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Abstract. Magnetic flux leakage (MFL) testing is a widely used electromagnetic 
nondestructive testing (ENDT) method, which has the ability to detect both surface 
and sub-surface defects in conductive materials.  One of its best features is its ability 
to mathematically model field leakage from the defect area in a magnetized material.  
In this paper, we propose an optimized FEM model using geometrical weighted 
tensor (TBFEM), for the calculation of leakage field in MFL. This model using the 
Einstein’s convention eliminates the bulky nature of traditional FEM based on its 
matrix algebra formation allowing for easy implementation and fast calculations. 
The proposed model achieves this by reducing the set of matrix equations into a 
single equation using suffixes which can then be solved with regular mathematical 
operations.  
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leakage, matrices, weighted tensors 

1. Introduction 

Over the years, electromagnetic nondestructive testing and evaluation (ENDT&E) has 

become more and more popular with successful applications (in the aerospace, oil and 

gas, nuclear and transportation industries) for the determination of the quality and the 
structural health of components, machineries and equipment.  At the core of most 

electromagnetic techniques that allow for numerical modelling is the finite element 

method (FEM). This is due to its flexibility and ability to model both linear and nonlinear 

boundary value problems (BVP).  The main purpose of FEM is to determine the 

approximate solution of a boundary value problem (BVP), which is governed by a partial 

differential equation (PDE).   
In this paper we propose a tensor based finite element model (TBFEM) for the 

calculation of leakage field in magnetic flux leakage (MFL) testing. MFL testing is a 

widely used electromagnetic nondestructive evaluation/testing (ENDT&E) method that 

has the ability to detect both surface and sub-surface defects in ferromagnetic materials.  

The basic idea is to magnetize a material to saturation using a permanent magnet or yoke 
as shown in the Figure. 1 below. The presence of defect will cause varying magnetic 

field distribution in the material which in turn causes flux leakage. These changes in the 

material can then be detected using magnetic field sensors for further processing. 
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Figure. 1 Principle of magnetic flux leakage (MFL) testing 

 

With MFL testing, two basic models are used for the prediction and visualization 

of magnetic field interaction with defect region.  The analytical model, which was the 

first theoretical model to relate the shape of defects with the magnetic field strength, 
material permeability and magnetic field leakage [1], has contributed greatly to the 

understanding of how the MFL technique works. Even though this model greatly 

simplifies the difficulties associated with MFL analysis, too many assumptions are made, 

making it challenging for practical applications. More so, results from this model can 

only explain simple and regular defects [2] . The second basic model which is widely 

used is the numerical model. This model has shown more advantages as compared to the 
analytical model for MFL. According to Lord and Hwang [3], who first introduced the 

finite element method (FEM) to the calculation of the magnetic leakage field, proved 

through the study of how different shapes, angles, depth and width influence magnetic 

field. They then concluded that the only feasible solution for solving complex shape 

defects problems is through numerical calculation. Since then the finite element method 

(FEM) has been greatly explored and a lot has been achieved due to its flexibility and 
robustness. Even with all of its advantages, FEM has its challenges, some of which 

include excessive need for computing resources and time depending on the number of 

elements (matrixes) to be processed, as best results are greatly dependent on 

discretization (meshing) which makes the process time consuming and computationally 

expensive [4], [5]. In this paper, using the tensor based finite element model (TBFEM) 
which is derived from the Einstein’s convention, we are able to calculate and simulate 

leakage field more efficiently, with a minimum computer specification, within a shorter 

time frame as compared to traditional FEM. The implementation is done in MATLAB 

RB2014 with a windows based computer of 1.4ghz speed, 4GB RAM. 

2. Magnetic leakage calculation using tensor based finite element model 

(TBFEM) 

2.1 Magnetic leakage field calculation 

In MFL, calculating the magnetic leakage field means solving the Maxwell’s equation 

under certain boundary conditions. Knowing that 0B     in static cases, B  can then 

be expressed in terms of magnetic vector potential V  for which B V  . Assuming 

B H   where   is the permeability, then combining B V  with H J   

where H  is the magnetic field intensity, and J  is the current density, the partial 

differential equation (PDE) in the equation (1) below can be obtained. 
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1
( ( ))B J


         (1) 

However, because V  is a vector potential, its boundary value problem (BVP) 

becomes difficult to solve. As shown in the introduction, the basic principle of MFL is 

to magnetize the sample using a permanent magnet or yoke, which means no conduction 

current is used within the domain, making 0J  . For this reason, a magnetic scalar 

potential 
m

V  is used, so to describe the magnetic field for which the equations (2) – (4) 

below are satisfied within the domain. 

0H   
 

(2) 

0B   
 

(3) 

0
( )B H M       

 

(4) 

Where M  is the magnetization intensity. 

Substituting equation (4) into (1) and also 0J  in the same equation (1) we obtain 

1
( ( ) 0H M


      

 

(5) 

The equation (5) is further reduced to the generalized form of the magnetic flux 

continuity law  

0 0
H M      

 
(6) 

Based on the imaginary magnetic charge created with regards to the molecular 

current from a pair of magnetic dipoles as done in MFL, the density of this magnetic 

charge can be represented as  

0m
M    

 

(7) 

In order to represent the magnetic field intensity in terms of scalar magnetic 

potential 
m

V  the equation (8) below is obtained 

m
H V   

 
(8) 
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For which the MFL governing equation (9), representing the computational domain 

is obtained and satisfied   

2

0m m
V      

 

(9) 

2.2 Formulation of the tensor based finite element model (TBFEM) 

Finite element modelling is the discretization of the computational domain into smaller 

fine elements called finite elements and the union of these finite elements to form a mesh 

[6]. The idea is to express unknown functions in terms of a linear combination of certain 

given functions with unknown coefficients, so that an equation (usually a matrix 
equation), whose entries are the unknown vectors of the unknown coefficients, are the 

approximate representation of the functions. In this paper, a test function is used, for 

which the calculation of dependent variables is done without having to directly solve the 

PDE. For example 
i

vi
S a   is a  simple  test function, as used in literature [6][7][8][9], 

where   is the potential, 
v

S  is the shape vector, a  the row vector and  i =1,2,3,4……., 

which is the Einstein’s summation convention. According to the Einstein’s summation 
1 2 3

1 2 3
.....

i

i
e f e f e f e f   ,  where e  and f  are the functions of  i . 

v
S  in the 

test function can further be defined as 
1

1
v

S  , 
2v

S x  and 
3v

S y , whiles the 

values of 
i

a  as 
1
a a , 

2a b  and 
3

a c , where the values of a , b  and c  are 

unknown constants. The equation 
i

vi
S a   requires a system of i  equations so as to 

solve for the unknown constants of 
i

a . For this reason, 3 different potentials 

representing the linear variation of 
i

vi
S a   is introduced considering a triangular 

region of 3 nodes in space. The system of equations is then redefined as 
i

j ji
G a  , 

where 1,2,3j  the linear variations of nodal potentials as said earlier and 
ji

G  is a 

matrix that contains the coordinate locations of the triangle vertices. The nodal potentials 

j
  are unknown variables, hence the constant 

i
a may be defined as functions of these 

potentials, given by 
i ij

j
a g  where 

1ij

ji
g G



  is the inverse of the matrix 
ji

G  , 

which represents the geometrical weighted tensor. Combining the potentials 
i

i
V a   

and 
i

j ji
G a   we obtain a linear variation of the potential with the region specified 

by 1,2,3j  given as  

ji

vi j
S g   

 

(10) 

Where 
ji

vi
S g is a set of linear equations. 
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2.3 Decomposition of the computational domain using tensor based finite element 

method (TBFEM) 

The main objective of the finite element model (FEM) is to evaluate the approximate 

solution of a boundary value problem (BVP) that is governed by a linear partial 

differential equation. Using the proposed FEM model, the governing partial differential 

equation is solved. Partial differential equations (PDEs), are a function of continuous 
variables in time domain. A typical boundary value problem (BVP) can be 

mathematically described in a domain 
1 2 3
,  or R R R   using the operator notation as 

shown in Eq. (11) below considering boundary conditions.  

Lu f  

 

(11) 

Where L  is the partial differential operator, u  is the unknown function to be 

determined and f  is the given excitation function. The PDE in (9), considering 

boundary conditions the equation is rewritten as (11) 

2

0m m
V                           in                                            

 

(12) 

Where  is the computational domain, for which the Dirichlet, Neumann and 

Mixed boundary conditions can be imposed.  

            on   

m D
V    

 

(13) 

         on   

m

N

V

n



 


 

 

(14) 

           on   

m

m M

V
V

n
 


  


 

 

(15) 

Where   ,   and   are given functions and 
D

  ,
N

  and 
M

  represent the 

types of boundary conditions that can be imposed. Representing (12) above as the 

expression in (11), we obtained (16) below 

e e

Lu f  

 

(16) 

Where e

u  represents the potential 
m

V for each element in the mesh and 
ef  being 

the right hand side of the Eq. (12) also representing the excitation function for each 

element in the mesh. Furthermore, e

u  can be expanded, so as to express 
e
ju  as the 
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coefficient corresponding to the value of u  and 
e
jN is the weight function at the j -th 

node as shown in Eq. (17).   

1

e
n

j

e e e
j ju u N



   

 
(17) 

Using the Galerkin method where 
e e

i i
w N

 (where the weight function is identical 

to the shape functions), Eq. (18) is obtained  

e e

e e e e e e

i i
w L u d w f d

 

     

 

(18) 

Now imposing the Neumann boundary conditions, the equation (18) is rewritten as 

(19) 

e

e e e e e

i i
w L u d w L u d

 

     

 

(19) 

Further expansion of (19) based on the gauss divergence theorem for open surfaces, 

the equation (20) was obtained                

e e

e e e e e e e e

i i i
w L u d w L u d w f d

  

        

 

(20) 

Where the first expression in (20) shows the imposition of the Neumann condition 

over the perimeter  . The summation equation for this expression is further given by 

2

e e e e

i
w Lu d w Lu




   

 

(21) 

The second expression in Eq. (20) is then computed based on the triangular mesh 

formation as said in the earlier section, for which its solution is given by (22) below  

e

e e e e e

i T
w Lu d w Lu A



     

 

(22) 

Where 
T
A is the area of the triangular element and its obtained by computing the 

determinate of the matrix (
ij

G ) which contains the coordinate locations of the triangular 

vertices. Applying the Einstein’s convention as stated earlier, with the Eq. (10) using the 

suffix notation, the Eq. (23) is obtained 
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e e lk lj

T T m
w Lu A A g g V    (23) 

Next, the solution of the right hand side of the Eq. (20) is obtained based on the area 

of the triangular element
T
A divided by the number of nodes within the triangle as shown 

in Eq. (24)         

3
e

e e e e T

i

A
w f d f



   

 

(24) 

Using the Eqs. (20) – (24), the tensor based FEM for the decomposition of the 

governing MFL equation is obtained as shown below 

3 2

lk lj e e eT

T m

A
A g g V f w Lu


    

 

(25) 

3. Results and discussion 

In order to verify the ability of the proposed FEM model, we modelled and simulated the 

distribution of magnetic field between parallel conductors placed in the XY plane. The 

field distribution was then computed on the XY direction, with the Z component kept 

constant (Z = 0). The results of this implementation can be seen in the Figure.2 (a-b) 

below. 
  

 
(a) (b)

Figure. 2 (a) and (b) Magnetic field distribution between parallel conductors (permanent yokes) simulated 
using TBFEM implemented in MATLAB 

 
From the Figure. 2 (a-b), the uniformity in the magnetic field distribution between 

two yokes can be evidently seen, for which the proposed FEM can be verified to yield 

results that agrees with results from simulations using the traditional FEM models. 

Next, we calculated the magnetization of specimen, according to the magnetic field 

intensity, for which the leakage field is also obtained. Here, the variables for magnetizing 
the defect material is chosen based on B-H characteristics of a material [10]. The choice 

of material (low carbon fiber) was based on the common practice in MFL. More so, the 

magnetization variables were computed, with the traditional FEM model as a standard 

reference, so as to ensure standard accuracy in MFL signals when material saturation is 
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achieved. Furthermore, this implementation is done to prove the validity of the proposed 

model in yielding results, that are consistent with results obtained from traditional FEM 

in similar conditions. The material size is set to 0.1,0.5 and 0.006m respectively in the x, 

y and z directions, while the defect size is set to Length (L = 2mm), Width (W = 1mm) 

and Depth (D = 3mm). Using the both the traditional FEM and the TBFEM, simulation 

is done. Comparing the Y-components of magnetic field intensity at a liftoff position of 
1- 4mm, the results are shown in Figure. 3 (a-d) below, it can be seen that the field 

distribution calculated by both the traditional FEM and the proposed FEM (TBFEM) 

greatly agree except for a minimal error of about 0.54%. However, it is also observed 

that when lift-off is 1mm, there exist a marginable amount of error in peak distribution 

between the two models. This is due to the fact that when lift-off is relatively small, 
marginal testing errors can be realized and when liftoff is excessively huge, the peak 

distribution completely vanishes, resulting to a complete erroneous testing. Therefore, as 

shown in the Figure. 3 (a-d), varying lift-off from 1 – 4mm is used, so as to verify the 

effect of lift-off on leakage field signal and to recommend or validate lift-off parameters 

for best result. Based on the simulation results as shown in Figure 3 (a-d), we can assume 

that, a standard lift-off of 3-4mm is suitable for achieving best results. As anything above 
this will or might result to erroneous test. Finally comparing the computation speed 

between the two models, the traditional FEM uses about 304s for the computation of the 

above data using a windows based computer of 2.4ghz speed, 8GB RAM, whiles the 

TBFEM uses about 24s for the same data with the same computer specification. Hence 

the purpose of the TBFEM is achieved through the reduction of matrixes.  

 

 

(a) (b)

 

(c) (d)

Figure. 3 Magnitude magnetic field intensity (a) when liftoff 1mm (b) when liftoff is 2mm (c) when liftoff is 
3mm (d) when liftoff is 4mm respectively 
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4. Conclusions 

This paper presents a tensor based finite element model for the calculation of leakage 

fields in MFL. This model eliminates the bulky nature of traditional FEM based on 

matrix formation by reducing the set of matrixes into a single Equation without changing 

the original meaning. With the proposed method, finer meshes can be generated and 

calculated within a short period of time with minimum computer resources.  
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