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Abstract. This work describes the validation against experimental data of a Re-
duced Vector Potential Formulation combined with a boundary condition given by
the Dirichlet-to-Neumann operator. One of the classic nondestructive testing prob-
lems is investigated: the differential bobbin coil scan inside a tube with a defect.
Several defects are simulated, and the results are compared to the experimental data
acquired at four frequencies.
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1. Introduction

Eddy current systems play an important role in the modern nondestructive testing. An
ability to provide an accurate simulation of an eddy current inspection procedure is cru-
cial to multiple applications, including sensor design and optimization, defect character-
ization, and many others.

A prominent way to set up an eddy current simulation is to utilize one of the dif-
ferential formulations for the low-frequency approximation of Maxwell’s equations and
then solve it within a finite element framework ([1], [2]). In this case, the computation
domain needs to be truncated and an appropriate boundary condition needs to be set. One
way of imposing a boundary condition is to apply a Dirichlet-to-Neumann operator on
the truncation boundary, as in [3], [4], [5], [6]. This boundary condition is exact, which
means that it does not introduce any error in the physics on the truncation boundary and
thus allows to put it close to the investigated object.

The authors previously derived a Reduced Vector Potential formulation with a DtN
boundary condition in [7], [8], [9]. This paper contains a brief summary of the proposed
formulation and its numerical validation against an experimental data for a typical ECT
problem: a coil scan inside a conducting tube that has a volumetric defect in the wall.
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Figure 1. (a) The schematic diagram of the domain Q , (b) The sketch of the simulated problem geometry:
conducting tube with a defect

2. Formulation
2.1. Governing equations

The computational region is defined as Q = Q, UQ,, where Q, and Q. are the non-
conducting and conducting regions respectively (see Figure 1a). The truncation boundary
of Q is denoted as I', = dQ, and #, is an outward-looking normal to T,.

In low frequency approximation the displacement current is neglected, and Maxwell’s
equations, that govern the underlying physics, take the following form (“magneto-
quasistatic limit”):

VxE=—joB inQ (1)
V-B=0 inQ )
VxH=1J inQ 3)
H=vB in Q “4)
J=0E in Qe (5)

Here symbols D,B,E H,J denote electric and magnetic flux, electric field, mag-
netic field and current density respectively. Symbols i, v, o represent magnetic perme-
ability, magnetic reluctivity and conductivity,  is an angular frequency and j> = —1.
The magnetic vector potential A and (modified) electric scalar potential ¢ are defined as
follows:

B=VxA 6)
E=—jwA— joV¢ @)
The source current J resides in a source region Qg C Q, and generates the source

magnetic field H and vector potential A;. Now the magnetic vector potential could be
represented as A = A, + A, where A, is the reduced vector potential, generated by eddy
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currents in the conductor. This decomposition could be utilized to obtain the following
system of equations from Egs.(1)-(5) — the reduced vector potential formulation in weak
form ([1], [2]):

/(Van)-(viA,) dQ+jw/Nn.oA, dQ—i—jw/Nn-cV(p dQ+
Q

+/Nn-(ﬁo><vV><A,) dS:—/(Van)-(v,—l)HsdQ—ja)/Nn-GAsdQ ®)
r() Q

—jO)/V(])n-GAr a’Q—jw/V(p,,UVq) dQ:jw/Vq)n-GAs dQ (9)
Q Q Q

Here N, and ¢, are the test functions. With the use of basis functions N/ €

H(curl,Q) and ¢, € H(grad,Q), we can approximate A, = Z N, and ¢ = Z B9,

where Ny and Ny stand for the number of basis functions, o and By are unknown coefﬁ-
cients. This expansion is then substituted into the Eqs.(8)-(9), and when we set N, = Nk
and ¢, = ¢,’, the square system of linear equations is obtained. An appropriate boundary
condition on I',, will make this system complete.

2.2. Dirichlet-to-Neumann operator on the sphere

In our case, the Dirichlet-to-Neumann operator A could be defined as an operator that
acts on the solution of the vector Laplace equation in source free space and maps the
tangential part of the reduced vector potential A, on I, to the tangential part of its curl:

A:(A;); — (VxA,),onT, (10)

Within FEM framework, an operator A could be utilized to build a boundary con-
dition in a following way. First, we decompose the unknown vector potential on I', into
FEM basis N, and ¢,. Then, this decomposition is converted to a tangential curl (V x A,),
with a use of A. The obtained expansion is then substituted into Eq.(8).

If the computatinal domain boundary I, is a sphere, analytic form of the operator A
is available ([7], [8], [9]). If the radius of the sphere is R and Uy, V,, denote the tan-
gential vector spherical harmonics (see [10]), the following expansion could be derived:

NkaU/m><NnaUlm> <NkaVlm><NnaVlm>

A
N, (o x VW xA;)dS=Y o _
1'-/ k;l ;’ﬂo U mll? (R2||Vim[)?

(11)

The addition of this term completes the system linear equations obtained from
Eqgs.(8)-(9).
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3. Numerical results
3.1. Simulation setup

The investigated problem is a coil scan inside the conductive tube with a volumetric
defect inside the wall. The tube is oriented along the z axis. The 3D test geometry of the
problem is shown in Figure 1b and the x-z cross-section of the tube is displayed in Figure
2. The tube has an outer diameter of 19.0mm, the wall thickness of 1.1mm and is made
of non-magnetic material with u, = 1 characterized by its conductivity of 6 = 8.71 x 10°
S/m (equivalent resistivity value p = 114.8 uQ-cm).

Four volumetric defects were simulated: the flat bottom holes (FBH) with diameters
of 4.8mm, 4.8mm, 2.8mm, 1.3mm and depths of 0.22mm (20% tube wall, TW), 0.44mm
(40%TW), 0.66mm (60%TW) and a through-wall hole, correspondingly. The defects
were positioned on the outer side of the tube.

The source field was generated by two geometrically identical coils that were carry-
ing the total current of 1A each and a phase difference of 180°. This represents the dif-
ferential measurement [11]: in the section of the tube away from the defect the induced
voltages in the coils have equal magnitude (so that the resulting impedance of the two
coil system is zero), whereas in proximity of the defect the induced voltages in the two
coils are different, which results in a non-zero signal that could be used to detect the
presence of the defect. The simulated coil parameters were the following: outer diame-
ter of 15.2mm and cross-section of 1.5mm by 1.3mm. The spacing between the coils is
1.5mm. The coil lift-off in this case equals to 0.8mm. The simulation of the model result
in a one-dimensional array of complex voltages evaluated in every scan position.

The length of the simulated tube segment was 76mm. The computational domain
was a sphere of radius 40mm. It was discretized into unstructured non-uniform tetrahe-
dral mesh generated by Gmsh software [12]. Mesh density was set to be approximately
12 elements per wall in the defect area and 6 elements per wall thickness everywhere
else.
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Figure 2. Geometry of the problem: 40%TW defect
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Frequency, kHz  Defect Type  Phase difference, deg  Peak voltage error, %
35 20% FBH 4 11.00
35 40% FBH 2 10.00
35 60% FBH -1 3.00
35 100% FBH 0 0.00
140 20% FBH 4 8.00
140 40% FBH 3 7.00
140 60% FBH 5 14.00
140 100% FBH 0 0.00
280 20% FBH -16 14.00
280 40% FBH -9 3.00
280 60% FBH -6 3.00
280 100% FBH 0 0.00
550 20% FBH -5 3.00
550 40% FBH -11 9.00
550 60% FBH -9 20.00
550 100% FBH 0 0.00

Table 1. Error in the simulated voltage and phase versus experimental data

3.2. Comparison to experimental data

In order to compare the simulation results to experimental data, the following calibration
procedure was applied: the peak magnitude and phase of the signal generated by 100%
through-wall defect at each frequency was set to 20V and 140° respectively. This was
achieved by multiplying the signal by a constant complex-valued scaling factor, which
was further applied to other three signals obtained at the same frequency. Thus, the rela-
tive magnitude and phase differences between all defects were preserved. The calibrated

signals for two frequencies are demonstrated on Figure 3.

Two metrics were utilized to compare the signals after calibration: the magnitude

and phase of the point with the peak magnitude. The results are summarized in Table 1.
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Figure 3. Calibrated differential voltage measurement, real versus imaginary part, (a) 140kHz, (b) 280kHz
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4. Conclusions

This paper presents a numerical validation for the Reduced Vector Potential formulation
with a DtN boundary condition against an experimental data. This is a differential formu-
lation with an exact non-local boundary condition, which allows an efficient numerical
implementation [8], [9].

A typical eddy current inspection problem was simulated: a differential bobbin coil
scan inside a conductive tube with a volumetric defect in the wall. The simulation results
show a good match with the experimental data, both in magnitude, phase and the overall
shape of the signals. As could be seen in Table 1, the results are better for the lower
frequency data due to the larger skin depth. Thus, generation of a finer mesh for higher
frequency simulations could improve the numbers. However, the perfect match could not
be achieved due to discrepancies introduced by the data acquisition system.

The presented analysis allows to conclude that the proposed formulation could be
readily applied to simulate the eddy current inspection procedure.
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