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Abstract. Eddy Currents (ECs) Non Destructive Testing (NDT) is widely used
to determine the position and size of flaws in metal materials. Due to difficulties
in estimating these parameters via inverse algorithms based on physical models,
approaches focused on Artificial Neural Network (ANN) are nowadays of great
interest. The main drawbacks of these techniques still reside in the complexity of
the numerical models and the large number of simulated data needed to train and
test the ANN, leading to a considerable amount of calculation time and resources.
To overcome these limitations, this article proposes a new approach based on a
data augmentation procedure via Principal Component Analysis (PCA) applied to
numerical simulations.
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1. Introduction

The goal of Non Destructive Testing (NDT) is to determine the position and size of
structural flaws, in order to measure the quality and evaluate the safety of materials [1].
Various techniques, presenting different advantages and drawbacks, are used in NDT,
including Ultrasonic Testing (UT), Eddy Currents (ECs), radiography, penetrating testing
and thermography [2, 3]. Generally NDT make use of ECs to test metal materials [4–6],
but these methods are limited to surface or sub-surface flaws because of the so called
”skin effect”. Other techniques based on UT are instead affected by the presence of ”blind
zones” in the ultrasonic beam, which could impair the detection of flaws too close to the
surface of the material under test, if not specific coupling is used (i.e. wedges). Hence,
this article represents a first step for a combined use of ECs and UT, with the ultimate
goal to exploit the complementary between these two approaches. The present work
focuses on the ECs part, while the combination with UT is still object of current study.

More in detail, ECs are generated by an electromagnetic field induced into the ma-
terial under test. Variations on the coil impedance are eventually monitored to detect and
characterize defects [7]. Physical models describing ECs can be quite complex, and es-
timations of flaw parameters like length and depth is not always possible [8]. As alter-
native, many approaches rely on Machine Learning (ML) methods, employing Artificial
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Neural Networks (ANNs) [9–19], as they can perform any function if enough training
data are provided [20–22], without requiring a physical model. Moreover, due to the flex-
ibility of these algorithms, ANNs represent an interesting candidate for future integra-
tion with UT data. Because building an exhaustive experimental data-set can be difficult,
numerical simulations are often used to obtain a training data-set. Among the different
possible ways to build a simulated data-set, Finite Element Method (FEM) have been
employed here. In detail, the ECs signals, expressed by the coil complex impedance, are
derived following the electric vector potential and magnetic scalar potential T−Ω formu-
lation [23]. This approach, detailed in Section 2.1, focuses on ECs propagation through
Aluminum blocks with a large variety of Side Drill Holes (SDHs). Unlikely, the entire
procedure needs a significant amount of calculation time and resources.

To overcome this limitation, this article presents a new approach based on data aug-
mentation algorithms via Principal Component Analysis (PCA). The aim is to reduce the
number of simulated flaws needed to build the ANN training data-set, significantly re-
ducing computing time and resources. The PCA factorization, presented in Section 2.2,
aims to concentrate useful information in a small data-set [24]. The data augmentation
procedure based on 3D interpolations over the Principal Components (PCs) is also pre-
sented in Section 2.2. The collected original and augmented data-sets are employed to
train an ANN whose architecture is presented in Section 2.3. Results are reported in Sec-
tion 3, showing that data augmentation allows to reduce the simulated training data-set
without deteriorating the ANN estimations.

2. Method

2.1. Eddy Currents Simulations in Presence of Side Drill Holes

In this paragraph, the FEM �T −Ω formulation [23] is used to obtain signals from ho-
mogeneous Aluminum blocks containing SDH. The electrical conductivity and magnetic
permeability are respectively set to σ = 37.7 MS.m−1 and μr = 1. This formulation al-
lows to compute the induced currents �J, the electric field �E, the magnetic induction �B
and the magnetic field �H. The resistance and reactance of the simulated inductor are re-
spectively calculated through the active and reactive dissipated power, referring to Eq.
(1) and Eq. (2). Eventually, the impedance variation of the probe due to the presence of
the flaw is calculated. The dimensions of different cylindrical flaws vary with a radius
from 0.6 to 8 mm and depth from 0.1 to 4 mm (see Figure 1), building a data-set of 3000
different cases. The simulated ECs probe is composed by a 2.25 mm height coil with in-
ner and outer radius of 2.22 and 2.48 mm, driven by a sinusoidal signal at 1 kHz. Air gap
is set to 0.18 mm. The probe response is recorded every millimeter along the inspection
direction. Examples of simulated signals interacting with SDH from 1 to 5 mm radius at
1 mm depth are depicted in Figure 2. A workstation equipped with Intel I7 Processors,
NVIDIA Quadro P3000 Graphic Computing Units (GPUs) and 16 Go of RAM has been
employed to build the data-set, requiring a calculation time of approximately 2000 hours.

RI2
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∫
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�E · �JdDc =
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∂ t
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∫
D

μ−1�B ·�BdD. (2)
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Figure 1. Example of simulated
Aluminum block containing a
Side Drill Hole (SDH).

Figure 2. Examples of resistance and reactance ob-
tained simulating five Side Drill Holes (SDHs), with
radius from 1 to 5 mm at depth of 1 mm.

2.2. Data Augmentation Based on Principal Component Analysis

This section shows the data augmentation procedure used to process the previous simu-
lated signals. As mentioned in the Introduction, this method is based on Principal Com-
ponent Analysis (PCA) factorization. In detail, PCA is a statistical method that uses an
orthogonal transformation to translate potentially correlated observations into linearly
uncorrelated variables called PCs. This transformation is defined in a way that the first
PCs present the largest possible variance, and each succeeding component in turn has the
highest variance possible in the orthogonal basis [24]. As example, Figure 3 depicts the
radius (top graph) and depth (bottom graph) evolution in function of the two PCs. From
this representation, a data augmentation algorithm is developed in order to create addi-
tional artificial data at given depth and radius. To start the process, a user-defined depth
is selected among the simulated ones. Afterwards, the first PC for a new augmented data
point at the desired radius and selected depth is computed with cubic one dimensional
interpolation [25]. This interpolation is conducted over the first PCs of the simulated ra-
dius at the selected depth. Subsequently, the second PC of the new augmented data point
is calculated through linear two dimensional interpolation between the two PCs of the
simulated radius at the selected depth and the already interpolated first PC belonging to
the new point. Following this procedure, the amount of data composing the augmented
data-set can be multiplied by a user-defined factor. As example, Figure 4 shows the new
data-set augmented by a factor of five.

2.3. Artificial Neural Network Architecture and Performance Evaluation

Artificial Neural Networks (ANNs) are proposed in this article to estimate radius and
depths from ECs signals, offering an alternative to inverse problems procedures based
on physical models. Generally speaking, an ANN is composed by basic interconnected
computing units trained to perform a given function. An example is given in Figure 5,
which shows an ANN composed by NE inputs, an hidden layer of N neurons and NS out-
puts. Each neuron returns the inputs weighted sum Sv(k) or Sw(k), according to the pre-
defined activation functions fv or fw, as indicated in Eq. (3). Weights vi j and wi j, firstly
randomly initialized, are calculated by minizing an error function defined as the differ-
ence between the network outputs SW and the desired ones T . To do so, a strategy based
on error back-propagation has been implemented through the Levenberg-Marquardt al-
gorithm [20, 21, 26]. Eventually, the ANN performance is calculated in function of the
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Figure 3. Simulated flaws radius (top graph) and
depths (bottom graph) represented in function of the
two Principal Components (PCs).

Figure 4. Augmented data for flaws radius (top
graph) and depths (bottom graph) represented in
function of the two Principal Components (PCs).

Mean Squared Error (MSE) between estimated and real SDHs parameters, following a
10-fold cross validation approach. For that purpose, the simulated data-set has been split
into ten groups evenly distributed through the SDHs parameters space, with validation
samples evenly distributed inside each training data-set.

In the present study, the ANN is composed by two inputs corresponding to the two
first PCs extracted from the simulated signals, as the cumulative sum of eigenvalues
shows that they cover 99% of the PCA space information. This choice also reduce the
number of weights composing the ANN, and consequently the number of training sam-
ples necessary for the optimization process. The ANN inputs are connected to an hidden
layer of 20 neurons. This value has been set empirically. The final layer is composed by
two outputs neurons leading to radius and depth estimations. The ANN inner and output
activation functions, respectively fv and fw, are reported in Eq. (4), in order to form a
universal function estimator [20, 22].

Eventually, each training data-set of the 10-fold cross validation is progressively
decimated until a factor of five in order to evaluate the proposed data augmentation pro-
cedure. For each decimation factor, a first ANN is trained with the decimated training
data-set and a second one with augmented data. For both, the corresponding test data did
not change. As last step, the MSE is monitored in function of the decimation factor. The
main results are reported in the next section.

Sv(k) = fv

(
NE

∑
n=1

vnk×E(n)

)
and Sw(k) = fw

(
N

∑
m=1

wmk×Sv(m)

)
, (3)

fv(x) =
2

1+ e−2x −1 and fw(x) = ax+b. (4)
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Figure 5. Scheme of an ANN composed by NE inputs, an hidden layer of N neurons and NS outputs.

3. Results and Discussion

This section presents the different radius and depth estimations obtained using the pro-
posed data augmentation procedure presented in Section 2.2 applied to the ANNs. In
detail, the simulated training data-set is decimated by a factor varying from two to five.
Radius and depth estimations accuracy is monitored over the test data-sets through 10-
fold cross validation while each training data-set is progressively decimated, as shown in
Figure 6. The ANN error evolution using the augmented data-set, where decimated data
are replaced by augmented ones, is reported in Figure 7. Using the decimated data-set,
for a decimation factor of five an average error of 50% is recorded over the fifty train-
ing. This high error value was expected as the ANN has been trained with a reduced
data-set and tested on the original test data. The best performance was reached at the
error of 7.5% (see Figure 6). Always referring to a decimation factor of five, using the
augmented data-set an average error of 3% and minimum error of 2% are recorded (see
Figure 7). Moreover, the estimations error variance is drastically reduced using the aug-
mented data-set. Eventually, more complex ANN architectures have been tested, without
registering significant improvements in the estimations accuracy. To complete this sec-
tion, it is important to mention that the creation of the augmented data-set employed only
400 hours of calculation time, instead of the 2000 hours needed to build the original one.

4. Conclusion

Artificial Neural Networks (ANNs) are efficient tools largely used for Eddy Currents
(ECs) Non Destructive Testing (NDT). One of their drawbacks still resides in the amount
of training data needed, often leading to significant calculation time and resources. To
overcome this limitation, a data augmentation method based on Principal Component
Analysis (PCA) has been presented in this article. The proposed procedure allows to re-
duce the time needed to build the training data-set by replacing simulated flaws by arti-
ficial ones, without deteriorating ANNs performances. Promising results for Side Drill
Hole (SDH) radius and depth estimations are compared in terms of Mean Squared Error
(MSE). The proposed method also reduces the ANN estimations error variance, facilitat-
ing the training procedure. As future goal, the authors count on validating the ANN per-
formances with experimental data. The ultimate goal will be to couple ECs and ultrasonic
pulse-echo signals, exploiting the advantages given by the ANNs.
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Figure 6. Maximum (+), mean (o) and minimum (x)
MSE obtained decimating the training data-set.
For a decimation factor of five, the radius and depth
estimations present an average error of 50%, within
a minimum value of 7.5% and a maximum of 190%.

Figure 7. Maximum (+), mean (o) and minimum (x)
MSE obtained using data augmentation. For a
decimation factor of five, the radius and depth es-
timations present an average error of 3%, within a
minimum value of 2% and a maximum of 4.6%.
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