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Abstract. This paper proposes a multi-channel internet of things 

(IoT)-based industrial wireless sensor network (IWSN) with 

ensemble-features fault diagnosis for machine condition monitoring and 

fault diagnosis. In this paper, the rolling bearing is taken as an example of 

monitored industrial equipment due to its wide use in industrial processes. 

The rolling bearing vibration signals are measured for further processing 

and analysis. On-sensor node ensemble feature extraction and fault 

diagnosis using Back Propagation network are then investigated to 

address the tension between the higher system requirements of IWSNs 

and the resource-constrained characteristics of sensor nodes. A two-step 

classifier fusion approach using Dempster-Shafer theory is also explored 

to increase diagnosis result quality. Four rolling bearing operating in cage 

fracture, rolling ball spalling, inner ring spalling and outer ring spalling 

are monitored to evaluate the proposed system. The final fault diagnosis 

results using the proposed classifier fusion approach give a result 

certainty of at least 94.21%, proving the feasibility of the proposed 

method to identify the bearing-fault patterns. This paper is conducted to 

provide new insights into how a high-accuracy IoT-based 

ensemble-features fault diagnosis algorithm is designed and further giving 

advisable reference to more IWSNs scenarios.  

Keywords. IoT, wireless sensor networks (WSNs), fault diagnosis, BP 

network, Dempster-Shafer theory 

1. Introduction 

Machine fault diagnosis is becoming increasingly important to meet the higher 

demand of safety, reliablity and efficiency in many industrial areas. [1, 2]. As the key 

components of machinery, the rolling bearings have been widely applied in most 

industrial sectors, [3]. Due to artificial errors, material defects, and inadequate 
operations of the bearing, various incipient defects of rolling bearings may occur, and 

potentially lead to a series of unforeseen damages [4]. Hence, bearing-fault diagnosis is 

of paramount significance to improve the availability, increase the operating efficiency, 

and ensure the safe operation of the mechanical system [5].                

Generally, bearing fault diagnosis depending on on-line monitoring vibration 

signal of critical devices includes three stages: signal processing, feature extraction, 
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and classification recognition [6]. Currently, in many industrial fields, bearing fault 

diagnosis relies on the wired systems, which features as high reliability, but expensive 

maintenance cost, time-consuming [7]. Alternately, the wireless sensor networks 

(WSNs) have many inherent advantages including less weight, distributed operation, 

ease installation and relatively low-cost manufacturing, which make them as a 

promising approach for fault diagnosis [8]. As a new technology, the WSN has drawn 
more attentions in structural health monitoring (SHM) and NDT&E areas and 

numerous researchers have yielded some achievements [9-11]. Our previous work 

demonstrated a new multi-channel MEMS-based Low-Power Wide-Area Network 

(LPWAN) incorporating LoRa with NB-IoT for machine vibration monitoring [12]. 

Due to the constrained resources including limited computational ability, 
communication bandwidth and battery energy in WSN monitoring systems, the on-line 

feature extraction[13] and fault diagnosis is a promising approach to reduce the 

quantity of transmitted data, save energy and prolong node lifetime. 

In WSN, the single sensor cannot capture more useful data for device fault 

diagnosis. In this case, the quality of IWSNs and the diagnosis uncertainty are impacted 

in noise and interference environment. However, if different sensors are adopted, the 
measurement accuracy of data fusion can be enhanced. Data fusion based on multiple 

sensors can effectively reduce the amount of data information which saves the 

resources and energy of the measuring data. The data fusion techniques such as the 

Bayesian method [14] and fuzzy data fusion [15] have been reported. As a new 

promising data fusion technique, the Dempster–Shafer theory does not require the 

knowledge of the prior probability and conditional probability relationships of data. 
This method based on wired sensor systems for fault diagnosis has been applied on 

induction motor [16], diesel engine cooling system [17], and railway track circuit [18]. 

The method has been proved as an efficient classifier fusion approach to increase 

diagnosis result quality[19]. 

In this paper, the following design strategies have been adopted to explore the 

applicability of data fusion for fault diagnosis in WSNs.  
1) We propose a new IoT-based Ensemble-Features IWSN for machine fault 

diagnosis. A local-processing distinct ensemble -extraction algorithm in time-domain 

and frequency-domain is presented, which contributes to the low power consumption, 

low cost, and covering all the typical characteristics of vibration signals and current 

signals. 
2) We also extends the previous WSN data fusion by applying Dempster–Shafer 

theory to for industrial condition monitoring and fault diagnosis.  

The remainder of this paper is organized as follows. The system architecture and 

implementation methodology is briefly introduced in Section 2. The experimental 

evaluation of the proposed system is given in Section 3. Finally, Section 4 presents the 

overall conclusions. 

2. System Architecture and Implementation 

The rolling bearing condition fault diagnosis system with two-classifier data 

fusion is illustrated in Fig. 1. This IWSN consists of multi-channel sink node and 

multiple sensor nodes. Some sensor nodes measure the vibration on the head of the 

motor while other sensor nodes acquire the stator current signal. End node can achieve 

the signal conditioning, data acquisition, feature extraction (vibration and current 
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signal), while the multi-channel sink node makes data fusion decision and local fault 

classification. The diagnosis results are displayed on the centralized computer.  

 

 

Fig.1 Schematic diagram of the proposed system 

2.1. The LoRa-based Multi-Features Extraction Sensor Node (LMESN) and sink node 

As is shown in Fig.1, the LMESN is mainly consisted of data acquisition unit, 

wireless communication unit, wireless unit, power module. The core of data acquisition 
unit is TI ADS8688AT chip having 16-bit resolution Analog-to-Digital Converter 

(ADC) and conversion rate of up to 100 kHz . With regard to the data sensing unit, the 

ADXL345 micro-electromechanical systems (MEMS) accelerometer with 12-bit 

resolution of measurement ranging from ±2 g  to ±16 g and 3.9 /mg LSB sensitivity is 

integrated into the LMESN. The collected data are sent to the local-processing feature 

extraction unit for performing the feature extraction of vibration signal. As for the 

wireless communication, a low-power RF chip Silicon SX1278 based on LoRa 

protocol, which can offer a theoretical maximum transfer speed of 500 kbps  . The 

SX1278 in wireless unit is connected to STM32F407 processor through SPI ports for 

exchanging commands and transmitting wireless data. Our previous work has proposed 

a multi-channel sink node integrated multiple LoRa modules and NB-IoT modules for 
machine vibration monitoring[12].   

 

        
(a)                                        (b) 

Figure 2. The architecture of (a)LMESN and (b)multi-channel sink node 

2.2. Feature-extraction Design  

As shown in Fig.3, the architecture of the rolling bearing is consisted of the rolling 

ball, cage, inner ring and outer ring. In this respect, D  is the bearing pitch, d is the 

diameter of rolling ball and  is the angle between the forced direction of rolling ball 

and the inner and outer vertical lines. Four common faults of the rolling bearing are 
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F1=“cage fracture,” F2=“rolling ball spalling,” F3=“inner ring spalling,” and 

F4=“outer ring spalling” respectively. 
 

 

Figure 3. Structure of a rolling bearing 

 

This sensor node extracts the time-domain data features for fault diagnosis from 

the raw digital data stream. The time-domain characteristic parameters mainly include 

dimensional parameters (mean value, peak value, root mean square value, square root 

amplitude) and non-dimensional parameters (tolerance index). Ten frequently 

occurring frequency components (20480 samples within one fast Fourier transform) 
were counted and selected as the fault features in the frequency domain. These fault 

features will be used to classify the healthy rolling bearing. The definition of these 

parameters is shown in Table 1.  

Continuous amplitude monitoring of the stator current signal is used to identify 

motor load changes and find the abrupt change of load. In addition, periodic load 

torque changes with the rotational speed can affect the stator current signal spectrum 
and produce the current harmonics. In this paper, the load changes are tested by the 

modulation of a resistor connected to a generator used as a load, which is not a cyclic 

load variation, and do not give other current harmonics. As for the stator current signal, 

peak-to-peak amplitude and variance value in the time domain are selected as features 

for fault diagnosis. The selected fault features in this experiment are summarized in 
Table I. 

 

Table 1. Dimensional and non-dimensional parameters of vibration and current signal 

Signal   Time Domain Frequency Domain 

Vibration  

Dimensional  

parameters 

Peak value ( )
pv i
x max x      

Mean value 
1

( ) /
N

i

i

x x N



      

Root mean square value  

2

1

( ) /
N

rms i

i

x x N



     

Square root amplitude  
2

1

( ) /
N

r i

i

x x N



    

(2,3) 
b
f ,   (5,6) 

b
f ,   

(7,9) 
b
f ,   (11,13) 

b
f ,   

(15,17) 
b
f ,   (18,20) 

b
f ,   

(21,23) 
b
f ,   (26,62) 

b
f ,   

(68,93) 
b
f ,   >93 

b
f  

 
Non-dimensional 

parameters 

Kurtosis index       

4

1

( ) /
N

i

i

x N


       

Current  Dimensional  
parameters 

Peak value ( )
pc i
x max x  n/a 

*  ( 1~ )
i
x i N is a series of discrete signals (N is data points), the frequency component is about 100Hz, 

twice of the line frequency. 
b
f  is the resolution of FFT, 5

b
f Hz  
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2.3. Neural Network Classifier 

In this paper, a BP neural network is used to achieve local fault classification. It 

includes several hidden layers and output layers corresponding to five rolling bearing 

working condition. The log-sigmoid function is selected as the hidden layer and output 

layer neuron activation function which is defined as: 

1
log ( )

(1 exp( ))
sig n

n



 

 (1) 

The input vibration or current signals of the neural network are 16 fault features 

including 10 frequency features, and 6 time-domain features (
1
x ,

2
x ,...,

16
x ). In the 

classifier, the output range of the neural network classifier was (0, 1) which indicates 

the diagnosis probability. The training error of the neural network was set at 0.01which 

can be embedded in the local classifier on the sensor node for online primary fault 

diagnosis. The corresponding ideal output {1, 0, 0, 0, 0} of the neural network classifier 

if the motor is a healthy.  

Dempster–Shafer theory assigns a belief mass to each element of the power set. 
Shown as (2), a basic belief assignment (BBA), called m in the following, is a function 

mapping from 2Θ to [0, 1], provided that the sum of all basic belief masses is equal to 

one and the mass of null set is zero: 

: 2 [0,1]m 
 if ( ) 1

A

m A



  and ( ) 0m   . (2) 

According to (2), the sum of all basic belief masses is equal to one. Therefore, the 

outputs of neural network classifier ( )y
ｉ

Ｂ  need to be normalized as follows: 

4

1

( )
( )

( )

i

i

ii

y B
m B

y B





 (3) 

where 
i

B , i  = 1, 2, 3, 4, denotes the four previously described operating 

conditions of the rolling bearing. The results of the normalized ( )
i

m B  can be used for 

further decision level classifier fusion. 

2.4.  Decision Level Fusion 

Data level fusion processes are often categorized as data level fusion, feature level 

fusion, or decision level fusion. Decision level fusion combines the primary recognition 

data from each sensor and makes an accurate decision. It utilizes the computing 

capability of individual low-level sensors and reduces the communication throughput. 

Therefore, in this paper, decision level fusion by Dempster–Shafer theory was selected 
to combine the outputs of the local neural network classifiers. 

3. Experimental Verification 

To evaluate the performance of the proposed bearing fault diagnosis method, a 

series of experiments are conducted. The experimental setup is shown in Fig.4. Four 

LMESNs nodes are installed on a Drivetrain Diagnostics Simulator (DDS) for 

implementing to acquire vibration signal of rolling bearing. Then, the processed 
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vibration signals are sent to the sink node.   Additionally, the sampling frequency of 

the system is configured to the value of 10.24 kHz, coupling with sampling length set 

to 20480. The rotating speed of the testing bearing is set to around 1310 r/min.  
 

 

Fig.4 Wireless experimental test for rolling bearings based on DDS system 
 

In this section, to investigate the influence of the number of hidden layer nodes, 

vibration parameters, current parameter on the fault classification accuracy, we make a 
detailed comparative analysis under vibration parameters(

pv
x , x ,

rms
x ,

r
x ,  ),the 

vibration and current parameters(
pv

x , x ,
rms
x ,

r
x ,   and 

pc
x ) and the 

time-frequency-domain parameters (
pv

x , x ,
rms
x ,

r
x ,

pc
x ,   and f ) respectively, as 

hidden layer nodes are set to 5, 6, 7, 8, 9, 10. As is shown in Fig. 5 (a), the average 

classification accuracies under the vibration parameters are below 70%, due to the 
indistinct differences between 5 vibration parameters for 5 bearing states. In contrast, it 

is seen from Fig.5 (b) that all average fault classification accuracies under the vibration 

and current parameters are above 75%. Due to the vibration parameter and current 

parameter are two types of parameters, so the fault classification accuracy indicates that 

the combination of vibration features and current parameter could better reflect the 

actual information of bearings.  
As is shown in Fig.5(c), it is noted that the average fault classification accuracies 

under the combination of the vibration or current time-domain parameters and vibration 

frequency-domain parameter are nearly close to 95%, proving that this combination for 

fault classification accuracy outperforms the time-domain parameters or 

frequency-domain parameters. Additionally, we can see from the three figures that the 
classification accuracy can reach the highest level as the number of hidden layer nodes 

reaches 7. It's also worth mentioning from Fig.5 (c) that the classification accuracies of 

five bearing state degree recognition are achieved with 95.48% (Normal), 97.84% (F1), 

96.28% (F2), 96.12% (F3) and 94.21% (F4), respectively. Nevertheless, it cannot 

continuously guarantee a high and stable accuracy rate when the number of hidden 

layer nodes exceeds 7. The reason is the few hidden layer nodes (P.5 and P.6) 
contributes to inadequate training, while the excessive hidden layer nodes (P.8, P.9 and 

P.10) result in too long learning time, larger training error and worse generalization 

ability. In conclusion, the hidden layer node P.7 is the optimal node for the proposed 

BPNN, which can reach the highest classification accuracies.  

In short, the above comparison analysis results have proved that the selected 6 

time-domain parameters and 10 frequency-domain parameters with representative 
ability of extracted features can provide a more reliable and stable fault classification 
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accuracy for bearings. In addition, the fault classification accuracies can attain the best 

performance as the hidden layer node of BPNN is 7. 
 

 

Fig.5.  Average  fault classification accuracies with different hidden layer nodes of BPNN under 

different parameters (a) under vibration parameters(
pv

x , x ,
rms
x ,

r
x ,  ); (b) under the vibration and current 

parameters (
pv

x , x ,
rms
x ,

r
x ,   and 

pc
x ); (c) under the time-frequency-domain 

parameters(
pv

x , x ,
rms
x ,

r
x ,

pc
x ,   and f ); 
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4. Conclusion and Discussion 

In this paper, we proposed a local-processing ensemble-features fault diagnosis 

algorithm based on the BP neural network (BPNN) and Dempster–Shafer theory for 

machine condition monitoring is proposed in this paper. We actualize the LMESN for 

acquiring vibration and current signals of bearings. In addition, time-domain and 

frequency-domain vibration signals and time-domain parameters of current signals are 
extracted as the input vector of the designed BPNN. The feasibility and performance of 

the proposed method has been verified by a set of comparison experiments on a bearing. 

Furthermore, considering the key importance of the hidden layer nodes and different 

number of characteristics to the fault classification accuracy, we conduct many 

experiments with different hidden layer nodes under different number of characteristics 
and prove that the average classification accuracies of five bearing state degree 

recognition under vibration and current parameters reach the highest level as the hidden 

layer nodes of BPNN P is 7. The proposed strategy is expected to apply in SHM, 

NDT&E or other multi-sensor monitoring scenarios. 
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