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Abstract 

Semantic standards and human language technologies are key 
enablers for semantic interoperability across heterogeneous 
document and data collections in clinical information systems. 
Data provenance is awarded increasing attention, and it is 
especially critical where clinical data are automatically 
extracted from original documents, e.g. by text mining. This 
paper demonstrates how the output of a commercial clinical 
text-mining tool can be harmonised with FHIR, the leading 
clinical information model standard. Character ranges that 
indicate the origin of an annotation and machine generates 
confidence values were identified as crucial elements of data 
provenance in order to enrich text-mining results. We have 
specified and requested necessary extensions to the FHIR 
standard and demonstrated how, as a result, important meta-
data describing processes generating FHIR instances from 
clinical narratives can be embedded. 
Keywords:  

Electronic Health Records, Natural Language Processing, 
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Introduction 

Semantic Interoperability was defined in 2000 as "…integrating 
resources that were developed using different vocabularies and 
different perspectives on the data". Semantic interoperability 
requires that "systems must be able to exchange data in such a 
way that the precise meaning of the data is readily accessible 
and the data itself can be translated by any system into a form 
that it understands" [1].  
Nearly twenty years later, the lack of semantic interoperability 
continues being an obstacle to a more rational and effective data 
and information management in healthcare and biomedical 
research. The authors of [1] had already distinguished between 
vocabularies and perspectives, highlighting the division 
between ontology (“what there is”) [2] and epistemology (“what 
we can know”) [3]. On the level of current health informatics 
standards, this has driven the evolution of two genres of 
semantic resources: 

� Terminology systems (vocabularies, thesauri, formal 
ontologies, classifications), which attach meaning to 
domain terms and elaborate on necessary and 
sufficient properties of (classes of) domain entities;  

� Information models, which are artefacts that provide 
standardized structure (section, entry, grouping, etc.) 
and context (diagnosis, past medical history, 
medication order) for clinical recording scenarios. 

In this paper, we will focus on the latter, particularly on HL7 
FHIR [4], a standard for healthcare information exchange and 
sharing, characterized by its straightforward approach to 
implement interfaces between Electronic Health Record 
(EHR) data and data consuming applications.  
FHIR is based on interoperable building blocks named 
Resources, small data model components defining sets of 
properties that describe and provide structure for domain data 
acquisition. Currently there are approximately 150 resources, 
uniquely identified with Uniform Resource Identifiers (URIs).  
Examples are MedicationRequest (prescription), 
AdverseEvent, Procedure and Condition (problem). They 
constitute a graph of clinical data by explicit inter-resource 
references [5]. For instance, a MedicationRequest resource 
explicitly references its prescriber (a FHIR Practitioner 
resource), its patient (Patient resource), and the drug 
prescribed (Medication resource). A built-in extensibility 
mechanism can enrich existing resource definitions.  
Semantic interoperability within FHIR is provided by explicit, 
detail-oriented, prescriptive guidance, with its interoperable 
meaning anchored in external terminology standards, e.g.  
SNOMED CT, LOINC, or ICD-10. FHIR provides a granular 
way to exchange data using a RESTful style approach [6]. Its 
focus is on providing models for frequently occurring 
documentation and information exchange tasks. FHIR 
resources can be serialized in JSON and XML.  
Looking at EHR systems in use, there is still a persisting gap 
between structured and coded information on the one hand and 
a much larger amount of semi- or unstructured narratives on 
the other hand. It is unrealistic that this textual documentation 
will be largely substituted by structured documentation [7]. 
This is where natural language processing (NLP), in particular 
text mining, comes in.   
This paper addresses the issue how the output of clinical text 
mining systems can be harmonized in FHIR. We identify gaps 
in the current FHIR specification related to content essential 
for text mining. We introduce and discuss specific FHIR 
extensions that allow text-mining results to be represented in 
FHIR without loss. 
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Materials and Methods 

The Text Mining System Health Discovery 

The clinical text mining technology under scrutiny is Health 
Discovery [8] by Averbis GmbH. Health Discovery contains 
over fifty different text-mining annotators for the recognition of 
diagnostic statements, medical procedures, lab values, drugs, 
anatomy, morphology, scores and others. It is available for 
several languages, including English and German. Health 
Discovery bundles annotators in predefined text mining 
pipelines to facilitate the analysis of text genres such as 
discharge summaries or pathology reports. It has been 
successfully used for various use cases, e.g., data driven patient 
recruitment for clinical trials [9], automated coding and billing 
[10], filling of tumour registries, rare disease identification [11], 
antibiotic resistance monitoring [12], radiology report analysis 
[13] and health data de-identification [14].  

UIMA 

Health Discovery is based on the Unstructured Information 
Management Architecture (UIMA) [15], a flexible and 
extensible text-mining framework for the analysis and 
processing of unstructured text. UIMA allows defining text-
mining pipelines consisting of a set of annotators called analysis 
engines. The analysis engines communicate in a pipeline by 
adding or modifying meta-information stored in the Common 
Analysis System (CAS), which, in addition to the metadata, also 
contains the currently processed document. 
In UIMA, all elements to be extracted from texts must be 
predefined. This is done in a so-called Type System, where types 
and their attributes (features) are defined. The most common 
type is Annotation. It comes with the attributes begin and end, 
which specify the text position to which an annotation relates. 
These attributes are inherited by all subtypes of Annotation. 
UIMA is only a framework and does not ship a rich selection of 
components. There are, however, component repositories like 
DKPro [16], which provide analysis engines of well-known text 
mining components. Prominent applications in Healthcare built 
upon UIMA are the DeepQA system Watson [15], the clinical 
Text Analysis and Knowledge Extraction System (cTAKES) 
[17], the medication entity and attribute extraction and 
normalisation tool MedXN [18], and MedTime [19], a software 
to extract and normalize TIMEX3-based temporal expressions 
from clinical text. 

Making a Text Mining System FHIR Compatible 

Currently, no standardized UIMA-based type systems for 
healthcare have found worldwide acceptance. Each text-mining 
provider usually defines its own type system. Interoperability is 
created by exchanging type systems between text mining 
systems – in UIMA, several type systems can be used 
simultaneously as long as their namespaces are unique – and 
mappings between type systems. 
To make a text mining system FHIR-compatible, two basic 
procedures can be chosen: 

� Defining a FHIR-compatible type system [20], or  
� Exposing a FHIR compatible interface.  

We pursue the second approach for the following reason: 
Healthcare data models continue to be the subject of intensive 
development. In the last 2-3 decades, different versions of the 
FHIR standard like Version 2, Version 3, Clinical Document 
Architecture (CDA) and FHIR have been published. There are 
also other healthcare standards like OpenEHR [21]. In order to 
support different standards and their versions in parallel, it is not 
feasible to create and maintain different versions of the text 

mining system with a different data model for each standard. 
Instead, it is sufficient and more effective to provide external 
interfaces to these standards and versions while keeping the 
data model of the underlying text mining system stable. 
In this paper we describe how a FHIR-compatible interface 
looks like and how FHIR needs to be extended to meet the 
requirements of Text Mining. In particular, we will answer the 
following questions: 

1. Which are the right FHIR resources and containers to 
return a text mining result? 

2. How can the document text and text-mining 
annotations such as conditions and observations be 
linked together? 

3. How can typical text mining features, particularly (i) 
text span of an annotation and (ii) its confidence score 
be specified in FHIR? 

4. How can the types of our text mining system be 
mapped to FHIR resources and which challenges 
occur? 

Results 

FHIR Resources and Container for Text Mining Results 

Typically, a text-mining result consists of the document text 
and associated text-mining annotations. The document text is 
usually returned back by the text mining system, mainly for the 
following reason: Text mining annotations contain a begin and 
an end attribute, which specify their exact position in the text 
at character level. Instead of pure text files, the sender often 
wants to analyse text-based documents such as PDF or MS 
Word. The text is then extracted during the text mining 
analysis. The begin and end attributes always refer to the text 
returned by the text mining system, not to the original 
document. The appropriate resource for the document text is a 
Binary resource. A Binary can contain any content, whether 
text, image, pdf, zip archive, etc. 
Text Mining annotations can be represented in a corresponding 
clinical FHIR Resource, such as Condition, 
MedicationStatement, Observation etc. These resources are 
used to record detailed information about conditions, 
diagnoses, consumed drugs or any other observation that has 
direct or indirect impact on the patient’s health.  
In order to return a Binary together with its clinical Resources 
in a single artefact, it has to be grouped into a Bundle. A Bundle 
is a collection of resources useful for a variety of different 
reasons, e.g. returning search results or sending messages. 
Accordingly, different types of Bundles exist, e.g., document, 
searchset or collection. In our case, we need a Bundle of type 
collection. A collection Bundle is a set of resources collected 
into a single package for ease of distribution.  
It is important to understand that a text mining result is not a 
document Bundle in the FHIR sense. FHIR document Bundles 
represent solely structured documents that are authored and 
assembled in FHIR. 

Linking Document Text and Text Mining Annotations: 
FHIR Provenance 

In FHIR, resources in a Bundle have an independent existence 
– they can, e.g., also be accessed using the RESTful API. If the 
Binary was not linked to the clinical resources, it would not be 
possible to identify the origin of a text-mining determined 
resource in subsequent processing steps. Therefore, we need 
another FHIR resource to link both resources, the Provenance. 
Provenance contains, among others, three attributes: entity 
gives details about the source of the data (like a PDF, text…), 
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agent gives details about the algorithm that extracted the data 
(software name, vendor, version...) and target points at the 
created resource (e.g. Condition, Observation, 
MedicationStatement...). For each clinical resource, we also 
specify a Provenance resource. Figure 1 illustrates the resulting 
collection Bundle including clinical and associated Provenance 
resources. 

 
Figure 1– Simplified View of the Provenance Information 

Conveyed in a FHIR Bundle of Type Collection. The Result Is 
Conveyed in a FHIR Bundle of Type Collection. A Binary 

Resource Holds the Source Text (Character Stream) And/or 
the Extracted Text with the Original PDF Where the Text Was 
Extracted. Subsequently All Clinical Resources That Come out 

of the NLP Analysis Are listed. Each of these Resources Is 
Accompanied by a Provenance Resource. 

Specification of Text Spans and Confidence in FHIR 

As mentioned above, text mining annotations usually contain 
begin and end attributes that specify the exact position of an 
annotation in the text. Since there is no FHIR representation for 
these attributes yet, we specified two FHIR extensions, currently 
under approval by the international HL7/FHIR committee. 

Extension Character Range 

The rationale for this extension is to specify, within a source 
text, the place in which an annotation was found. Thus, the 
origin of a text mining annotation can be specified not only at 
document level, but also at word and character level. 
Traceability is an important feature of text mining systems to 
help users gain confidence in text mining applications and 
clinical research based upon text mining results. 
The extension is named character-range. It contains an attribute 
named valueRange of type Range. valueRange itself contains 
the attributes low and high of type SimpleQuantity with the 
purpose to specify begin and end of annotations in text. 
SimpleQuantities always need a unit. Since characters are 
countable, their unit in FHIR is "1": 
"extension": [{ 
    "url": "http://example.com/StructureDefinition/character-
range/0.9", 
    "valueRange": [{ 
        "low": {"value": 201, 
    "unit": 1}, 
        "high": {"value": 219, 
     "unit”: 1}}]}] 

Extension Confidence 

Text mining results may be biased, incomplete or erroneous, 
their enrichment with a confidence score is therefore crucial. 
Especially text-mining systems based on machine learning, 
often provide a confidence value, which estimates the 
probability for the correctness of the annotation. Thus, the 
requested extension (ii) is confidence, specialising the type 
Quantity, stating the accuracy of annotations. The value range 
of a confidence is often, but not necessarily, between 0 and 1: 
   "extension": [{ 
     "url": "http://example.com/StructureDefinition/confidence/0.9", 

     "valueQuantity": {"value": 0.1}}] 

Mapping Text Mining Types to FHIR Resources 

Now that the container, the resources and the necessary 
extensions have been defined, the mapping of text mining 
annotations to FHIR resources can be performed in a 
straightforward way. Both Health Discovery and FHIR know 
the notation of a Concept or CodeableConcept. Concepts exist 
to encode a medical statement with a term from a terminology. 
They typically consist of a code, a preferred term, a code 
system and the version of the code system. In Health 
Discovery, the synonym that is responsible for a match in a text 
(=matchedTerm) is also an attribute of Concept. Table 1 shows 
the mapping between HealthDiscovery.Concepts and 
FHIR.CodeableConcepts. Table 2 gives an overview of the 
terminology bindings used by Health Discovery for different 
Concept types in US English and German. In this work, we 
focus on the mapping of diagnoses, medications and laboratory 
values. Table 3 gives an overview of the mappings between 
Health Discovery and FHIR. 

Table 1 – Mappings between HealthDiscovery.Concept and 
FHIR.CodeableConcept  

Health Discovery FHIR Resource 
Concept CodeableConcept 
.conceptid .code.coding.code 
.dictCanon .code.coding.display 
.matchedTerm .code.text 
.source.split(‘_’)[0] .code.coding.system 
.source.split(‘_’)[1] .code.coding.version 

Table 2 – Terminology Binding in Health Discovery for US-
English and German 

Type US English German 
Diagnosis ICD-10 Clinical 

Modification [22] 
ICD-10 German 
Modification [23] 

Drugs RxNorm [24] ABDAMed [25] 
Ingredients WHO ATC [26] German ATC [27] 
Lab Values LOINC [28] LOINC [28] 

Table 3 – HealthDiscovery Types Mapped to FHIR. Instances 
of (Codeable) Concept Are Marked with an Asterisk (*).  
The Mapping Between Medication.doseFrequency and 
MedicationStatement.dosage.timing (**) Is Not Further 

Specified, as It Is Rather Complex and Beyond this Paper 

Averbis Health Discovery FHIR Resource 
Diagnosis Condition 
.concept* .code* 
.clinicalStatus .clinicalStatus 
.verificationStatus .verificationStatus 
.belongsTo .subject.display 
.side .bodySite.text 
Medication Medication 
.drug.ingredientConcept* .ingredient* 
.doseForm* .form* 
 MedicationStatement 
.status .status 
.drug.strength.value .dosage.doseQuantity.value 
.drug.strength.unit .dosage.doseQuantity.unit 
.doseFrequency** .dosage.timing** 
.administrations* .dosage.method* 
LaboratoryValue Observation 
.parameter* .code* 
.fact.value .valueQuantity.value 
.fact.unit .valueQuantity.unit 
.interpretation .interpretation.text 
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.upperLimit.normalizedValue .referenceRange.high.value 

.upperLimit.normalizedUnit .referenceRange.high.unit 

.lowerLimit.normalizedValue .referenceRange.low.value 

.lowerLimit.normalizedUnit .referenceRange.low.unit 

Assembling the JSON Response 

Figure 2 shows an excerpt of a text mining response for the text 
“The patient had a cold”. “Cold” is recognized as entity of the 
type Condition and annotated with the ICD-10 code “J00 Acute 
nasopharyngitis [common cold]”. 
{"resourceType": "Bundle", 
 "id": "628320", 
 "meta": { 
  "versionId": "1", 
  "lastUpdated": "2018-11-24T15:00:45.182+00:00"}, 
 "type": "collection", 
 "entry": [{ 
   "fullUrl": "urn:uuid:f844ec9a-ef45-11e3-8bb6-
00aa004d0001", 
   "resource": { 
    "resourceType": "Binary", 
    "contentType": "text/plain", 
    "content": "UGF0aWVudCBoYWQgYSBjb2xk"}}, 
  {"fullUrl": "urn:uuid:f844ec9a-ef45-11e8-8bb6-
00aa004d0001", 
   "resource": { 
    "resourceType": "Device", 
    "manufacturer": "Averbis GmbH", 
    "model": "Health Discovery", 
    "version": "5.6.0"}}, 
  {"fullUrl": "urn:uuid:f844ec9d-ef45-11e8-96f5-
00aa004d0001", 
   "resource": { 
    "resourceType": "Condition", 
    "clinicalStatus": "active", 
    "verificationStatus": "unknown", 
    "code": { 
     "coding": [{ 
       "system": "http://hl7.org/fhir/sid/icd-10-cm", 
       "version": "2018", 
       "code": "J00", 
       "display": "Acute nasopharyngitis [common cold]"}]}, 
    "subject": { 
     "display": "anonymous patient"}}}, 
  {"fullUrl": "urn:uuid:f844ec9d-ef45-11e8-96f3-
00aa004d0001", 
   "resource": { 
    "resourceType": "Provenance", 
    "target": [{ 
      "reference": "urn:uuid:f844ec9d-ef45-11e8-96f5-
00aa004d0001"}], 
    "recorded": "2018-11-23T18:34:03.184859+01:00", 
    "agent": [{ 
      "whoReference": { 
       "reference": "urn:uuid:f844ec9a-ef45-11e8-8bb6-
00aa004d0001"}}], 
    "entity": [{ 
      "extension": [{ 
        "url": 
"http://example.com/StructureDefinition/confidence/0.9", 
        "valueQuantity": { 
         "value": 0.1}}, 
       {"url": "http://example.com/StructureDefinition/character-
range/0.5", 
        "valueRange": { 
         "low": { 
          "value": 15, 

          "unit": "1"}, 
         "high": { 
          "value": 19, 
          "unit": "1"}}}], 
      "role": "source", 
      "whatReference": { 
       "reference": "urn:uuid:f844ec9a-ef45-11e3-8bb6-
00aa004d0001"}}]}}]} 

Figure 2– JSON Response. 

Discussion 

Provenance aspects of clinical data have been awarded major 
emphasis in recent years. The growing amount of EHRs 
provides unprecedented opportunity for its re-use in many 
tasks. However, there are various caveats to the use of such 
data, including inaccuracy, incompleteness and unknown 
provenance [29]. This is even more the case when EHR content 
is furthermore processed, such as by text mining systems. A 
dataset in FHIR created by structured data entry done by 
physicians requires a different interpretation compared to a 
seemingly identical dataset produced by text mining analysis 
of an unstructured narrative. For instance, the former one 
might meet the quality level required for triggering clinical 
decision support algorithms, whereas the latter one might not, 
although it may be perfectly suited for supporting cohort 
selection or outcome analyses. Confidence values that qualify 
each text mining generated data element can here be used as a 
valuable filter.  
Quality assurance of text mining systems also requires 
formative assessment cycles in which human experts 
iteratively check extracted data elements against the source in 
order to assess their accuracy. If FHIR-based resources were 
not able to preserve this link between source and extract, this 
gap would have to be bridged outside the FHIR standard. The 
new character-range specification allows embedding text 
mining quality assurance completely within FHIR.  
Our work is original in the sense that it extends FHIR to 
incorporate provenance and quality information. With the two 
extensions for confidence and character-range, FHIR now 
contains all specifications to represent text mining generated 
EHR extracts. Apart from this, two recent publications are 
worth mentioning, that combined FHIR with text mining. In 
[30], a FHIR data model automatically structures prostate 
pathology reports in several natural languages. In [18], the 
FHIR data model was also used to automatically structure free 
text and, in addition, to integrate structured data. In contrast to 
these systems, we argue that – due to different HL7 dialects 
and other standards – it is not necessary to base the underlying 
text mining system internally on FHIR, but to ensure that its 
external interface provides FHIR compatibility, as we have 
demonstrated. Thus, different text mining systems can operate 
in parallel or in combination on different HL7 dialects, feeding 
their results in a standardised information model.  

Conclusions   

FHIR is increasingly accepted as a universal clinical 
information model. It supports provenance assertions of data 
as a critical foundation for authenticity, trust and 
reproducibility. Provenance is especially relevant if datasets 
are created by machines, e.g. by text mining and machine 
learning. We have demonstrated how the output of a 
commercial clinical text mining tool can be harmonised with 
FHIR, preserving important provenance information like 
character span and confidence value. Necessary extensions to 
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the FHIR standard are currently being processed by the 
international HL7/FHIR committee.  
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