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Abstract 

Clinical research studies often leverage various heterogeneous 

data sources including patient electronic health record, online 

survey, and genomic data. We introduce a graph-based, data 

integration and query tool called Carnival. We demonstrate its 

powerful ability to unify data from these disparate data sources 

to create datasets for two studies: prevalence and incidence 

case/control matches for coronary artery disease and controls 

for Marfan syndrome. We conclude with future directions for 

Carnival development. 
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Introduction 

In biomedicine, clinical research studies are conducted to 

understand how best to prevent, diagnose, or treat disease in 

patients. A fundamental step to conducting a clinical research 

study is aggregating data and abstracting facts (i.e., clinical 

variables and treatment outcomes pertinent for defining a patient 

population for study). Patient data containing clinical facts (e.g., 

administrative, clinical, and genomic data) are generated at 

various points of care, and subsequently are stored across 

disparate, siloed resources. For example, large academic medical 

centers may store patient data within clinical registries, electronic 

health records, document stores, survey tools, and biobanks. 

Once study data have been integrated, the patient data must then 

be modeled to accurately represent and classify the patient’s 

clinical case according to each study arm (i.e., case/control). For 

example, in a matched case/control study design, a clinical 

researcher might match patients based on age, biological sex, 

race, and genes, then their clinical data (disease, treatments, and 

outcomes) might be queried to understand disease progression 

and/or the effectiveness of therapeutic interventions. More 

complex match criteria can include periods of time, geographical 

locations, and environmental exposures. These clinical facts are 

stored in structured (hospital billing codes, laboratory, and 

medications) and/or unstructured (clinical notes) data formats. 

Integrating such diverse data and aggregating patient clinical 

facts in a traditional relational database is challenging for several 

reasons. First, complex relationships of the data cannot easily be 

modelled into a sufficiently expressive relational schema. 

Second, complex relationship queries for generating and 

matching patient cohorts using relational databases could be 

hindered by suboptimal query responses (e.g., stalled or 

unfulfilled requests due to multiple-join statements) [1]. Graph 

databases such as Neo4j have been shown to support both 

semantic integration of disparate data [2] while improving query 

times over traditional relational databases such as MySQL [1]. 

Although graph databases have been used to integrate and 

represent biological disease networks (protein-protein 

interactions and drug-target pairs) and represent genotype-

phenotype associations, few have demonstrated how graph 

databases might be leveraged to query heterogeneous data, 

clinical and genomic, to generate patient cohorts for clinical 

research studies [3–6]. 

In this work, we present Carnival, a data unification technology 

that takes a novel approach ― a strictly-formatted property graph 

database with a data model inspired by the Open Biological and 

Biomedical Ontology (OBO) Foundry ontologies ― towards the 

integration of disparate data into a unified graph data resource. 

Carnival leverages this model to support the execution of 

common investigatory tasks, i.e., patient cohort identification, 

automated case/control matching, and the production of data sets 

for scientific analysis. For this work, we aim to 1) provide an 

overview of Carnival’s infrastructure, 2) review a menu of 

predefined operations that can be combined and stacked to query, 

integrate, and reason over clinical and genomic data for creating 

case/control study populations, 3) present two case/control 

cohorts generated by Carnival, and 4) preview how Carnival will 

support semantic interoperability and intelligent queries using 

ontologies, leverage textual variables using natural language 

processing, and improve its usability with a graphical user 

interface for wider adoption by clinical research partners. 

Methods 

We describe the infrastructure, functionality, and utility of 

Carnival for supporting case/control studies from clinical and 

genomic data collected from the University of Pennsylvania 

Health System (UPHS). UPHS includes the first university-

owned teaching hospital (Hospital of the University of 

Pennsylvania est. 1874) and the first hospital in the United States 

(Pennsylvania Hospital est. 1751). As part of the Penn Medicine 

BioBank (PMBB), over 60,000 UPHS patients have been 

consented for their clinical (EHR) and genomic (blood and tissue 

samples) data to be studied for clinical research. These biological 

specimens have been whole-exome sequenced by Regeneron 

Genetics Center and the context of their collection is represented 

using the Ontology for BioBanking (OBIB) [7]. Carnival 

leverages data from UPHS sources (e.g., Penn Data Store, a 

clinical data warehouse) and PMBB to generate datasets for 

clinical research studies. 
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Carnival 

We describe our graph-based data unification tool named 

Carnival, so named because Carnival is a party of information 

and inspired by the squash. Carnival is a multi-layered, Groovy-

powered application that includes data source  adapters (vines) 

that extract lightly-processed data from their sources, a set of 

relational database utilities, and caching functions for querying 

source data, graph data writers (reapers) that attach extracted 

data to the Carnival data store (graph), logical rule engines 

(reasoners) that modify and validate data within the graph, 

sample stratifiers (algorithms) to perform common tasks such as 

case-control matching, and data writers (sowers) that write data 

to external resources (see Figure 1). 

 

 
 

Figure 1– Carnival’s Conceptual Framework 

Vines 

Data are pulled as needed from source systems (i.e., relational 

databases--Oracle, Microsoft SQL Server), application 

programming interfaces (API), or flat files (comma-separated 

value files). Typically, the vine contains methods (functions) that 

converse with the associated data source in its native language 

(e.g., SQL, Java, HTTP, etc.) to extract data. Each method 

produces a single matrix of data. Although there is nothing 

besides scale issues preventing the wholesale transfer of data 

from a source to the Carnival graph, vine functions are designed 

to extract the minimum data necessary for scientific study. For 

example, a vine for an EHR source might include an ICD 

Ever/Never method that accepts a set of ICD codes and patient 

identifiers then returns only the patient identifiers for patients 

whose medical record was assigned one or more of the ICD codes 

in the set. 

Performing queries against large disparate data sources can be 

problematic for a variety of technical reasons: 1) connections can 

be dropped, 2) complex queries can take hours to return a result, 

and 3) queries that contain long lists of codes or identifiers can 

be cumbersome to compose. Carnival provides a suite of 

supportive classes and methods to address these difficulties, 

including SQL utilities for query composition, automated 

caching of vine method results, incremental caching to support 

restartable queries, and monitor threads that estimate time-to-

completion of long-running queries. 

Reapers 

Reapers contain methods that extract data from source systems 

via vines and attach those data to the Carnival graph in a 

standardized way. A reaper method may be parameterized to 

limit its scope and call upon any number of vines to gather source 

data. The execution of the reaper method itself is recorded in the  

 

graph, including the inputs and outputs of the process. For 

example, an ICD Ever/Never reaper method that accepts a set of 

ICD codes and patient identifiers would execute a series of tasks: 

1) create a vertex in the graph to represent the execution of the 

reaper method, 2) record the start time, finish time, and input ICD 

codes, 3) create links to the patient identifiers as inputs, 4) create 

vertices to represent the ICD Ever/Never status for each patient, 

5) link those statuses to the appropriate patients, and 6) create 

links to those statuses from the execution vertex to mark them as 

outputs. 

Graph 

All data about a patient and metadata describing Carnival’s 

processes are represented in Carnival’s property graph structure. 

These highly-connected graphs contain meta information 

regarding the execution of the reapers, algorithms, and sowers 

queried and traversed using Tinkerpop-Gremlin and Cypher. We 

drew upon previous work in ontology modelling as inspiration 

for the Carnival graph data model: the Ontology for Biobanking 

(OBIB), the Ontology for Biomedical Investigations (OBI), and 

the Basic Formal Ontology (BFO) [7–9]. For example, BFO 

introduces the term Process, which denotes an event that occurs 

in a time and place. OBI introduces Planned Process, which 

extends Process to include a pre-defined plan, participants, 

inputs, and outputs. In the Carnival graph, healthcare encounters 

are modelled as planned processes, where participants include the 

patient and clinician and the outputs may be diagnoses and 

medications. 

Reasoners 

Reasoners apply logical rules to the graph to make modifications 

or additions to data. Reasoners execute their logic against the 

graph to validate that the graph is consistent with the reasoner 

logic. For example, a reasoner might assign a Boolean 

classification to patients as having or not having a disease state 

based on whether they have ever been assigned any of a set of 

ICD codes. The reasoner logic would check the ICD Ever/Never 

statuses of each patient and assign the appropriate Boolean 

disease state classification. The validation functionality might 

check that no patients have been assigned to both the have-

disease and does-not-have-disease classes in the final dataset, 

which represents a logical inconsistency. 

Operational Algorithms 

Carnival leverages a graph-based, stratified-sampling 

case/control algorithm to match case patients with control 

patients for clinical research studies (i.e., case and control strata 

groups with equal numbers of males between the age of 35-40). 

Strata creation is managed by a strata manager class that takes as 

input the criteria for group partitioning, creates strata and strata 

group vertices in the graph, and assigns patient vertices to the 

appropriate groups. 

First, the strata sampler groups patients by primary strata. In each 

stratum, patients are exhaustively grouped into disjoint sets. 

Strata can be defined along any singular value extracted from a 

patient: a numeric (e.g., current body mass index [BMI]), a string 

(race), a Boolean (e.g., FBN1 gene loss of function), or an 

enumerated value set (e.g., the existence of 2 or more ICD 

codes). Strata can be defined by a range (e.g., 20-29) for numerics 

and by multiple values grouped into the same strata group for 

enumerated values or strings.  Each stratum also has a group for 

undefined or unknown values. Second, the cohort matcher then 

takes as input: patient cohorts for cases, candidate controls, and 

the primary strata that correspond to the desired matching 

criteria. The primary strata are combined to make a compound 

stratification that characterizes the cohorts for matching. For each 

strata group in the compound stratification, a number of patients 

in the candidate control cohort are selected as controls  
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corresponding to the number of patients in the case cohort from 

the same strata group. Additional criteria can also be provided to 

prioritize which of the controls within a group would be selected 

if there are more potential controls than necessary. For example, 

in a study where specimens associated with the patients will be 

expended, it may be advantageous to prioritize controls that have 

more specimens available to maximize the utility of PMBB 

specimens. 

Sowers 

Sowers extract data from the Carnival stratified case/control 

population graph and write it to external resources (e.g., 

databases, applications, and flat files). Data imported from 

disparate sources and linked in the Carnival graph may be 

queried producing data views useful for export to external 

systems. For example, an investigator may have an approved 

study that monitors patients who have a specific disease state, the 

data for which are tracked in a REDCap project. A Carnival 

sower can query the graph for disease states and write those data 

to the REDCap project via the REDCap API. In this way, 

Carnival supports extract, transform, and load (ETL) operations. 

This functionality can be leveraged to add new patient 

information (e.g., genomic facts into the EHR). 

Clinical Data Elements for Case/Control Matching 

Currently, case/control cohorts can be defined and analyzed 

using several clinical data elements shown in Table 1. 

Table 1– FBN1 Controls 

Clinical Data 

Element 

 
Example 

Demographics current age, 

race/ethnicity 

biological sex, 

Vital signs 

risk factors 

and current BMI, weight, height, blood 

pressure, smoking status 

Medications administered at a given time or during time 

window 

Specimen 

collection 

contexts 

age or BMI at the time of specimen 

collection, medications administered 

before/after date of specimen collection 

Hospital 

administration 

ICD9/10, CPT procedures, DRG codes, 

and fee codes 

Clinical status death status 

Genetic data loss of function genes 

 

Building a Cohort Using Operational Building Blocks 

Carnival contains a number of operational algorithms or building 

blocks that can be combined to support cohort identification and 

case-control selection: graph building, reasoners, and patient 

cohort algorithms. Graph building algorithms aggregate data, 

via vines and reapers, and attach those data to the graph, 

examples include: 

• Instantiating patients and encounters with identifiers 

• Computing phecode assignments according to 

Phewas.org 

• Computing BMI closest to the patient’s PMBB 

recruitment date 

• Obtaining the most recent and earliest healthcare 

encounter for each patient 

• Calculating each patient’s date of birth 

• Gathering each patient’s available specimens. 

Reasoners operate over data in the graph. To support cohort 

building, Carnival contains a patient stratification algorithm that 

assigns patients to specific strata, which currently correspond to 

their current age and biological sex. A case-control matching 

algorithm creates a cohort of controls for a predefined set of cases 

based on a cohort of candidate controls and selected strata. 

Patient cohort algorithms facilitate the creation of patient cohorts 

and perform set operations on them. Current patient cohort 

algorithms include: 

• Creating a cohort based on a set of identifiers, e.g., 

medical record number (MRN), enterprise master patient 

index (EMPI), or encounter identifier 

• Creating a complement cohort that contains all patients 

not in an existing cohort 

• Creating a cohort containing all patients who have been 

diagnosed with any of a set of ICD codes 

• Creating a cohort containing all patients who have a loss 

of function mutation for a given gene. 

We describe how Carnival uses clinical data elements and 

operational algorithms to support two case/control studies 

leveraging patient data from UPHS and PMBB. 

Identifying Markers for Coronary Artery Disease 

For the first case/control study, Carnival was leveraged to  

define the study populations for discovering biological markers 

for coronary artery disease. In the PMBB, blood specimens  

are collected at the time of enrollment. Cases are defined as  

patients without coronary artery disease (CAD) codes (410, I21) 

before enrollment into PMBB, and subsequently, have a 

myocardial infarction (MI), coronary revascularization, or 

another CAD event. Controls are defined as individuals without 

CAD codes who have had no MI or CAD events after PMBB 

enrollment. 

Both cases and controls must have plasma and either buffy coat 

or DNA specimens available. A report of demographic and 

phenotype data relative to the date of enrollment was requested. 

Carnival was leveraged to generate the case/control list and 

report the following patient-specific information: 

• Age at PMBB enrollment 

• Current age 

• Biological sex 

• EHR race 

• PMBB recruitment location 

• Height, weight, and BMI measurement closest to PMBB 

enrollment 

• Count, min, max, and median of lab results for: glucose, 

fasting glucose, hemoglobin A1C 

• Count of distinct dates diabetes codes were assigned 

before PMBB enrollment 

• Code and age of the patient for the first code matching 

the time filter for the most recent CAD codes before 

PMBB enrollment, most recent MI code before PMBB 

enrollment, first MI or CAD code after PMBB 

enrollment, and first revascularization code after PMBB 

enrollment. 

The principal investigator (PI) manually reviewed the report and 

patient charts for the final case selection. When patient cases 

were chosen, Carnival generated two sets of controls. Control 

group 1: a 1:1 control instance matched to the case population on 

biological sex, current age +- 4 years, BMI closest to enrollment 

+- 6 points, and recruitment location. Control group 2: a 

frequency control matched to the case population on sex, 
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recruitment location, current age, and BMI closest to PMBB 

enrollment. 

Defining Marfan Syndrome Study Controls 

For this second case/control study, Cases were predefined by 

using the MRNs of patients provided by the PI. Controls were 

defined by Carnival. The Marfan Syndrome gene loss of function 

data value was critical for defining the control cohort. Candidate 

control matches were queried from PMBB based on age and 

biological sex. For each patient, Carnival determined whether a 

genetic assessment was conducted for the Marfan syndrome 

FBN1 gene and validated whether the outcome was negative to 

ensure that all patients within the control set were FBN1 

negative. 

Results 

We leveraged Carnival to generate cohorts for two diseases: 

coronary artery disease and Marfan syndrome. 

Identifying Markers for Coronary Artery Disease 

Based on the CAD definitions for prevalence and incidence and 

specimen availability, Carnival identified 425 candidate case and 

5,872 candidate control populations. The principal investigator 

conducted chart review to create the final 170 selected cases, then 

Carnival generated the final control groups 1 (n=170 cases) and 

2 (n=60 cases) for these cases. Carnival identified a 1:1 

case/control match (see Table 2). 

Table 2– Coronary Artery Disease Cases and Controls 

Sex Age 
Candi-

date 

Cases 

Selected 

Cases 

Candi-

date 

Controls 

Control 

Group 

1 

Control 

Group 

2 

Female <20 0 0 7 0 0

Female 20-29 0 0 486 0 1

Female 30-39 5 2 681 2 1

Female 40-49 8 7 599 6 2

Female 50-59 13 11 731 13 6

Female 60-70 39 20 814 23 3

Female >70 68 31 450 27 10

Male <20 0 0 1 0 0

Male 20-29 2 2 98 1 0

Male 30-39 3 2 156 2 2

Male 40-49 15 9 272 9 3

Male 50-59 40 24 529 23 5

Male 60-70 92 27 682 30 18

Male >70 140 35 366 34 9

Totals  425 170 5,872 170 60

Defining Marfan Syndrome Study Controls 

Using the exclusion criteria of patients who are not cases (case 

distribution not shown) and who do not have a loss of function 

mutation in the FBN1 gene, Carnival identified a 2:1 control/case 

match resulting in 146 selected controls (see Table 3). 

 

 

 

Table 3– Marfan Syndrome Controls 

 
Sex 

 
Age 

Selected 

Controls 

Candidate 

Controls 

Female 20-40 2 294

Female 40-50 12 300

Female 50-60 10 667

Female 60-70 18 1154

Female >70 20 1718

Male 20-40 4 175

Male 40-50 12 343

Male 50-60 12 1004

Male 60-70 26 1892

Male >70 30 2627

Totals  146 10,174

Discussion and Future Work 

We demonstrated how Carnival’s multi-layered framework, 

OBO foundry-inspired data model, and graph-based 

functionality can be leveraged to generate case/control matches 

and resulting datasets using PMBB and UPHS sources for two 

clinical research studies. We envision expanding Carnival’s 

functionality 1) to improve semantic integration and intelligent 

query of data using ontologies, 2) to incorporate clinical data 

elements generated from clinical texts, and 3) to create a user-

friendly interface to promote wider adoption of this tool by 

clinical research partners. 

Improve Semantic Integration and Query using Ontologies 

Carnival is a graph-based query tool that operates at the data 

level. We have partnered Carnival with TURBO technologies to 

provide richer semantic integration and reasoning among clinical 

data elements [10]. For example, patient diagnoses are currently 

defined using logical rules that operate over discrete diagnosis 

billing codes (e.g., ICD9 or ICD10). A single code rarely 

encapsulates a diagnosis for investigative purposes. Furthermore, 

compiling a list of diagnosis codes relevant to a particular disease 

or disease classification can be a daunting task. To accurately 

identify a diagnosis, TURBO has integrated ontologies (e.g., 

Monarch Disease Ontology) [11], to semantically link ICD codes 

to disease concepts. To provide semantic information services 

(i.e., returning a set of ICD diagnosis codes for a given disease 

classification), we have integrated Drivetrain [12], a TURBO 

technology that uses an RDF triple store and OBO Foundry 

ontologies [13]. This integration has permitted Carnival to 

operate at both the disease classification and diagnosis code 

levels. 

Medication prescriptions have similarly benefitted from 

integration with Drivetrain. The Chemical Entities of Biological 

Interest (ChEBI) ontology [14,15] contains a rich semantic 

network of medication names, ingredients, and roles that 

Drivetrain links with medication order names in the UPHS EHR. 

Carnival operates over these elements, obviating the need for 

investigators to spend time deciphering individual medication 

order names. We aim to provide semantic integration over 

laboratory test results as well, when Drivetrain services for lab 

results become available. 

Incorporate Clinical Data Elements from Clinical Notes 

A wealth of clinical facts are locked within clinical free-text notes 

(e.g., discharge summaries, progress notes, radiology exams, and 

surgical pathology reports) [16]. We aim to integrate outputs 

from natural language processing tools including symptoms, 

signs, treatments, outcomes as well as their associated contexts  
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(negation, subject, temporality, uncertainty) to provide a richer 

clinical profile to infer each patient’s disease state [17–21]. We 

will leverage the Observational Medical Outcomes Partnership 

(OMOP) Common Data Model (CDM) to promote 

interoperability with entities both within and outside UPHS. 

Create a User-Friendly Interface to Promote Adoption 

The current implementation of Carnival leverages server-side 

technology. There is currently a text-based command line 

interface that supports basic operations. Future work will include 

the addition of a web-services API and a browser-based 

Javascript user interface [22]. We will integrate Neo4j-based user 

interfaces to the graph (e.g., Neo4j Browser) [23]. We will also 

employ Javascript libraries (e.g., D3) [24] for graph visualization 

and user-driven data exploration. 

Conclusions 

We conclude that graph-based technologies can be utilized to 

integrate and query disparate patient health data to support 

complex, clinical research studies. 
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