serving the
Enterprise and beyond with Informatics for Integrating
Biology and the Bedside (i2b2), J Am Med Inform Assoc
17(2) (2010), 124-30.

[4] Kalra D, Beale T, Heard S, The openEHR Foundation.
Stud Health Technol Inform 115 (2005), 153-73.

[5] Overhage JM, Ryan PB, Reich CG et al, Validation of a
common data model for active safety surveillance research,
J Am Med Inform Assoc 19(1) (2012), 54-60.

[6] Weber GM, Murphy SN, McMurry AJ, et al, The Shared
Health Research Information Network (SHRINE): a
prototype federated query tool for clinical data
repositories, J Am Med Inform Assoc 16(5) (2009), 624-30.

[7] Hailemichael MA, Marco-Ruiz L, Bellika JG, Privacy-
preserving Statistical Query and Processing on Distributed
OpenEHR Data, Stud Health Technol Inform 210 (2015),
766-70.

[8] Haarbrandt B, Tute E, Marschollek M, Automated
population of an i2b2 clinical data warehouse from an
openEHR-based data repository, J Biomed Inform, 63
(2016), 277-94.

[9] Fette G, Kaspar M, Liman L, et al. Query Translation
between openEHR and i2b2. (in press) Stud Health
Technol Inform (2019)

[10] Calvanese D, De Giacomo G, Lenzerini M, et al. What is
query rewriting?, Proc. of KRDB (2000), 17–27.

[11] Droop M, Flarer M, Groppe J, et al. Embedding Xpath
Queries into SPARQL Queries, ICEIS (2008).

Address for Correspondence
Georg Fette, georg.fette@uni-wuerzburg.de

3

G. Fette et al. / Query Translation Between AQL and CQL132

