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Abstract. Information theory has gained application in a wide range of disciplines, 

including statistical inference, natural language processing, cryptography and 

molecular biology. However, its usage is less pronounced in medical science. In this 

chapter, we illustrate a number of approaches that have been taken to applying 

concepts from information theory to enhance medical decision making. We start 

with an introduction to information theory itself, and the foundational concepts of 

information content and entropy. We then illustrate how relative entropy can be used 

to identify the most informative test at a particular stage in a diagnosis. In the case 

of a binary outcome from a test, Shannon entropy can be used to identify the range 

of values of test results over which that test provides useful information about the 

patient’s state. This, of course, is not the only method that is available, but it can 

provide an easily interpretable visualization. The chapter then moves on to introduce 

the more advanced concepts of conditional entropy and mutual information and 

shows how these can be used to prioritise and identify redundancies in clinical tests. 

Finally, we discuss the experience gained so far and conclude that there is value in 

providing an informed foundation for the broad application of information theory to 

medical decision making. 

Keywords. Shannon entropy; Relative entropy; Conditional entropy; Mutual 
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Learning objectives 

After reading this chapter, the reader will be able to: 

 

1. Understand the basic concepts of information theory: information content; 

Shannon entropy; relative entropy. 

2. Understand how these concepts can be applied to medical decision making at a 

general level. 

3. Understand how the more advanced concepts, conditional entropy and mutual 

information, could provide deeper insights into the potential redundancies in 

laboratory tests. 

1. Introduction to Information Theory 

Information theory has gained application in a wide range of disciplines, including 

statistical inference, natural language processing, cryptography and molecular biology. 

It covers the study of the transmission, processing, extraction, and utilization of 

information at a foundational, mathematical level. A fundamental goal of information 
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theory is to provide a sound basis for optimising the amount of information that can be 

extracted from a specific situation. Many of the outcomes from the study of information 

theory have been reduced to engineering practice in a wide range of disciplines, from 

Artificial Intelligence and Machine Learning, to cybernetics and complexity science. So, 

the question naturally arises: could it be used to inform the practice of medicine. This is 

the topic of the current chapter. 

Central to Information Theory is the study of situations where one agent (the 

transmitter) conveys some message over a channel to another agent (the receiver). This 

is typically performed by having the transmitter send a series of partial messages. In the 

case of the Internet, for example, the Transmission Control Protocol (TCP) defines how 

a message may be broken down into packets before sending, enabling the resulting 

packets to be reassembled in the correct order by the receiver. Each of these partial 

messages can be thought of as resolving some measure of uncertainty in the receiver as 

to the content of the original message. The measure of uncertainty resolved by a partial 

message is its information content.  
Let us start with a schematic of a general communication system, redrawn after 

Shannon’s original paper [9]. 

 

 

Figure 1. Schematic of a general information system. 

We start with an information source, which generates a message or sequence of 

messages which are intended to be communicated to a destination. The destination is 

assumed to be remote from the information source. Hence, the message needs to be 

converted by a transmitter into a signal that is in a suitable form to be transmitted through 

some channel, after which the received signal is converted back into a suitable format by 

a receiver to enable it to be easily interpreted at the destination.  

The challenge of communication theory is to understand how information that is 

transmitted from the source can be completely and correctly received and interpreted by 

the destination. This is a challenge because in general any communication channel will 

have an associated noise source that may corrupt, to a greater or lesser extent, the 

transmitted signal before it is received (by altering or even losing components of the 

signal). Furthermore, we cannot be certain that the transmitter and the receiver are perfect 

converters of message to signal, and signal to message, respectively. 

In this chapter, we will show how viewing diagnosis as embedded within a 

communication system can lead to an information theoretic perspective on medical 

diagnosis. Each test or intervention can be seen as a partial message leading towards the 

desired complete message that provides sufficient information to confirm a diagnosis. At 

any stage in an investigation, one would then select the next test as the one that would 
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maximise the information gained. The important point about this perspective is that it 

provides a rational basis for identifying which test to perform at each stage of an 

engagement with a patient. 

It is quite straightforward to map the model in Figure 1 onto the specifics of 

telegraphy, radio or television broadcasting, and the internet, for example. However, it 

will be of more interest in the current context if we instantiate the model within a clinical 

setting.  

 

Figure 2. The communication system in a clinical setting. 

We have actually changed very little in Figure 2 compared with Figure 1: the 

information source has become the patient’s state; the destination has become the 

physician who has responsibility for performing the diagnosis of the patient’s state. 

We do still need to keep the model quite general. The transmitter might be, for 

example: 

� The patient themselves, in the context of a consultation; 

� A measurement on the patient; 

� A trained physician or nurse examining the patient; 

� The result of a test performed on the patient. 

Do note the distinction between a message from the patient’s condition that is some 

deviation from what is normal, and the signal that may be transmitted by the patient 

themselves or by a physician or nurse examining the patient. We cannot guarantee that 

the signal is an accurate representation of the original message (or that the transmitter 

has not missed a message, or even invented a message).  

The channel might be, for example: 

� A verbal utterance if transmitter and receiver are in the same room; 

� A telephone line; 

� An internet link; 

� A written communication. 

The task of the receiver is to transcribe the signal into an electronic or written record. 

Finally, the physician is the end point for a sequence of messages that will progressively 

inform a medical diagnosis. 

There are two key points to keep in mind: 

1. Any stage in the communication system may lead to loss or distortion of the 

information in a message as it is transmitted from its source to the physician; 

2. Each message will contain a certain amount of information that will inform 

candidate diagnoses. 

If we can maximise the amount of information in each message, then we should be 

able to minimise the number of messages needed in order to reach a confirmed diagnosis. 
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Performing such a minimisation, of course, presupposes that we do have available 

some measure of information content. This is the topic of the next section. 

2. Information content and entropy 

Before introducing a measure of information content, let us first explore a simple 

example to motivate the precise choice of measure. This is a necessarily brief 

introduction. A next step for the interested reader may be to read a more extended tutorial 

such as that provided in [11]. 

Consider an array of N binary switches, where N could be any integer greater than 

zero. For each switch, we have two possible states. One could think of these as “on” and 

“off”. Correspondingly, we have two possible messages: one indicating the switch is in 

state “on” and one indicating the switch is in state “off”. 

With just one switch, we can store 1 “bit” of information: we just need to receive 

one message in order to determine the state of that switch. We can store 2 bits of 

information with an array of two switches, and we will require 2 messages each of 1 bit 

or one message of 2 bits to determine the state of that array.  

Note that our measure of information content is additive; that is, the information 

content of a single message from an array of 2 binary switches is simply the sum of the 

information content of single messages sent from each of those switches separately. 

In general, with an array of N switches, we will need a message that is N bits long 

in order to determine the internal state of that array of switches. Now, let us also look at 

the total number of states of an array of binary switches.  

For two switches, we have four possible states: {on, on}; {on, off}; {off, on}; {off, 

off}. Correspondingly, we will have four possible messages that will tell us the state of 

the array in a single message. 

In the general case of N switches in an array, we have 2N possible states and 2N 

possible messages. 

Now, if we assume that each switch acts independently, and that each of these 

possible messages is equally likely, then any one message has a probability p = 1/(2N) of 

occurrence. 

Consider an outcome in which a message m of length N is received. The above 

discussion motivates a requirement for a measure of information content that is additive. 

In addition, we have seen that the number of states in a system tends to increase 

exponentially. This suggests the use of a logarithmic function such as that of equation 1: 

Eq 1.  

Substituting our message m with probability of occurrence p(m) = 1/(2N) into 

Equation 1, we get: 

 

Equation 1 is thus returning us our informally proposed measure of information 

content; it is in fact the definition of the Shannon information content of an outcome. 

We now need to generalise this. When a patient presents, that patient’s state is not 

known with certainty. Thus, the possible messages that may be received form an 

ensemble M, with each message  having a probability of occurrence, p(m). We 

use the word ensemble here in a statistical sense. Writing this out more formally, M is a 
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triple (m, AM, PM) where m is a “random variable” that can take on one of a number of 

possible values from an alphabet (a set of legal characters) AM = {m1, m2, …, mK} with 

respective probabilities PM = {p1, p2, …, pK}. That is to say, the probability that m = mk 

for some  is pk. We also require that  for all k, and . 

A measure H(M) on the ensemble M can then be defined which is the average 

Shannon information content of an outcome: 

Eq 2.  

Strictly, this is simply providing us with the expected value of the information 

content in a message m that has been received from the ensemble M. However, the form 

of equation 2 is identical (apart from a constant) to the definition of entropy in the 

statistical mechanics model of thermodynamics: 

 

Here pi represents the probability of a certain microstate of the thermodynamic 

system under consideration, and the sum is over all possible microstates. The natural 

logarithm is used in thermodynamics, but essentially the different base of the logarithm 

together with the use of Boltzmann’s constant kB simply provides a scaling between S 

and H. 

By analogy with the form of this version of Boltzmann’s equation, and the fact that 

the ensemble M in some sense represents the possible states of the system (a person in 

our case) under observation, H(M) is referred to as the (Shannon) entropy of that 

ensemble. As with the Shannon information content, it also has the unit of bits (when 

using logarithm to the base 2). 

Let us look at a couple of general-purpose examples to gain a little more intuition 

about how Equation 2 might be used before moving back to a diagnostic setting. 

Consider an ensemble M in which an outcome is simply a character drawn at random 

from an English document. That is, the random variable m will be instantiated by 

selecting at random a character from an English document where AM = {a, b, c, d, e, …, 

x, y, z, _}. We will not distinguish upper- and lower-case letters, but we do include the 

use of a space character, “_”. PM = {.0575, .0128, .0263, .0285, .0913, …, .0007, .1928}2 

are the respective pis for . 

Using the figures provided, it can be calculated that the outcome m = “z” has 

Shannon information content 10.4 bits, while the outcome m = “e” has information 

content of 3.5 bits. Overall, our English language document has an entropy of 4.1 bits. 

The full table of probabilities and corresponding measures of information content can be 

found in [7]. 

Let us examine this a little more. Providing a clear semantics to Shannon entropy is 

still a matter of debate (see, for example, p. 65 of [8]). Although it has the same form of 

thermodynamic entropy, it does not for example have the same units, as we have 

discussed; equation 2 has units of bits, whilst Boltzmann’s entropy has units of Joules 

                                                         
2 These values were estimated by the late David Mackay for use in his Information Theory, Inference and 

Learning Algorithms text book, Cambridge, 2003. His choice of text from which to estimate the probabilities, 

The Frequently Asked Questions Manual for Linux, of course means that these probabilities are conditional on 

the assumption that this text is representative of the distribution of letters in an English language document. 
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per Kelvin. However, although it would be wrong to say that Shannon entropy is “the 

same thing” as “entropy”, it would be equally wrong to say they are unrelated: the two 

equations only differ by a constant (which defines the scale of measurement), and one 

can begin to reconcile the two if one relates the probabilities of the microstates of the 

system under consideration with the probabilities of the symbols generated by that 

system. Indeed, Jaynes argued in depth that the information theoretic view of entropy 

was a generalisation of thermodynamic entropy [3][4]. We implicitly advocate the same 

position in the context of medical diagnosis. 

Going back to our document example. If we take a new document, pick a character 

at random and that character turns out to be a “z”, a character with one of the lowest 

probabilities of occurrence in a typical English document, then that is providing us with 

more information about it (relative to a “normal” document) than if we had received an 

“e”.  

Two general properties are also worth noting. Firstly, if only one outcome in an 

ensemble M has a non-zero probability of occurring (in which case, its probability must 

be 1), then: 

 

Property 1: H(M) = 0 

 

 (By convention, if p(mk) = 0, then ). 

At the other end of the scale, the H(M) is maximized if all of the outcomes are 

equally likely. An expression for the value for this is quite easy to derive. Let our 

ensemble Me have K possible outcomes. Then we must have for all k, p(mk) = 1/K. 

Substituting this into Equation 2, we get: 

 

 

(Noting that log(1/K) = -log(K) and that log(K) is a constant and so can be factored 

to the outside of the summation). So,  

 

Property 2: H(Me) = log2(K) if all K outcomes are equally likely 

 

In the case of our English document example, if the characters were uniformly 

distributed, then we would have H(Muniform) = log2(27) = 4.76 bits. This is slightly higher 

than that for our representative English language document (4.1 bits). 

Returning to the application of this to medical diagnosis, we can interpret these two 

situations as follows: 

� H( ) = 0 if only one message/positive test result is possible. That is, a specific 

diagnosis has been confirmed.  

� H is at its maximum when all messages are equally possible. That is, we are at 

a state of complete ignorance about the patient’s internal state. 

From this we can see that the challenge of diagnosis is to reduce the entropy to as 

close to zero as possible, and to select tests so that the result of each test (what we are 

calling “messages” here) maximises the reduction of entropy. 

Two points should be emphasised here before we move on: 

1. We are equating the probability of occurrence of messages with the probability 

of microstates of the patient under examination, to justify the usage of the term 

“entropy”; 
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2. We are ignoring uncertainties in the veracity of a message that might be 

introduced by the communication pathway of Figure 2. 

Point 2 is critically important when taking this into a real clinical setting. However, 

for simplicity of exposition we will continue to ignore this issue until the concluding 

section. 

3. Relative entropy and diagnostic tests 

Let us phrase the diagnostic strategy a little more formally. A patient’s specific internal 

state has an ensemble of messages M = (m, AM, PM) associated with it. A message will 

normally be triggered by a specific “interrogation” being performed on the patient. An 

interrogation may be, for example: a question asked of the patient; a test performed on 

the patient; an inspection performed by a nurse. 

Prior to an interrogation the alphabet AM of messages will have a probability 

distribution QM over it. Receipt of a message mk (a positive test result, for example) will 

result in a posterior probability PM over the alphabet of messages. 

To measure the change in entropy, we use the relative entropy, or Kullback-Leibler 
divergence, between the two probability distributions [7]: 

Eq 3.  

 

It is worth noting two properties of relative entropy. Firstly, it satisfies what is 

known as Gibbs’ inequality, with equality if and only if PM = QM: 

Eq 4.  

Secondly, in general it is not symmetric under interchange of the two probability 

distributions. That is, . Consequently, relative 

entropy/Kullback-Leibler divergence does not formally qualify as a measure (hence the 

use of the term “divergence”). 

Expressed in terms of Bayesian inference, DKL(P||Q) is a measure of the information 

gained when a physician’s beliefs are revised from a prior Q to a posterior P following 

some investigation. 

We will use a hypothetical example adapted from [2] to illustrate the approach so 

far. We hypothesise a population of patients with arthritis, framed with a prior probability 

distribution over four possible syndromes. We have two diagnostic tests that are 

available to us, t1 and t2. Table 1 provides the pre-test probabilities and the respective 

post-test probabilities following a positive outcome from each of the two tests. Which of 

the two tests provides the greater information gain? 
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Table 1. Hypothetical Example (adapted from [2]). 

Candidate Diagnosis Pre-test Probability 

(t0) 

Post-test Probability 

(t1) 
Post-test 

Probability (t2) 
Gout 0.25 0.5 0.4 

Osteoarthritis 0.5 0 0.1 

Pseudogout 0.125 0.5 0.4 

Other possibilities 0.125 0 0.1 

 

Using Equation 3, it is straightforward to calculate that the information gain from t1 

is 1.5 bits, whereas the information gain had we chosen to perform t2 would have been 

0.68 bits (to 2 d.p.). Note again, that we make the assumption that the probabilities are 

continuous and so 0.log2(0) = 0. So, in the first case we have: 

DKL(t1||t0) = 0.5xlog2(0.5/0.25) + 0.5xlog2(0.5/0.125) = 0.5x1 + 0.5x2 = 1.5 

In the second case we have: 

DKL(t2||t0) = 0.4xlog2(0.4/0.25) + 0.1xlog2(0.1/0.5) + 0.4xlog2(0.4/0.125)  

+ 0.1xlog2(0.1/0.125) 

         = 0.4x0.6781 + 0.1x(-2.322) + 0.4x1.678 + 0.1x(-0.322) 

          = 0.68 (to 2 d.p.) 

The question naturally arises: why use relative entropy and not merely the difference 

of the pre-test and post-test entropies as measured using Equation 2. The latter was 

indeed proposed in early discussions on the use of entropy in medical decision making. 

However, Asch, Patton and Hershey concluded that it “fails to capture reasonable 

intuitions about the quantity of information provided by diagnostic tests” [1]. This point 

was reiterated in [2], which shows that relative entropy captures those intuitions more 

effectively. Kullback and Leibler [5], of course, provide a more formal justification of 

what we are calling relative entropy, as a sufficient statistic for discriminating between 

two probability distributions. 

Let us now take a look at how these concepts from information theory might act as 

aids in medical decision making. 

4. Shannon entropy and binary outcomes 

Many laboratory tests are designed to assess the presence or absence of a disease state; 

a binary outcome. We can take a coin flip as a reference point, with the outcomes being 

heads or tails. Now, consider a collection of coins that are biased to some extent. That is, 

each coin will have a probability p that the outcome is a heads, with p varying over the 

collection between 0 and 1. 

For a given coin C, from Equation 2 noting that the probability of a tails will then 

be (1 – p), entropy is: 

Eq 5.  
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We can see that the entropy varies between 0 and 1, with a maximum at 1 when 

 (see figure 3). 

 

Figure 3. Variation of Entropy vs probability for a biased coin. 

Think of the coin flip as a test on the internal state of a patient. A “heads” says the 

patient may have the disease, a “tails” says the disease is not present. If the coin is 

unbiased then as a test it is not helping us; all internal states are equally possible. We 

need a test where the entropy is close to 0 or 1 in order for us to be able to gain anything 

informative about the internal state of the patient. 

Vollmer [13] explored the use of entropy to analyse the information content of a 

number of laboratory tests. He demonstrated how the concepts from information theory 

can be used as an aid to evaluating and understanding laboratory test results. We will use 

just one example to illustrate the point by using Figure 3 as a reference point. 

Stadelmann et al [10] reported that the probability of 10-year mortality for malignant 

melanoma could be estimated from tumour thickness t using the following formula: 

 

In Figure 4, we plot H vs tumour thickness t, using Equation 5. 

We can see that over quite a wide range of values, with median , tumour 

thickness provides limited information about the outcome. 
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Figure 4. Entropy as a function of tumour thickness t (in mm) as a test for 10-year fatality from malignant 

melanoma. 

5. Using information theory to prioritise laboratory tests 

We are beginning to build up a number of approaches to using techniques for assisting 

with the choice of diagnostic tests in a clinical setting. First, we used relative entropy to 

discriminate between two candidate tests. Then we looked at the variation of entropy 

with the outcome of some diagnostic test (for a binary outcome) to identify the range of 

outcomes for which the test is informative. It should be emphasised that these are not the 

only tools available, but published work to date has argued for their value as additional 

tools that may aid in decision making. 

Lee and Maslove [6] made the case that an information theoretic approach could 

have particular value in the case of identifying redundancy in tests in an intensive care 

unit (ICU). Parsimony in the case of blood tests is particularly important in the ICU 

context as repeated bloodwork can:  

Cause anaemia and increase the need for blood transfusions; 

Cause patient discomfort; 

Disrupt sleep; 

Lead to delirium. 

The challenge, then, is to identify which blood tests are the most informative at a 

system wide level. A key issue here is that there may be some level of redundancy 

between laboratory tests; that is, especially over time, some tests may add little 

information over previously conducted tests. In cases where we can identify that there is 

a high degree of mutual information between tests (either through the same test being 

repeated too frequently, of for two different tests having too strong a dependency on 
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common information), then we have an objective basis for reducing the number of tests 

performed. 

Two additional concepts were used in Lee and Maslove [6]. The first of these was 

the conditional entropy of X given Y. This measures the average uncertainty about a 

random variable x that remains when y is known (x and y being the respective random 

variables for the ensembles X and Y). It is defined as: 

Eq 6.  

Referring back to the definition of an ensemble, AX is the alphabet of the ensemble 

X; that is, the set of legal values of the random variable x. Similarly, AY is the alphabet 

of the ensemble Y. 

A related concept is the mutual information between X and Y. This measures the 

amount of information that x conveys about y, and is defined as: 

Eq 7.  

Note that we have followed the definitions as given in Mackay [7]. 

Lee and Maslove extracted laboratory test results from MIMIC II, a fully 

anonymised public database. They analysed a total of 29,149 ICU admissions, 

investigating the following laboratory tests: haematocrit; platelet count; white blood cell 

count (WBC); glucose; HCO3; potassium, sodium; chloride; BUN (Blood Urea 

Nitrogen); creatinine; and, lactate. Overall, their findings strongly supported the view 

that a significant amount of the bloodwork performed in ICUs is unnecessary. This had 

previously been discussed in [14], but Lee and Maslove were able to quantify the level 

of redundant information content. As a specific example, they found a high level of 

redundancy in information between the tests for BUN and creatinine; suggesting that if 

one is known, the other can be inferred with reasonable confidence. Furthermore, their 

analysis indicated that given the choice, it would be better to prefer BUN over creatinine. 

Of course, clinical judgement will always be needed but this information theoretic 

approach does provide an objective foundation to an informed choice. 

6. Discussion 

We have shown in this chapter that information theory can have value in informing 

medical decision making. We have drawn on a number of studies in order to illustrate 

this. However, there is one area where we do beg to differ with most of those studies. 

Many of them bring in additional terminology to try and provide an intuitive semantics 

to some of the concepts in information theory; notions of “surprise”, “closeness to 

certainty”, perhaps a tendency to try and equate entropy to uncertainty. One can 

understand this. Within classical thermodynamics, entropy is perhaps one of the hardest 

concepts to gain a feeling for. However, we have been careful to refer only to measures 

of information and entropy. We have briefly alluded to an equivalence between Shannon 

entropy and entropy from statistical mechanics through associating the messages that can 

be potentially received from a patient with the internal microstates of that patient. 
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The paper by Tribus and McIrvine [12] is a good starting point for a deeper study of 

the conceptualisation of Shannon entropy, and could perhaps be read after the tutorial 

[11] that was mentioned earlier and the papers by Jaynes [3][4]. 

We do believe that the time is ripe to propagate a deeper understanding of 

information theory through practitioners of health informatics. The potential for 

significant enhancements in the rigour of medical decision making is waiting to be 

realised. However, some stronger guidelines do need to be developed for its usage. We 

have described a number of different strategies and there would be real value in 

documenting a common foundation that would inform all of these. In addition, we would 

emphasise the need to explicitly model the “noise” that is inherent in the communication 

model. We have included this in the communication model at the beginning of the 

chapter, and it is an important but often neglected factor in the risk of misdiagnosis of a 

patient. 

Teaching questions for reflection 

1. Can you think of a clinical setting from your own experience where information 

theory might have usefully informed your choices? 

2. Do any of the examples provided in this chapter have more mainstream 

statistical methods of achieving the same result? 

3. What do you feel are the barriers to the adoption of information theoretic 

approaches in the wider community? 
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