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Abstract. Sensitivity analysis of the model-based inverse problem associated to
electromagnetic nondestructive evaluation is dealt with. Some uncertainty of the ar-
rangement is inevitable present (imprecise host material parameters, sensor mispo-
sitioning, etc.), and this induces uncertainty on the reconstructed defect parameters.
The aim of this work is to present a methodology for the ranking of the different
sources of random error according to their contribution to the reconstruction un-
certainty. To this end, state-of-art mathematical tools of sensitivity analysis are ap-
plied, including Sobol’ indices, and a polynomial chaos expansion surrogate model
to reduce the computational burden of the method. A numerical example drawn
from magnetic flux leakage nondestructive evaluation is presented to illustrate the
proposed methodology.
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1. Introduction

Inverse problems of electromagnetic nondestructive evaluation (EM NDE) are dealt with
in this work. Model-based inversion is to reconstruct defect parameters based on the
measured EM field. This problem is usually traced back to an optimization problem for
which various efficient global optimization algorithms have been applied for decades.
However, beyond the mere reconstruction of defect parameters, the uncertainty of the
parameter values obtained by the inversion algorithm is also important. This uncertainty
is inevitably present because the setup parameters (e.g., host material, specimen dimen-
sions, sensor position, etc.) are never precisely known.

Uncertainty quantification (UQ) is to assess the uncertainty induced on a quantity of
interests due to random inputs: in our case, uncertainty of reconstructed defect parame-
ters due to imprecise setup parameters. Sensitivity analysis aims at ranking the sources
of uncertainty with respect to their contribution to the output uncertainty.

In the present contribution, a framework is proposed for the sensitivity analysis
of the solution of the entire inverse problem. For certain values of the measured data,
optimization-based inversion is performed to obtain the reconstructed defect parameters
which obviously depends on the uncertain setup parameters. The quantitative character-
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ization of the uncertainty is given by the Sobol’ indices [1,2], which quantify not only
the contribution of each setup parameter but also of their combinations. The benefit from
this sensitivity analysis is that one gains proper knowledge on how the uncertain setup
parameters influence the reconstruction capability of an inversion procedure. This may
promote the optimal design of NDE arrangements with respect to robustness. Further-
more, it can screen the most important sources of uncertainty, which have to be taken
into account in another inversion routines, e.g., the model-free approach in [3]. Finally,
the proposed method provides a deeper insight into the importance of different physical
phenomena behind the EM NDE method.

2. Problem definition

Let the deterministic vector-vector function yyy = fff (xxx|www) represent the relationship be-
tween the observable signal yyy ∈ R

K (e.g., spatial scan of the B-field in flux leakage test-
ing), the vector of the defect parameters xxx ∈ R

N (e.g., crack dimensions) and the setup
parameters www ∈R

M (e.g., host material permeability, probe misalignment, etc.). The for-
ward operator fff is realized by electromagnetic simulation.

In recent works, the application of sensitivity analysis by means of Sobol’ indices of
the forward operator fff is presented [4]. Such studies can lead to valuable knowledge on
(i) how each setup parameter wi contributes to the output uncertainty and (ii) whether the
setup uncertainty hinders the reconstruction of small variations of the defect parameters.

In the present work, the inverse problem is considered as follows. For a certain
output signal yyy′ resulted from a measurement, the inverse problem reads as

x̂xx = ggg(www)≡ argmin
xxx∈X

‖yyy′ − fff (xxx|www)‖2 (1)

where X is the region of interest of the defect parameters and x̂xx stands for the recon-
structed defect parameter vector. The latter depends on the uncertain setup parameters www,
which are modelled by the random vector WWW ∈ R

M . Hereafter the joint probability den-
sity function of WWW is assumed to be known (e.g., from manufacturing tolerances or based
on a statistical estimation from measurements). The reconstructed defect parameters are
also considered as a random vector X̂XX = ggg(WWW ). The goal of the analysis presented below
is twofold: (i) characterization of the mean and standard deviation of X̂XX , and (ii) calcu-
lation of the Sobol’ indices of each component of X̂XX with respect to the random setup
parameters WWW .

3. Uncertainty quantification and sensitivity analysis

To achieve the goals in the previous section, the following scheme is proposed.

1. A defect xxx′ is chosen and the inverse problem of reconstructing xxx′ from the cor-
responding measured output signal is studied. Note that different defects within
X may yield different outcomes of the sensitivity analysis.

2. The measured output signal is approximated by the synthetic data yyy′ = fff (xxx′|www),
by using the deterministic forward model fff .
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3. Finally, a heuristic approximation for ggg(www) is introduced as

ggg(www)≈ argmin
xxx∈X

‖ fff (xxx′|www)︸ ︷︷ ︸
yyy′

− fff (xxx|www0)︸ ︷︷ ︸
f̃ff (xxx)

‖2 (2)

where www0 stands for the mean of the random setup parameters: www0 = E[WWW ]. This
approximation reduces the computational cost of the optimization: the forward
model with www = www0 kept fixed, whereas fff (xxx|www0) can be approximated by a sur-
rogate model f̃ff (xxx). The latter can be, e.g., a sparse grid [5], a kriging or a ra-
dial basis function [6] surrogate model, just to name a few among the common
choices.

Sobol’ indices. A state-of-art tool of sensitivity analysis is based on the Sobol’ indices
[2]. Each component (with notation omitted for simplicity) of the function ggg in Eq. (2)
can be decomposed [1] as

g(www) = g0 +
M

∑
i=1

gi(wi)+
M

∑
1≤i< j≤M

gi j(wi,w j)+ · · ·+g1,2,...,M(w1,w2, . . . ,wM), (3)

This decomposition is unique under certain conditions for the sub-functions (see, e.g., in
[2]). These conditions ensure that the variance of g(WWW ) can also be partitioned into the
sum of sub-variances:

D≡ E[(g(WWW )−g0)
2] =

M

∑
i=1

Di +
M

∑
1≤i< j≤M

Di j + · · ·+D1,2,...,M (4)

with Di1,i2,...,iS denoting the contribution of the group of parameters {wi1 ,wi2 , . . . ,wiS}.
The Sobol’ indices of each possible groups are defined via normalization with D,

Si1,i2,...,iS = Di1,i2,...,iS

/
D, (5)

that makes the sum of all possible indices equals to 1. Indices corresponding to one
setup parameter are called 1st order indices. Higher order indices reflect the effect of the
interaction of two or more setup parameters to the reconstruction uncertainty.

Polynomial chaos expansion (PCE). Even if surrogate models of fff can effectively re-
duce the computational burden associated to Eq. (2), sensitivity analysis of g(www) with
respect to its input variables remains cumbersome when traditional methods (e.g., Monte
Carlo sampling [7]) are used. Therefore, a PCE surrogate model of g(www) is built, which
provides robust estimates for the total variance D and the Sobol’ indices, respectively,
with a moderate resource demand. The PCE approximation of each component of ggg reads
as

g(WWW )≈ ∑
ααα∈A

cααα Ψααα(WWW ) (6)

where the basis functions Ψααα(WWW ) are products of univariate functions, i.e.,
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Figure 1. Sketch of the configuration: a ferromagnetic tube is affected by a circumferential groove on the
exterior surface. A static magnetic field is incident in the axial (z) direction; the z-component of the leaking
magnetic field is measured by a sensor scanning near the tube axis.

Ψααα(WWW ) = Φ(1)
α1 (W1)Φ

(2)
α2 (W2) · · ·Φ(M)

αM (WM). (7)

where each factor Φ(m)
αm is the αm-th member of a polynomial family which is orthonormal

with respect to the marginal probability density function corresponding to the m-th setup
parameter. For example, uniform and normal distributions correspond to Legendre and
Hermite polynomials, respectively.

The index set A in Eq. (6) is chosen as a reasonable subset of NM , e.g., by a linear
truncation A = {ααα : ααα ∈ N

M, |ααα|1 ≤ L} where L is a small integer (in our example,
around 6. . . 8). The coefficients cααα in Eq. (6) are calculated by means of a least squares
fit to a set of training data {www(q), g(www(q))}, q = 1,2, . . . ,Q, obtained by Q number of
evaluations of Eq. (2). Once the PCE surrogate models for each component of ggg are built,
the variance of ggg(WWW ) and all Sobol’ indices can be calculated from the PCE coefficients.

4. Numerical examples

The configuration and the EM model. A magnetic flux leakage NDE arrangement for
tube inspection has been chosen as illustration. The configuration is kept simple so that
the emphasis is put on the sensitivity analysis. A ferromagnetic tube (Fig. 1) with relative
permeability μ , inner radius Rin, and wall thickness t is assumed to be affected by a
circumferential groove on the exterior surface. An axially directed static magnetic field
(HHH = ẑzzH0) is incident within the tube wall. Due to the groove, a leaking magnetic field is
present. The total field is written as the sum of the incident field and the perturbation field
caused by the groove: HHH = HHH0+ΔHHH, where ΔHHH has both axial and radial components. A
sensor is scanning along a straight line parallel with the tube axis, and the z component
of the perturbation field (ΔHz) is measured at 51 equi-spaced sensor positions, yielding
the observable signal vector yyy. The grove cross-section is modelled by a parametrized 3rd

order spline, with the parameters a (opening) and d (depth), denoted together as defect
parameters xxx = [a,d]. The region of interest in terms of defect parameters is defined by
the ranges a ∈ [0.5, 1.5]mm and d ∈ [0.2, 1.5]mm, respectively.

As uncertain setup parameters, the probe misalignment h, the tube wall thickness
t, and the relative permeability μ are considered. They are modelled by independent
random variables, with details on their distribution given in Table 1. The tube inner radius
is kept fixed (Rin = 5mm), and the length of the line scan is 20 mm.

Due to the axial symmetry of the configuration, a two-dimensional EM model is
applied. The perturbation field is calculated by means of the method of moments.
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Table 1. Probability distribution of the random setup parameters

parameter distribution properties

probe misalignment (h) uniform range = [0, 0.25]mm
tube wall thickness (t) normal mean = 2 mm, standard deviation = 0.1 mm
tube relative permeability (μ) normal mean = 20, standard deviation = 1.5 (Test A) or 0.5 (Test B)
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Figure 2. Distribution of the reconstructed defect parameters vs. realizations of the random setup parameters
(legend: black line [—] true parameter values; blue dots [·] reconstruction results)

Table 2. Defect parameters in the examples: true values and reconstruction results

true reconstructed mean standard deviation

Test A Test B Test A Test B
a (mm) 1.0 1.08 1.07 0.1460 0.1091
d (mm) 1.3 1.25 1.25 0.0611 0.0542

The optimization in Eq. (2) has been performed by the fmincon Matlab R©function.
One call of fff and ggg (as in Eq. (2)) takes ca. 0.25 s and 10 s, respectively, on a standard
desktop PC (i7 CPU @3.60GHz, 8 GB RAM). The PCE surrogate models are built with
Q = 900 training samples in each case. Nevertheless, convergence studies subsequently
proved that only 300 samples would have provided almost the same accuracy.

Studies and results. Two slightly different scenarios are studied. According to Table 1,
the relative permeability of the tube wall has a higher (Test A) and a lower (Test B)
variability. In both cases, the same defect is to be reconstructed: [a,d] = [1.0, 1.3]mm.

In Fig. 2, scatter plots present the reconstructed defect parameters wrt. the realiza-
tion of the random setup parameters for Test A. Note that the uniform and normal dis-
tributions of the setup parameters (as defined in Table 1) are clearly seen, as well as that
the reconstructed opening a is sensitive to t and μ . Yet, the depth d can be reconstructed
with a high accuracy. Uncertainties are quantitatively characterized in Table 2.

The sources of the uncertainties are ranked by means of Sobol’ indices (Fig. 3).
The bar plots are in harmony with the conclusions of Fig. 2: the probe misalignment h
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(a) Test A (b) Test B

Figure 3. Sobol’ indices.

has little effect to the reconstruction. On the contrary, the effect of the uncertainty of t
and μ is significant. When changing from Test A to B (i.e., μ is better controlled), the
Sobol’ index of μ decreases as expected. Mutual effects (2nd and 3rd order indices) in this
example are actually not significant, yet this method is able to reveal such interactions.

5. Conclusion

A framework is presented for the sensitivity analysis of model-based inverse problems
of EM NDE with respect to uncertain setup parameters. The computation burden that is
commonly associated to inverse problems, can be reduced by surrogate models. The en-
tire inversion scheme is approximated by a polynomial chaos expansion surrogate model,
that provides a simple way to calculate Sobol’ indices. In so doing, the sources of uncer-
tainty can be ranked based on their importance, which reveals the most efficient ways of
improving the accuracy of the NDE arrangement. A simple magnetic flux leakage NDE
method has been analysed to demonstrate the capabilities of the framework.
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