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Preface

Argumentation has been traditionally studied across a number of fields, notably philoso-
phy, cognitive science, linguistics and jurisprudence. The study of computational models
of argumentation is a more recent endeavour, bringing together researchers across these
traditional fields as well as computer scientists and engineers, amongst others, within
a rich, interdisciplinary, exciting discipline with much to offer. Computational models
of argumentation have emerged since the eighties. Starting with Pollock (“Defeasible
reasoning”, 1987), argumentation was identified as a way to understand defeasible rea-
soning, with the first systematic formal account of the evaluation of arguments given
their internal structure and their relation with counterarguments. In AI, starting with
Lin and Shoham (“Argument systems: A uniform basis for nonmonotonic reasoning”,
1989), Dung (“Negations as hypotheses: An abductive foundation for logic program-
ming”, 1991), and Kakas, Kowalski, and Toni (“Abductive logic programming”, 1992),
argumentation was proposed as a unifying formalism for various existing forms of non-
monotonic, default reasoning. This line of research led to the development of the sem-
inal abstract argumentation frameworks by Dung (“On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic programming and n-person
games”, 1995), awarded the AI Journal Classic Paper Award in 2018 in recognition of
this paper’s crucial role in making argumentation a mainstream research topic in AI. Fur-
thermore, in the study of decision-making, Krause, Ambler, and Fox (“The development
of a logic of argumentation”, 1992), pointed to the important role for argumentation to
lead to principled decisions (in general and in a medical setting). Today’s computational
models of argumentation share many goals with these early works, notably an awareness
of the importance of formal models which lend themselves to be implemented as com-
puter programs. These can then be integrated into “arguing” systems able to engage in
argumentation-related activities with humans or with other systems. As such, computa-
tional models of argumentation require crossing bridges with a variety of disciplines, in-
cluding computational linguistics, formal logic, social choice, game theory, graph theory
and AI and law.

Since 2006 the biennial International Conference on Computational Models of Ar-
gument (COMMA) has provided a dedicated forum for presentation and discussion of
the latest advancements in this interdisciplinary field, covering basic research, systems
and innovative applications. The first COMMA was supported by the EU 6th Framework
Programme project ASPIC and was hosted by the University of Liverpool in 2006. After
the event, a steering committee promoting the continuation of the conference was es-
tablished and, since then, the steady growth of interest in computational argumentation
research worldwide has gone hand in hand with the development of the conference itself
and of related activities by its underpinning community. Since the second edition, orga-
nized by IRIT in Toulouse in 2008, plenary invited talks by world-leading researchers
and a software demonstration session became an integral part of the conference pro-
gramme. The third edition, organized in 2010 by the University of Brescia in Desenzano
del Garda, saw the addition of a best student paper award. The same year, the new jour-
nal Argument and Computation, closely related to the COMMA activities, was started.
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Since the fourth edition, organized by the Vienna University of Technology in 2012, an
Innovative Application Track and a section for Demonstration Abstracts were included
in the proceedings. At the fifth edition, co-organized in 2014 by the Universities of Ab-
erdeen and Dundee in Pitlochry, the main conference was preceded by the first Summer
School on Argumentation: Computational and Linguistic Perspectives. The same year
also saw the launch of the first International Competition on Computational Models of
Argumentation (ICCMA). Since COMMA 2016, hosted by the University of Potsdam,
the COMMA proceedings are Open Access. This COMMA was also the first that in-
cluded additional satellite workshops in the programme. COMMA 2018 was hosted by
the Institute of Philosophy and Sociology of the Polish National Academy of Sciences in
Warsaw, Poland. It included an industry afternoon bringing together businesses, NGOs,
academics and students interested in practical applications of argument technologies in
industry. COMMA 2020 was organised in Italy for the second time, by the University
of Perugia, but, due to the COVID pandemic, was run fully online. It was preceded by
the 4th Summer School on Argumentation: Computational and Linguistic Perspectives
(SSA 2020), and featured a demonstrations session and three satellite workshops: the
International Workshop on Systems and Algorithms for Formal Argumentation (SAFA),
initiated at COMMA 2016; a new Workshop on Argument Visualization, and the well-
known Workshop on Computational Models of Natural Argument, established in 2001,
at its 20th edition at COMMA 2020.

COMMA 2022 will be once again an in-person event, for the third time in the UK,
but now in Cardiff, organised by Cardiff University. It will be preceded by the 5th Sum-
mer School on Argumentation, with a focus on “Explainability Perspective”, a topic that
has grown over the last two editions of COMMA. COMMA 2022 will also be preceded
by four workshops: CMNA 2022, the Workshop on Computational Models of Natural
Argument (at its 21st edition at COMMA 2022); SAFA 2022, the 4th International Work-
shop on Systems and Algorithms for Formal Argumentation; as well as ArgXAI 2022,
the 1st International Workshop on Argumentation for eXplainable AI, and ArgML 2022,
the 1st International Workshop on Argumentation & Machine Learning. The latter two
workshops reflect novel avenues being explored by the COMMA community, building
bridges with data-centric AI.

The COMMA 2022 programme reflects the interdisciplinary nature of the field, and
its contributions range from theoretical to practical. Theoretical contributions include
new formal models, the study of formal or computational properties of models, design
for implemented systems and experimental research. Practical papers include applica-
tions to law, machine learning and explainability. As in previous editions of COMMA,
papers cover abstract and structured accounts of argumentation, as well as relations be-
tween different accounts. Many papers focus on the evaluation of arguments or their con-
clusions given a body of arguments, with a continuation of a recent trend to study gradual
or probabilistic notions of evaluation.

COMMA 2022 also hosts a demonstration session, as in previous years, with 16
demos (one, NEXAS, described in a full paper) indicating that the field is ripe for models
and methods to be integrated within a variety of applications.

The three invited talks also reflect the diverse nature of the field. Prof Paul Dunne,
from the University of Liverpool, gives an overview of the study of computational com-
plexity in argumentation; Prof Iryna Gurevych, from TU Darmstadt, discusses an im-
portant application area, namely dealing with misinformation in natural language; and
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Prof Antonis Kakas, from the University of Cyprus, looks at theory-informed practical
applications of argumentation.

Finally, we want to acknowledge the work of all those who have contributed in mak-
ing the conference and its satellite events a success. We are grateful to IOS Press for
publishing these proceedings and continuing to make them Open Access. As local and
international sponsors of the conference, we would like to thank the School of Computer
Science and Informatics at the Cardiff University and EurAI, the European Association
of AI. We acknowledge steady support and encouragement by the COMMA steering
committee, and are very grateful to the programme committee and additional review-
ers, whose invaluable expertise and efforts have led to the selection, out of 75 submis-
sions, of 26 full papers, 16 extended abstract for demos, and 1 full paper also describ-
ing a demo. The submission and reviewing process has been managed through the Easy-
chair conference system, which we acknowledge for supporting COMMA since the first
edition. Our thanks also to the COMMA 2022 workshops’ organisers (in no particular
order): Floriana Grasso, Nancy Green, Jodi Schneider, Simon Wells, Kristijonas yras,
Timotheus Kampik, Oana Cocarascu, Antonio Rago, Isabelle Kuhlmann, Jack Mumford,
Stefan Sarkadi, Sarah A. Gaggl, Jean-Guy Mailly, Matthias Thimm, Johannes P. Wall-
ner and their programme committees and invited speakers. We also thank the COMMA
invited speakers and the invited speakers at the summer school programme (Antonio
Rago, Markus Ulbricht, Annemarie Borg and Federico Castagna) and the members of
the Online Handbook of Argumentation for AI (OHAAI) Committee (Andreas Xydis,
Jack Mumford, Stefan Sarkadi, Federico Castagna) for organising the student session
during the summer school. Last but not least, we thank all the authors and participants
for contributing to the success of the conference with their hard work and commitment.

Francesca Toni (Programme Chair)
Sylwia Polberg (Conference and Summer School Chair, Organizing Committee Member)
Richard Booth (Demo chair, Organizing Committee Member)
Martin Caminada (Organizing Committee Member)
Hiroyuki Kido (Organizing Committee Member)

July 2022

vii



This page intentionally left blank



About the Conference

Program Chair

Francesca Toni, Imperial College London

Steering Committee

President: Bart Verheij, University of Groningen
Vice-President: Katie Atkinson, University of Liverpool
Secretary: Matthias Thimm, FernUniversität in Hagen
Elizabeth Black, King’s College London
Anthony Hunter, University College London
Maria Vanina Martinez, CONICET Universidad de Buenos Aires
Beishui Liao, Zhejiang University
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Victor David, CEDRIC Conservatoire National des Arts et Metiers
Maximilian Heinrich, Leipzig University
Elfia Bezou Vrakatseli, King’s College London
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Well, to nest,
I uldn’t art from re at l

(A ersonal iew of Complexity in Argumentation fter 20 Years)

Paul E. Dunne
Department of Computer Science, University of Liverpool, UK

Abstract. Computational complexity theory and the related area of efficient al-
gorithms have formed significant subfields of Abstract Argumentation going back
over 20 years. There have been major contributions and an increased understanding
of the computational issues that influence and beset effective implementation of ar-
gument methods. My aim, in this article, is to attempt to take stock of the standing
of work in complexity theory as it presently is within the field of Computational
Argument, as well as offering some personal views on its future direction.

Introduction

There is an English tourist on a walking holiday in Eire who, while wandering around,
becomes aware that he has no idea of what direction he ought to take. He sees a farmer
and, approaching him, then says “I say, old chap, I’m in a bit of a frightful mess here.
I’m trying to find The Old Manor House, and I don’t have the deuce of a notion how to
get there. Be most awfully grateful if you could help.” The farmer looks up, saying in
reply “So it be the Old Manor House ye’re wantin’ then? Sure an’ that’s nott a problem
at all. What ye want to be doin’ is this: ye go across thon field, ye turn left at the hayrick,
left mind ye now, nott right, ye carry on till ye reach the cowshed and then . . . No, no
no, that’s not it, that’s not it at all. Here what ye need to do is go down to the brook,
follow it about a hunner yards an’ ye’ll come to a bridge, ye cross that an’ straight on
another hunner yards or so till ye see the windmill, ye go to the right (right mind ye right
nott left) and, and . . .” The farmer’s voice trails off and he hesitates a long while before
continuing. “Sure and it’s a divvil of a problem this, divvil of a problem. Ye know what
I’m thinking? Ye know what it is I’m thinking? I’m thinking if I wanted to get to The
Old Manor House, well, to be honest, I wouldn’t start from here at all.”.

All of which is to make the point that sometimes it feels as if Computational Com-
plexity Theory (or, more accurately, the practice of Complexity Theory within Compu-
tational Argument) is in a similar position to that of the English tourist: vaguely aware
of an end it wishes to achieve but unsure of how best to get there in the most direct way,
and, in consequence, finding its path diverted along the scenic detours offered by brooks
and windmills. My purpose, in this article, is to consider the extent to which this view-
point is justified. In doing so, after the short recap of Section 1, I consider, in Section 2,
the origins of Computational Argument in a form that gave a model suited to algorithmic
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and complexity study: this, of course, is the watershed approach of Dung [27]. I will
look at what grew from Dung’s work over the ten years between its appearance and the
inaugural COMMA in 2006. This forms the basis of Section 3. What would prove to be
a discovery of crucial importance to complexity analysis of Dung’s model appeared in a
different context: what is now dubbed The Standard Translation of Dimopoulos and Tor-
res [16]. The basis of this and its importance are considered in Section 4. As complexity
and algorithmic study of Dung’s model proceeded the concept of Canonical Decision
Problem emerged as a means of focusing issues with new models. In Section 5 I revisit
this canon examining what its impact on Computational Argument has been in Section 6.
In Section 7 the central theme is that of areas of neglect: which and to what extent such
lacunae matter. Conclusions are offered in Section 8.

This may seem to be, as is probably apparent from its opening, a rather unusual
paper: there are no intricate technical analyses of existing models, no new models being
presented and justified. Its primary stance is that of a personal reflection on the status
of a specialist field in which I have spent twenty years researching. As such its opinions
about significant landmarks are highly subjective and should not be regarded as definitive
factual assertions. It is also rather exceptional in containing no occurence of the word
“divers”, as in “divers models”.

1. Prelude: Algorithms and Complexity

As a topic of research the study of algorithms has a history going back over 2,000 years:
Euclid presents methods for geometric constructions in The Elements; Eratosthenes a
technique for identifying Prime Numbers; Newton and his successors would offer ap-
proaches to finding so-called zeros of functions, generalizing the discoveries of Car-
dano and Ferrari respecting closed form solutions for roots of small degree polynomi-
als [12]. Euclid, however, not only presents solutions but poses problems: one of these,
“squaring the circle” would remain unresolved until the close of the 19th Century (Lin-
demann [37,38]). I mention this background to stress not only the historical depth of al-
gorithm study but also to highlight some consequences already beginning to be apparent
as a consequence of Lindemann’s discoveries. Lindemann demonstrated that an algorith-
mic problem could not be solved within the system allowed for its solution (Ruler-and-
compass). Fifty years later the discoveries of Gödel and Turing [31,44], would show that
the underlying system was only part of the cause: the phenomenon of not being solvable
by algorithmic means was pervasive and exhibited by all programming systems. One
result is to split the world of function computation into two parts: some computational
process (i.e. algorithm) exists and no such process is possible. Study of the latter, in
the guise of Recursive Function Theory, would give rise to many ideas (e.g. degrees of
computability, The Arithmetic Hierarchy) already beginning to lose any tangible link to
computational concerns as faced in reality. In as much as Computational Argument is
linked to proof theory within classical logic such non-computability issues are present in
argumentation.

The concern of non-computability while present is, however, not where the focus of
algorithm study has been regarding Computational Argument. The objects we wish to
identify can be discovered: the question arising from the investigations of algorithms and
Computational Complexity theory is whether it is possible to do so “efficiently”. The no-
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tion of what is meant by efficiently is that the resources used by the algorithm, be it some
measure of run time or of memory demands, increase proportionately to some slowly
growing function of the input size. Run time uses polynomial growth rate (formally nk

for some constant k on inputs with n items). Algorithms address specific computational
problems. Computational Complexity asks questions concerning what are the best algo-
rithms possible for a given problem. Here we find a common misusage: algorithms have
resource demands, they do not have complexity; problems have an associated complexity
(formally a problem belongs to a complexity classmembership of which is witnessed by
an algorithm whose requirements are captured through that class).

There are problems for which efficient algorithms have been discovered and there
are those for which no efficient algorithm is possible. Since its formal development in
the mid 1960s with Hartmanis and Stearns [32]1 Computational Complexity theory has
faced an open issue of some considerable magnitude: we know for any resource demand
that there are functions whose computation must use at least this bound, however, there
are no typically encountered problems for which such bounds have been formally proved.
This leaves many of the problems often met in practical settings in an uncertain state: it
is believed, albeit on the basis of purely circumstantial indicators, that usable algorith-
mic solutions cannot be found but there is no definite proof of this. These circumstantial
indicators are based on the argument that an efficient solution for one yields efficient
methods for all. By far the most common measure of intractability arises from the tech-
nical theory of NP–completeness, see Garey and Johnson [30]: a defence of the claim
“The problem P is intractable” being made by demonstrating that P is NP–complete.
Such demonstrations involve taking a known NP–complete problem,Q say, and phrasing
algorithms for it in terms of algorithms for P : if the rephrasing or reduction is efficient
(written Q ≤p P ) then any fast algorithm for P perforce yields a fast algorithm for Q .
Computational Complexity theory offers NP–completeness as one basis of intractability,
there are, however, many others, cf. Johnson [33].

In summary a formal proof that some problem is NP–complete is viewed as sufficient
to take that problem out of the realm of those for which efficient algorithmic methods are
possible. This, of course, should not lead to giving up on solution methods or becoming
resigned to inordinate performance demands. A demonstration of NP–completeness is
just the start: having accomplished such, attention turns to a whole arsenal of mechanisms
which have been proposed to force the over-demanding within tractable limits. Some of
these approaches are reviewed within Section 7.

Before any of these researches – algorithm efficiency and problem complexity – can
have a foundation established in argumentation a common basis for their investigation
is essential. This is found not in propositional logic nor predicate calculus, not in some
vague notion of natural language interpretation and reasoning: it is found in the classical
structure of directed graphs. It is the landmark in the study of Computational Argument:
the Abstract Argumentation Frameworks of Dung [27].

1There is an argument for Shannon [43], but the basic model is very different from that of classical com-
plexity theory.
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2. In the beginning

In directed graphs we have nodes and a relationship between pairs of nodes which is not
required to be symmetric: the links or edges. The model of abstract argument proposed
by Dung [27] views nodes as arguments and a link from argument p to argument q as
expressing the fact “argument p attacks argument q”. Its key assumption is that the argu-
ments, within this structure, are atomic and indivisible. It does not attempt to rationalize
why argument p attacks argument q but simply states it as an aspect of whatever scenario
is being modelled. This separation of what is being described from how it is described
avoids concerns with soundness and rationality: the inner level intricacies underlying the
actual structure of a stated position are hidden. One can, of course, drill down into the
formal structure of an atomic argument within Dung’s formalism but in doing so the
result will not be to treat a single node differently but to substitute a new collection of
atomic arguments presenting the detail of what is being replaced. It is, however, in the
reduction of argument relationships to solely the concept of attack that Dung’s model
achieves much of its power. If an argument attacks another then an immediate conse-
quence is that the two cannot simultaneously be accepted by a rational agent: there is an
inherent conflict in belief. But we can go further, if a chain of three arguments is such that
x attacks y which attacks z then, in principle, both x and z may be rationally accepted
since should an adversary dispute the validity of z by proposing y then y can in turn be
disputed by advancing x . It is this interplay of attack and defence (although this term is
not used by Dung) that positions Dung’s abstraction as a powerful dialectical modelling
system.

Look again at the two very basic examples of attack structure presented in the pre-
ceding paragraph: “x attacks y” and “x attacks y attacks z”. In the former it is reasoned
that at most one of the pair can be held; in the latter that because the attack on z has
been countered the position described by the set {x , z} is tenable. In these are found the
other significant contribution of abstract argumentation frameworks. The interpretation
of a collection of mutually endorsed positions as a subset of graph nodes satisfying given
criteria: what has become known as abstract argument semantics.

In Dung’s paper a succession of these is built up from the most basic (conflict-free)
through more refined concepts (admissible, complete) culminating in quite sophisticated
ideas (preferred, stable, grounded). As I recap in the next section these basic six would
soon be added to in conjunction with the practice of developing new models that contin-
ues to be a feature of Computational Argument in the present day.

3. Schism: semantics and models

Dung’s paper [27] appeared in 1995: introducing the basic graph model, methods for in-
terpretation (i.e. argument semantics), properties of these semantics, more advanced no-
tions (coherence, controversial arguments, infinite structures). By the time the first Com-
putational Models of Argument conference was held in 2006 [18] not to mention the
seminal special issue of the leading Artificial Intelligence research journal [7], Dung’s
basic model and half dozen semantics had burgeoned into such as semi-stable seman-
tics (Caminada [11]), bipolarity (Cayrol and Lagasquie-Schiex [13]), preference-based
argument (Amgoud and Cayrol [1]), symmetric frameworks (Coste-Marquis et al. [17]),
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Value-based argument frameworks (Bench-Capon [6]). Later yet would see Extended
Argument Frameworks (Modgil [40]), half a dozen forms of weighted and probabilistic
schemes, and, already in 2006 we had hypergraph structures offered as an alternative to
the simple directed graph form (Nielsen and Parsons [42]).

Now it is really a matter of no importance what these objects are and how they are
defined: all that is relevant is that they are at all. For what does the existence of a dozen
different variant semantics and models say about Dung’s approach?

One might claim that this proliferation indicates and attempts to correct some “in-
adequacy” or failure in Dung’s model, but I would consider this view to over simplify.
Take the case of semi-stable semantics. On the surface this deals with a problem with
Dung’s stable semantics: there are systems for which no stable semantics exists whereas
every framework has defined semi-stable solutions and, furthermore, these coincide with
stable sets should such be present. One can debate the extent to which the semi-stable
approach affords a solution to this non-existence issue (I have, however, no intention of
doing so). The point is simply that without exception all of the proposed new models and
new semantics serve a purpose in that these have been anchored within some perceived
problem arising in Dung’s model, and irrespective of how such problems are addressed
typically the basic formalism remains graph-theoretic and the accompanying semantics
set-theoretic. While cases such as Modgil’s Extended Argumentation Framework [40],
let alone the recursive attack and infinite frameworks of Baroni et al. [3,4,5] stretch the
notion of “directed graph” and “subset semantics” considerably these act in a manner
which I would say remains recognizable.

In as much as there may be issues with, to use Simari’s evocative phrase, “a plethora
of semantics” (and models)2 I think it is more a pedagogical concern than an inherent
structural weakness in Dung’s model: the effort of sifting and distinguishing the vast
panoply of different suggestions and ideas presents steep demands for neophytes to the
world of Computational Argument. This is potentially confusing and debatably unfor-
tunate: what it is not, however, is an indication that its base is fundamentally flawed.
In fact, when we look at Computational Complexity in Argument, as I shall now turn
to, we find a remarkable unity in how these different methods can all be analysed. That
such unity is possible is, in no small degree, due to the astonishing versatility of a quite
fundamental mechanism: the Standard Translation of Dimopoulos and Torres [16].

4. Breakthrough: The Standard Translation

When Cook in [15] presented the first3 NP–complete problem he adopted the problem
of propositional satisfiability for this end: given an arbitrary propositional formula ϕ(X )
over a variable setX determine if there is a setting ofX that will make ϕ true. In essence
Cook showed that the behaviour of any reasonable computational system, such as a Tur-
ing machine, could be mimicked by asking about the satisfiability of an efficiently con-
structed propositional formula. Cook was able to refine the construction so that it con-
tinued to be valid for a special class of formulae: those presented in Conjunctive Nor-

2The distinguished contributor to work on Computational Argument, Guillermo Simari, coined the phrase
“plethora of semantics” in his talk at the inaugural COMMA [39] describing the state that had already been
reached.
3pace the claims of Levin [36].
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mal Form (CNF). In what is now referred to as The Standard Translation a CNF-formula
is changed into a Dung-style argumentation framework in which a named argument is
accepted under some set-theoretic semantics if and only if the source CNF is satisfiable.

I will not repeat the details of this translation here: the interested reader may find
these described in a number of general survey works. e.g. [25] and also within relevant
specialist articles. It suffices to observe that the Standard Translation describes any CNF
formula as a tripartite structure: an argument representing the formulae itself; a second
set describing the clauses4; a final set presenting the individual literals ({xi ,¬xi : 1 ≤
i ≤ n}) used in the formula. Its nature is such that the formula argument will belong to
a set satisfying the criteria of a given semantics if and only if a selection of the literal
arguments can be made such that setting these to true provides a satisfying assignment
of the original formula. From this elegant and basic construction the first demonstrations
of intractable behaviour in abstract argumentation frameworks are obtained: credulous
acceptance under Dung’s admissibility semantics and the existence of a stable system of
arguments are both shown to be NP–complete. The device also suggests some algorithmic
directions. For just as a CNF-formula can be transmuted into an argument framework so
too some properties of an argument framework can be encapsulated within propositional
and thence CNF structures, e.g. Egly and Woltran [29].

With the sole exception of preference-based schemes the view provided by the Stan-
dard Translation has been adopted to demonstrate intractability results in all of the vari-
ant forms I mentioned earlier (value-based, weighted, extended); with respect to novel
semantics (semi-stable, resolution-based, cf2, ideal, stage, naive) and with respect to
different graph-theoretic restrictions (planar, acyclic, binary tree). It finds new applica-
tions within the study of argument semantics signatures and the concept of realizability
(Dunne et al. [23]; Dvořák et al. [26]). It is not limited to demonstrations of intractabil-
ity at the level of mere NP-completeness being powered up to Π2 and Σ2 completeness
results in the cases of sceptical acceptance in Dung’s preferred semantics (Dunne and
Bench-Capon [21]), and, as demonstrated by Dvořák and Woltran [28], with respect to
semi-stable questions. It links basic argumentation dialogue games to a very primitive
(but sound and complete) proof calculus (Vreeswijk and Prakken [46]), opening up an-
other avenue for complexity-theoretic studies (Dunne and Bench-Capon [22]).

5. The concept of Canonical Problem

In comparing one approach and semantics against an alternative technique – especially in
the context of complexity and algorithmic study – we need to have some benchmark col-
lection of ideas for such comparison. The formulation of 4 standard problems5 provides
this.

Hence given any proposed semantics, σ and graph-based modelM (X ,A) we have:

A. Existence (does any non-empty collection of items within M satisfy the criteria
set by σ?)

4A clause being a disjunction of literals.
5The list presented in [25, Table 1.1] separates the existence problem into two: one allowing empty sets to

satisfy criteria and another (called non-emptiness in [25]) phrased identically to that of our Existence problem.
I have chosen to eschew considering the former problem as canonical.
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B. Credulous Acceptance (is there some collection satisfying the conditions of σ
and containing this argument, p?)

C. Sceptical Acceptance (does every collection satisfying σ have p as a member?)
D. Verification (does this collection meet the conditions prescribed by σ?)

From such a basis is obtained the standard agenda for complexity-theoretic analysis
of new semantics and models: for each of the canonical problems determine exact bounds
on its complexity. Notice this involves both algorithmic construction (witnessing that a
problem can be solved within a particular resource bound) and demonstration that such
algorithms cannot be significantly improved (categorization within a specific complexity
class). Having addressed the basic questions attention often turns to variations within the
model itself, e.g. graph-theoretic restrictions such as planarity, k -colourability, acyclicity.

6. What have Algorithmic Study and Complexity given to Argument?

Some of Dung’s semantics can be dealt with efficiently for all of the canonical problems:
for example the grounded semantics. Others, notably the preferred, not known to have
efficient methods for any and, in fact, have strong indicators that no such methods are
possible. Other mix the trivial (sceptical acceptance in the conflict free semantics) with
straightforward efficient methods (verification in the naive semantics).

Such rough division may seem already to provide a case for advocating one seman-
tics in preference to another. This, however, if applied naively does not give a good basis.
One might put forward (at least) one reason as to why an efficiently solvable semantics
(for example the grounded) is not necessarily to be favoured over one less so (for ex-
ample the preferred semantics). Often it is found that the more tractable cases are only
so on account of their limited expressive ability: hence the grounded semantics offers
useful outcomes only within the sub-class of argument frameworks defined by directed
graphs having at least one source node. Conflicting viewpoints, however, tend to produce
models in which every argument attacks and is attacked by another: here the grounded
semantics offers no information. Thus in total there is a balance between expressibility
in modelling terms and algorithmic tractability with respect to the canonical problems.

While complexity-theoretic analysis does not realistically inform the choice of a se-
mantics, it does provide an awareness of potential issues: the knowledge that the verifi-
cation problem for preferred semantics is coNP–complete may be insufficient to reject it,
however, it may, having identified some admissible set, discourage attempts to push that
set to maximality.

The significant contribution that complexity theory has made to the study of argu-
ment is, I would say, in this notion of awareness. Irrespective of the semantic formalism,
irrespective of the graph-theoretic model each of the four canonical problems raises a
single question: is it possible to solve this problem efficiently? Of course I would not
claim the related questions had been ignored prior to the first complexity studies of ab-
stract argumentation, but I would claim that an awareness of the underyling issues is
heightened by considering matters in a uniform style: that of the four canonical questions
with respect to semantic criteria.

With respect to algorithmic contributions, it is appropriate at this point to raise one
method which, in principle, offers an alternative semantic treatment: the labelling ap-
proach championed, most notably by Verheij [45] and Caminada (see, e.g. Modgil and

P.E. Dunne / Well, to Be Honest, I Wouldnt Start from Here at All 9



Caminada [41]). The basic labelling semantics uses three labels called IN, OUT, UNDEC
with different semantics captured by the configurations allowed within legal labellings.
Such approaches offer a solution to questions of semantics (via those arguments legally
assigned the label IN) and algorithms (in processes for allowing a final labelling to evolve
from an initial default labelling). In [41, Section 7, 127–8], Modgil and Caminada of-
fer a cogent summary of the gains achieved through labelling semantics and, of interest
from the perspective of the current topic, algorithms. Labelling is not, of course, some
latter day Philosopher’s Stone, turning the base metal of intractability to desired efficient
solutions. It does, however, as noted by Modgil and Caminada offer useful insight into
dialectical processes thereby linking esoteric algorithmic matter to how argument may
be recognized in the “real world”.

The algorithmic contribution to argument therefore consists not only of the tangible
gains in computational efficiency but also in the rather more subtle effect of providing
insight into the mechanism of argument itself.

In total, computational complexity theory provides evidence (albeit circumstantial)
that looking for efficient under all conditions algorithms for a number of argumentation
problems will be fruitless. Formal algorithm study has contributed efficient methods, and
for many special cases, useful practical methods. Very often these stray into quite ad-
vanced algorithmic ideas, e.g. fixed-parameter tractability and its specific case of Cour-
celle’s Theorem. Nonetheless I would claim that there are many avenues, well studied
in classical algorithm theory as an angle on intractability, the investigation of which in
argumentation has been barely touched. What are these? That is the question considered
in the next section.

7. Omissions and Neglect

I remarked earlier that in the classical study of algorithms and complexity a demonstra-
tion that a problem is likely to be unsolvable does not signal the end of further investiga-
tion. Instead a whole range of possible means of coping come into play: randomized and
probabilistic methods; approximation techniques, special cases, average case efficiency,
fixed parameter tractable representations, backdoor techniques. Now it is certainly true
that a number of these have been considered in computational argument. For example
special case study dates back at least as far as the work of Coste-Marquis et al. [17] on
symmetric frameworks; bipartite forms are shown to be tractable in Dunne [19]. Simi-
larly a reasonable volume of work has accrued in the study of fixed parameter and back-
door methods.

Despite these, there are areas which have been at best neglected, at worst overlooked
entirely. This may partly be a matter of fashion (for example the once very thriving area
of so-called phase-transition phenomena, e.g.[14], where there have been only superficial
studies). Phase-transition phenomena, in much as there is algorithmic potential, have
always seemed to me, personally, to have elements of “smoke-and-mirrors”, some of
these aspects being discussed in Dunne, Gibbons and Zito [24]. So possibly it is not
surprising that a full scale study of threshold phenomena in argumentation has yet to
be undertaken: here is an approach becoming a historical curiosity, that promises much
(efficient algorithmic solutions for generally intractable problems) but in reality actually
delivers little of practical use (that is to say, there are efficiently on average fast methods
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but these are for cases on the verge and not for the classes of instance that will be seen in
real contexts). So the famous “conjuring trick”6 of Angluin and Valiant [2] is dependent
on a combinatorial property of random graph structures: as with all good conjuring tricks
the effect at first surprising loses interest once seen how it is achieved.

If phase transition phenomena are ideas whose time has passed the rather more fo-
cussed and related concern of average-case study is a very different matter. This, again,
is an approach for which only superficial studies (if that) have been undertaken. Average-
case studies work from a base in which input instances are chosen at random according
to some probability distribution. The forms being studied in argumentation would thus
be treated as random directed graph structures. In order to avoid the combinatorial leg-
erdemain underpinning the performance in [2] (typical random directed graphs contain
many links and this specific method performs well on such graphs), reliable evidence for
usable average case argumentation algorithms needs to focus on graphs typical of those
seen in reality. I would claim that the following problems have yet to be fully considered:

T1. Develop a model of random argumentation frameworks that reflects the charac-
teristics of typical frameworks.

T2. Develop methods for generating random representatives within this model.
T3. Extend these to value-based (VAF) and abstract dialectical frameworks (ADFs).

Average-case investigation is well established as a field within algorithmics and has at-
tracted a modicum of interest in argumentation. There is, however, another well studied
(in graph theoretic terms) approach whose relevance to argumentation has received min-
imal attention. I refer here to the study of spectral properties. Directed graphs may be de-
scribed as (0, 1)-matrices and the analysis of the eigenvalues and eigenvectors of (0, 1)-
matrices has historically offered some insight into graph-theoretic problems, e.g. node
colouring, Wilf [47]. One significant use of spectral analysis in other areas has been its
application to ranking problems, most notably in the mechanics underpinning Google’s
search algorithm, see [9] but also other ranking environments, e.g. Keener [34], Klein-
berg [35]. Such approaches and the importance of ranking as an issue in argumentation,
e.g. Bonzon et al. [8] leave, to my mind, the comparative neglect of spectral analysis
rather puzzling. A very basic and preliminary investigation is reported in [10], however
its findings are very inconclusive. The following questions are, I think, worthy of more
detailed study:

S1. Google’s ordering approach involves identifying an eigenvector of a dominant
eigenvalue within a rational valued matrix defined from webpage linkages. The
linkage structure is a directed graph. In principle treating an argument framework
in such a manner might give some insight into argument “importance”. There is,
however, a complication: in simple terms Google’s page significance function is
cumulative (if page X links to page Y which links to page Z , the score assigned
Z will have positive contributions from the scores of X and Y ). A naive trans-
lation to argument runs into an immediate problem: a higher score for X should
result in a lower score for Y and thence a higher score for Z . The side-effect of
non-monotonicity raises the question of formulating scoring functions for argu-
ment (akin to Google’s technique) that might allow analysis of argument ranking
as the ordering of components in an eigenvector.

6This description is a little bit unfair, however not one that I suspect the authors would dispute.
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S2. The study in Butterworth and Dunne [10] looks at potential relationships between
the eigenvalues associated with an argument and its acceptability under different
semantics. A full comparative study of this has yet to be carried out.

I choose these simply as significant broad areas which, in my view, have yet to be the
subject of sustained and systematic study. There are other specialist techniques found
helpful in algorithm yet untried in argument. It may, also, be the case that such detailed
studies will yield nothing of interest. We will not know this, however, unless we try.

8. Conclusion: “are we there yet?”

The trite and obvious answer to this question is, of course, not by some margin. What,
however, do I intend precisely by “there”? A reasonable view would be to equate this
with the general agenda of algorithmic and computational complexity studies. That is
to say the classification of problem difficulty (computational complexity theory) com-
bined with concerted attacks aimed at exorcising the worst side-effects of intractable be-
haviour. I think there can be no question that with respect to the first of these there has
been notable success: one struggles to think of any significant argumentation problem
(certainly with respect to the classical semantics of Dung [27]) whose complexity status
remains open. Similar comprehensive achievements have been delivered with respect to
new semantics (semi-stable, resolution-based, and, with one niggling gap, ideal) and also
within alternative models (value-based, extended argumentation frameworks).

Against these contributions, my feeling is that too little attention has been given to
the nature of efficient algorithmic methods. This is understandable, the analytic acrobat-
ics brought to bear in engineering some intractability proofs (I trust the reader will ex-
cuse my citation of [19, Thm. 12], let alone [20, Corollary 5]) can be hard to resist. This,
however, should not detract from the fact that the decision problems addressed arise from
a real application setting, and thus effective solution, in at least as much as such can be
developed, is a necessity. If there is one urgency I would identify from the body of work
produced so far it is that of addressing algorithmic approaches.
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[37] F. Lindemann. Über die Ludolph’sche Zahl. Sitzungsberichte der Königlich Preussischen Akademie der

Wissenschaften zu Berlin, 2:679–82, 1882.
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Abstract. Dealing with misinformation is a grand challenge of the information so-
ciety directed at equipping computer users with effective tools for identifying and
debunking misinformation. Current Natural Language Processing (NLP) including
fact-checking research fails to meet the requirements of real-life scenarios. In this
talk, we show why previous work on fact-checking has not yet led to truly useful
tools for managing misinformation, and discuss our ongoing work on more realistic
solutions. NLP systems are expensive in terms of financial cost, computation, and
manpower needed to create data for the learning process. With that in mind, we
are pursuing research on detection of emerging misinformation topics to focus hu-
man attention on the most harmful, novel examples. We further compare the capa-
bilities of automatic, NLP-based approaches to what human fact checkers actually
do, uncovering critical research directions for the future. To edify false beliefs, we
are collaborating with cognitive scientists and psychologists to automatically detect
and respond to attitudes of vaccine hesitancy, encouraging anti-vaxxers to change
their minds with effective communication strategies.

Keywords. fake news, misinformation, disinformation, fact-checking, low-resource
NLP, rebuttal
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Argumentation: rom Theory to
Practice & Back

Antonis KAKAS
University of Cyprus, Cyprus

Keywords.Machine Argumentation, Applied Argumentation, Cognitive Argumentation

Machine and Human Argumentation differ in many respects. Yet, to have useful and
effective applications of argumentation in AI these two forms of argumentation need to
come close so that we have a natural form of interaction between humans and machines.
This closeness or compatibility between machine and human argumentation is needed
not only at the level of the form of communication but also at the internal operational
level of the argumentation process. For example, the capability of an argumentative dia-
logue by an argumentation-based system and the usefulness of the explanations it offers
would be enhanced when there is a deeper form of compatibility between the argumen-
tative reasoning processes of these systems with that of human reasoning.

In order for real-life applications of argumentation based systems to achieve such a
high-degree of natural compatibility while operating in an external dynamic environment
that includes the “human in the loop”, we need to address two major challenges:

• Acquisition of Application Knowledge What is an appropriate language level
that would facilitate capturing the application knowledge either from the applica-
tion expert and/or the application data? What is the appropriate cognitive-level of
this language? Can this be (structured) Natural Language?

• Middleware from Sensory Information to High-level Application Concepts

What are effective ways of comprehending the relevant part of the current ap-
plication environment? How do we recognize the current state of affairs and the
particular decision context in which the system finds itself?

To address these challenges we need software methodologies that facilitate the de-
velopment of systems directly from the high-level application domain language, data and
expertise. One such methodology is SoDA which together with the systems of Gorgias
and GorgiasCloud offers Explainable Argumentation as a Service for online applica-
tions. Recently, these technologies have formed the basis for a start up company called
Argument Theory in Paris which offers solutions to real-life application decision taking
problems based on argumentation technology. Its first successful application concerns
automated help in the annotation of documents for blind readers, while currently it is
developing prototype systems for applications in the areas of medical decision support,
personal assistants and policy compliance.

Such applications emphasize the need for a human-like form of machine argumenta-
tion. To help us address this we can study the synthesis of cognitive principles within for-
mal computational frameworks of argumentation. Cognitive principles are drawn from
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our understanding of human reasoning as acquired across a wide range of disciplines,
such as Cognitive Science, Philosophy and Linguistics. They would inform and regu-
late the computational process of argumentation to be cognitively compatible to human
argumentation and reasoning. Cognitive Argumentation concerns such a study which
together with itsCOGNICA system for explainable conditional reasoning, offers the op-
portunity for carrying out large scale empirical studies of human-machine reasoning in-
teraction. For example, COGNICA is used to study the effect that machine explanations
can have on humans when reasoning or deciding what action to pursue.
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Generating Contrastive Snippets
for Argument Search

Milad ALSHOMARY, Jonas RIESKAMP and Henning WACHSMUTH
Paderborn University, Paderborn, Germany

Abstract. In argument search, snippets provide an overview of the aspects dis-
cussed by the arguments retrieved for a queried controversial topic. Existing work
has focused on generating snippets that are representative of an argument’s con-
tent while remaining argumentative. In this work, we argue that the snippets should
also be contrastive, that is, they should highlight the aspects that make an argument
unique in the context of others. Thereby, aspect diversity is increased and redun-
dancy is reduced. We present and compare two snippet generation approaches that
jointly optimize representativeness and contrastiveness. According to our experi-
ments, both approaches have advantages, and one is able to generate representative
yet sufficiently contrastive snippets.

Keywords. snippet generation, argument search, argument presentation

1. Introduction

Most search engines present results along with short text excerpts of the underlying doc-
uments, so called snippets, in order to let users quickly assess the relevance of the results
to their information needs [1]. In argument search, where the goal is to retrieve pro and
con arguments on a queried controversial topic [2,3], snippets are of particular impor-
tance to provide an efficient overview of the spectrum of topical aspects covered by the
retrieved arguments—without the need to go through all of them [4].

Standard snippet generation focuses on the overlap of the input query with the doc-
ument [5,6], or abstractions thereof [7]. In the context of argument search, however, Al-
shomary et al. [4] argued in favor of snippets that summarize an argument’s main claim
and the main reason supporting the claim. In their experiments, the authors demonstrated
that snippets generated towards this goal are more representative than generic content
summaries and query-dependent snippets.

In this paper, we highlight the limitations of such argument snippet generation and
propose an extended setting for the task in order to maximize the usability of the re-
sulting snippets for argument search engines. Particularly, the extractive summarization
approach of Alshomary et al. [4] addressed two goals of snippet generation: represen-
tativeness and argumentativeness. However, the top-ranked arguments retrieved by an
argument search engine usually discuss the same queried controversial topic. Hence, an
approach that aims to extract the main claim of an argument will tend to generate se-
mantically similar snippets for several arguments. This behavior is highlighted in Fig-
ure 1, where two pro arguments are shown for the query “tuition fees”. Here, a focus on
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It is well known that a university 
education leads to great benefits 
in later life. 
University graduates are more 
likely to have better jobs and 
higher wages than people with 
only a high school education. 
Seeing as university graduates 
receive all of these benefits, 
and will be able to afford it? 
It is only fair that they pay for 
the education they receive. This 
is the basis of all taxation.

Education is free in the UK up to 
the age of 18 and students receive 
top of the class education up to 
this age which is considerably 
costly for the government. More 
government money would be a 
drain on the treasury, the money 
could be better spent elsewhere. 
Those with the skill and ability 
to go to university can do so at 
their own cost as they will be 
the ones reap in the rewards 
later in their life. 
The fact is that the cost of 
funding everyone's university 
tutelage would be too much.

Figure 1. Example arguments returned for the query “tuition fees” (we show only two here for simple illustra-
tion). In each case, the bold sentences represent a generic snippet for the respective argument, whereas those
with a colored background form a more contrastive argument snippet.

only representativeness and argumentativeness would likely produce similar snippets for
both arguments (e.g., based on the sentences marked bold), reducing the argument search
engine’s capability to provide an effective aspect overview.

To alleviate the outlined limitation, we propose to additionally maximize the con-
trastiveness of a snippet. We define an argument snippet as contrastive, if it highlights the
uniqueness of the input argument compared to other arguments from the same context
(say, those from the same result page in argument search). The input to our approach is a
set of arguments from the same context. The output is a set of snippets that are argumen-
tative and representative of their argument while being contrastive toward the others. By
focusing more on contrastiveness, the new snippets (shown with a colored background in
Figure 1) increase the coverage of the diverse aspects discussed in the input arguments.
Naturally, achieving higher contrastiveness might result in lower representativeness; a
trade-off that can be adjusted, as we show later in experiments.

We approach the extended task setting in two ways. First, we extend the graph-
based approach of Alshomary et al. [4], which ranks sentences based on their centrality
and argumentativeness, by contrastiveness. Here, we encode an extra term to discount
the sentence’s similarity to other arguments. Second, we exploit the resemblance of our
setting to the comparative summarization task [8]. Concretely, we adapt the approach of
Bista et al. [9] who model the latter task as the selection of a snippet that a powerful
classifier can distinguish from other arguments but not from the input argument.

In our experiments, we evaluate the approaches on a dataset constructed from the
corpus of the argument search engine args.me. In particular, we use controversial topics
from Wikipedia along with entries from the query log of args.me itself [10] to retrieve
argument collections from the args.me API. We quantify representativeness by comput-
ing the cosine similarity of a snippet with the average embedding of its argument, and
we measure argumentativeness as a quality dimension using the model of [11] trained
to measure the argumentative quality of sentences. For contrastiveness, finally, we adapt
silhouette analysis [12] as a proxy to measure the quality of clusters whose centroids are
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the generated snippets. Our results demonstrate the trade-off between representativeness
and contrastiveness, and they indicate how to balance this trade-off.

In a subsequent user study, we manually compared our approaches to a baseline that
focuses only on representativeness. We demonstrate that both approaches generate snip-
pets that highlight the arguments’ uniqueness better, whereas the comparative summa-
rization approach produces more representative snippets. Our findings support the appli-
cability and importance of considering the contrastiveness of a snippet within argument
search. For reproducibility, we make our code and resources publicly available.1

2. Related Work

For snippet generation in general, abstractive and extractive summarization techniques
have been explored [13,14]. In both cases, a user’s query may be considered during
generation (query-dependent snippet) or disregarded (query-independent). Alshomary et
al. [4] suggest that query-independent snippets are more suitable in an argument search
scenario. Therefore, we also consider such snippets in this paper. The authors proposed a
graph-based approach that forms snippets by selecting the two most important sentences
in terms of their centrality in context and their argumentativeness. In contrast, we argue
that a snippet should also highlight the argument’s uniqueness in its context to maximize
the diversity of snippets when presented to the end-user.

A branch of summarization research focuses on comparative summarization. Given
a set of document groups, the task here is to generate summaries that are useful in com-
paring the differences between these groups [8,15]. Similarly, our goal is to obtain snip-
pets that emphasize the differences between texts. However, our input is a set of argu-
ments rather than groups of documents. Thus, we modify the recent comparative summa-
rization approach of Bista et al. [16] by considering different surface features to maintain
the snippet’s argumentativeness.

There exists a body of research on the diversification of search results [17] that
aims to retrieve diverse results while maintaining relevance to the queried topic in order
to provide wider perspective. Differently, in this work, we are already given a set of
arguments retrieved for some topic, and we aim to generate diverse snippets, where each
snippet highlights the unique argumentative part of its argument.

3. Approaches

For the task of contrastive argument snippet generation, we define the input to be a set
of k ≥ 2 arguments A = {A1, . . . ,Ak} from the same context, for example, all arguments
from a search engine’s result page. We represent each A ∈ A simply as a set of sentences,
A := {s1, . . . ,sn}, where n ≥ 2 usually differs across arguments. The output is one subset
S ⊆ A for each A, consisting of all sentences of the snippet (we predefine |S| = 2 in our
experiments). Ideally, S is representative of A, argumentative on its own, and contrastive
towards all arguments in A\{A}.

In this section, we propose two alternative approaches to the defined task. The first,
Contra-PageRank, extends the work of Alshomary et al. [4] by modeling the dissimilarity

1https://github.com/MiladAlshomary/contrastive-snippet-generation
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Figure 2. The idea of both approaches, illustrated for three arguments in a sentence embedding space. A
sentence s is used for a snippet of an argument A1, if its joint representativeness and contrastiveness are higher
than for other sentences s′ of the same argument. Argumentativeness (brighter symbols) is considered as well.

of each sentence si ∈ A to all sentences from A \ {A}. The second, Comp-Summarizer,
adapts the work of Bista et al. [16] to select a snippet S that can be distinguished from
A\{A} but not from A. Both thus follow the idea to include a sentence s in S, if it is both
representative of A and contrastive to A\{A}. We illustrate this idea in Figure 2.

3.1. Graph-based Summarization

Alshomary et al. [4] proposed a graph-based approach that utilizes PageRank [18] to
score sentences in terms of their centrality in context and argumentativeness. The two
top-scored sentences are then extracted in their original order to form a snippet. We mod-
ify the underlying scoring function P(si) in two ways: First, we compute the centrality of
a sentence si ∈ A based only on the sentences in its covering argument A rather than all
sentences from the whole context of A—to avoid conflicts with our second adaptation.
Second, we extend the bias term that represents the initial sentence probability to account
not only for argumentativeness (arg) but also for contrastiveness. The contrastiveness
here is quantified as a discount on the similarity (sim) of si to other arguments in the
context. As a result, we reformulate the PageRank score of si ∈ A as follows:

P(si) := d1 · ∑
s j∈A,i�= j

sim(si,s j)

∑sk∈A, j �=k sim(s j,sk)
·P(s j) (1)

+ d2 · arg(si)

∑s j∈A arg(s j)
− d3 · sim(si,A\{A})

∑s j∈A sim(s j,A\{A}) (2)

Here, the argumentativeness score arg(si) of each si ∈ A and the similarity score
sim(si,A\{A}) are computed directly to form the initial bias score of each sentence.
Following the original approach [4], a graph is then constructed for each argument A by
modeling each sentence s ∈ A as a node and creating an undirected edge {s,s′} for each
pair s,s′ ∈ A, s �= s′, weighted with sim(si,s j). Finally, PageRank is applied to generate
a score P(s) for each s. As in [4], we start with equal initial scores for all sentences and
iteratively update them until near-convergence. We rank all sentences of a given argu-
ment A by score and generate a snippet from the two top-ranked sentences concatenated
in their original order.
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3.2. Comparative Summarization

Given the resemblance of our task to comparative summarization, we model the task in
line with the mentioned approach of Bista et al. [16]: For an argument A, the goal is to
find snippet sentences S ⊆ A subject to (a) S being representative of A, and (b) S being
contrastive to A\{A}. This is conceptualized via a condition for each objective: (a) No
classifier y can be trained that distinguishes sentences in S from those in A\ S, reflecting
the snippet’s representativeness. (b) A classifier y′ can be trained that can differentiate
sentences in S from those in other arguments from the context A \ {A}, reflecting the
snippet’s contrastiveness.

Regarding the classifiers, condition (a) aims to minimize the accuracy of y, whereas
(b) aims to maximize the accuracy of y′. Since finding such classifiers is an intractable
problem in general, [9] used maximum mean discrepancy (MMD) [19] as an estimation
of the classifiers’ effectiveness. Given a set of arguments A, the goal is then to find the
snippet sentences S ⊆ A of all arguments A ∈ A that maximize the following term:

∑
A∈A

(−MDD2(S,{A})+λ ·MMD2(S,A\{A})) (3)

Here, λ is a parameter to control the influence of contrastiveness (second addend the
term above). This formulation models representativeness based on the similarity between
sentences (first addend). It can be solved in an unsupervised way by greedily selecting
sentences that satisfy the objective.

However, there may be other features that signal sentence importance which are not
reflected by similarity (e.g., argumentativeness in our case). For this, [16] introduced
learnable functions that map sentence features into an importance score and integrate
them into the objective function of a supervised MMD variant. Given a training set T
with tuples of argument A, generic snippet S̄ ⊆ A, and context A, the goal is to minimize
(note the switched signs) the following adjusted term:

1
|T | ∑

(A,S̄,A)∈T

(
MDD2(S̄,A,θ)−λ ·MMD2(S̄,A\{A},θ)) (4)

Here, θ ∈ R
m denotes a vector of learned feature weights. The adjusted variant re-

quires the definition of sentence features that reflect its likelihood of appearing in S̄.
Hence, we consider the following m = 6 features in our implementation:

1. Position. Position of the sentence in the argument

2. Word count. Number of words in the sentence

3. Noun count. Number of nouns in the sentence

4. TF-ISF. TF-IDF on the sentence level

5. LexRank. Scores obtained from LexRank [20]

6. Argumentativeness. Count of words from a claim lexicon [4]
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4. Experiments

We now analyze the trade-off between representativeness and contrastiveness in snippet
generation, and we explore how to adjust it via hyper-parameters of the two approaches.
We will present the data collection and preprocessing, implementation details, as well as
the automatic and manual evaluations that we carried out.

4.1. Data

For evaluation, we need a dataset of arguments grouped into contexts. Since our work
is motivated by the idea of argument search engines, we use the args.me corpus of [10]
as the source. Particularly, we considered all arguments in the corpus belonging to the
same debate as a context, resulting in 5457 contexts with an average of 5.2 arguments per
context, we call it argsme dataset. Such contexts suit the training of Comp-Summarizer
since we can use argument conclusions to derive generic snippets. Second, we mimicked
how arguments are grouped into contexts in search by querying the args.me API2 once
using Wikipedia’s list of controversial issues,3 and once using queries from the args.me
query log.

We call the former dataset controversial-contexts containing 600 context with an
average of 7.5 arguments per context, while the latter is called query-log containing 476
contexts with an average of 7.0 arguments. Since query-log is best in representing the
realistic search scenario, we use it below for the final evaluation.4

4.2. Implementation Details

For both approaches, we preprocess all input arguments in a number of cleansing steps,
namely we remove debate artifacts5, references, enumeration symbols, and sentences
shorter than three characters. We measured sentences similarity in terms of the cosine of
their embeddings generated with Sentence-BERT [22]. In the following, we give further
implementation details of the two approaches.

Contra-PageRank Recall that our graph-based summarization has three parameters,
d1–d3, for representativeness, argumentativeness, and contrastiveness respectively. In our
experiments, we tested different parameter values between 0.1 to 0.9 with a step size of
0.1 on the controversial-contexts dataset. We consider Contra-PageRank with d3 = 0 as
a baseline, since it disregards contrastiveness.

Comp-Summarizer To obtain ground-truth generic snippets S̄ that are necessary for the
supervised training, we followed the previous work [4] in considering the argument’s
conclusion a proper generic snippet. To this end, we used the args.me corpus and heuris-
tically generated generic snippets based on the sentences’ overlap with the conclusion.6

We assessed different combinations of values for the hyperparameters, including the con-
trastiveness weight λ . We used 5-fold cross-validation to evaluate each combination,
aiming to minimize the average loss on the data. The optimization worked for 300 epochs
with a learning rate of 0.1.

2https://www.args.me/api-en.html
3https://en.wikipedia.org/wiki/Wikipedia:List_of_controversial_issues
4All three collected datasets will be made publicly available upon acceptance.
5The artifacts are mostly utterances of social interaction between debaters [21].
6The algorithm used is the one that was proposed by Bista et al. [16].
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Table 1. Automatic evaluation scores of Contra-PageRank for three selected combinations of hyperparameter
values. The best value in each column is marked in bold.

d1 d2 d3 Contrastiveness Argumentativeness Representativeness

1.0 0.0 0.0 0.045 0.647 0.800

0.5 0.7 0.2 0.050 0.630 0.675
0.8 0.9 0.7 0.060 0.622 0.594

4.3. Automatic Evaluation

No datasets with ground-truth contrastive snippets exist, and the manual creation of such
snippets is arguably arduous. Therefore, we stick to automatic measures that intrinsically
assess snippet quality below, in order to evaluate different parameter value combinations
and to select some for the manual evaluation.

In particular, we capture contrastiveness in terms of silhouette analysis score, an in-
trinsic cluster measure for quantifying clusters quality, as follows. Given a set of snip-
pets S = {S1, . . .Sk} generated for a set of arguments A = {A1, . . .Ak}, we pseudo-cluster
the embedding of all arguments’ sentences, with each snippet Si as one centroid.7 This
way, we can quantify the clusters’ quality using silhouette analysis: The more contrastive
snippets are, the better the clusters they form, reflected in a higher silhouette score. As
for representativeness, we compute the mean similarity between the sentences of a snip-
pet S and those of the respective argument A. Finally, we approximate argumentativeness
by argument quality, employing the BERT model of [11] trained on a regression task to
predict the argumentative quality score of a sentence.8

Results Table 1 presents three selected combinations of parameter values that demon-
strate the limits of contrastiveness and representativeness for Contra-PageRank as well
as their trade-off: As expected, setting d1 to 1 (and, thus, ignoring the other terms) maxi-
mizes representativeness, while the best contrastiveness score comes from increasing d3
to 0.7 (third row). In the second row, we show a value combination that better balances
representativeness and contrastiveness. As for argumentativeness, we observed little dif-
ferences across parameters, which could be the result of the simple lexicon-based method
of weighting argumentativeness.9

In Table 2, we explore the trade-off between representativeness and argumentative-
ness for Comp-Summarizer, showing evaluation scores for selected values of the con-
trastiveness weight λ . Analogously, a higher λ results in more contrastiveness but less
representativeness, while ignoring the contrastiveness term (λ = 0.000) leads to the best
representativeness. A medium value (here, λ = 0.500) yields a better balance between
the three scores.

4.4. Manual Evaluation

To gain more reliable insights into the effectiveness of our approaches in generating
contrastive and representative snippets, we conducted a study with four human annota-
tors, none of which was an author of this paper (university students with good English

7A snippet’s embedding is averaged from its sentences’ embeddings.
8We implemented the topic-independent version of the model.
9The effect of adding argumentativeness was also rather low in the original paper [4].
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Table 2. Automatic evaluation scores of Comp-Summarizer for three different values of the contrastiveness
weight λ . The best value in each column is marked in bold.

λ Contrastiveness Argumentativeness Representativeness

0.000 0.059 0.637 0.823

0.500 0.074 0.632 0.803
0.875 0.086 0.624 0.720

Table 3. Manual evaluation results for the three compared approaches on a sample of 50 cases: Contrastive-
ness, in terms of the percentage of generated snippets that were seen most representative of their input argu-
ment, and representativeness, in terms of the average and median score. Results highlighted with * and ** are
significantly better than Arg-PageRank with confidence level of 95% and 90% respectively.

Approach Contrastiveness Representativeness Score

Average (± Std.) Median

Contra-PageRank *83% **3.13 (± 1.15) 3
Comp-Summarizer *81% **3.76 (± 1.25) 4

Arg-PageRank 65% 3.50 (± 1.35) 4

skills). We chose the variants of the two approaches that yielded best contrastiveness
above: the third row of Table 1 for Contra-PageRank, and the third of Table 2 for Comp-
Summarizer. As a baseline focusing on representativeness, we also included the Contra-
PageRank variant in the first row of Table 1, which is similar to the approach of [4],
except for computing centrality only based on the argument’s sentences rather the whole
context. Accordingly, we refer to this baseline as Arg-PageRank.

For evaluation, we randomly selected 50 samples of three arguments, A =
{A1,A2,A3}, and we repeated the following process once for each of the three ap-
proaches. For each sample, we first generated the respective snippets, S = {S1,S2,S3}.
For every snippet Si ∈ S, two annotators then manually rated how representative Si is on
a 5-point Likert scale, once for each argument in A. We defined representativeness to our
annotators by how much the snippet is covering the main gist, thought, or quintessence
of the argument.10 From this, we infer that Si is contrastive, if it obtained a higher repre-
sentativeness score for Ai than for all A j �= Ai.Before doing so, we made one adjustment,
though: Since all three approaches are extractive, the annotators would have easily rec-
ognized the argument from which Si was extracted and, consequently, have scored that
argument higher. To avoid this bias, we applied automatic rewriting to all snippets using
the PEGASUS transformer [23].

Results The average inter-annotator agreement of the two annotator pairs was substan-
tial, 0.74 in terms Krippendorff’s α , suggesting reliable results. Table 3 shows each ap-
proach’s contrastiveness as the percentage of cases where a generated snippet, Si, got
the highest representativeness score for its input argument, Ai. Contra-PageRank gener-
ated contrastive snippets most often (83%), while Arg-PageRank led to contrastive snip-
pets only in 65% of all cases. In other words, 35% of the snippets of Arg-PageRank
were mistakenly seen as representative of other arguments by the annotators. This result
underlines the importance of fostering snippets to be contrastive. The best trade-off is

10For an easy task distribution, we divided the 50 samples into two sets of 25 samples and gave each set to
two annotators.

M. Alshomary et al. / Generating Contrastive Snippets for Argument Search28



Table 4. Example arguments on Cloud Seeding along with the snippet generated for each by our two ap-
proaches and the baseline

Topic: Cloud Seeding

Argument-1: Cloud seeding should be used worldwide. This is because, according to both Eco-
Hearth.com and Weather Modifications.org , cloud seeding is safe and virtually harmless to the
environment. It can safely cause rain in drought-ravaged areas and keep farms from failing. We
should institute cloud seeding in areas where it is necessary.

- ArgPageRank’s Snippet: Cloud seeding should be used in certain areas
- Comp-Summarizer’s snippet: Cloud seeding is safe and harmless to the environment accord-
ing to both EcoHearth.com and Weather Modifications.org
- Contra-PageRank’s snippet: Cloud seeding should be used in certain areas

Argument-2: Thank you, instigator for providing the resolution. I accept all the proposed terms.
Comments I’d like to confirm whether the the embryonic dust cloud theory follows as the popular
scientific consensus that a planetary system is created from a nebular of ionised gas where denser
and more compact regions form the precursors to a planetary system’s celestial bodies. I’d also
like to ask who coined ”Embryonic Dust Cloud Theory” as I don’t want to be unintentionally
misrepresenting a scientist’s work which may slightly differ from the widely accepted theory.

- ArgPageRank’s Snippet I would like to know who came up with the idea of ”Embryonic Dust
Cloud Theory” as I don’t want to be misrepresenting a scientist’s work which may slightly differ
from the widely accepted theory
- Comp-Summarizer’s snippet I’d like to confirm that the popular scientific consensus is that
a planetary system is created from a nebular of ionised gas where denser and more compact
regions form the precursors to a planetary system’s heavenly bodies
- Contra-PageRank’s snippet I’d like to confirm that the popular scientific consensus is that
a planetary system is created from a nebular of ionised gas where denser and more compact
regions form the precursors to a planetary system’s heavenly bodies.

Argument-3: Since you have failed to give me an example of an instance where another material
has been used instead of silver iodide and was successful, i’ll have to ignore that argument. You
stated yourself it was lethal. It doesn’t matter if the chemical is fairly diluted, it is still dangerous
and can cause serious harm to ecosystems. The testing of the soil is faulty and unreliable, so it
very possible other studies don’t have accurate information. In conclusion, cloud seeding should
not be used. This is because it is plainly unnatural and has already wreaked havoc on several
ecosystems. Silver Iodide is a harmful chemical that should never be used in the first place. Vote
Con! Thanks for the good debate.

- ArgPageRank’s Snippet: There will be no new evidence or arguments to be formed during
this round.
- Comp-Summarizer’s snippet: Since you didn’t give me an example of an instance where
another material was used instead of silver iodide, I’ll have to ignore that argument.
- Contra-PageRank’s snippet: Cloud seeding should not be used because the chemical is still
dangerous and can cause serious harm to the environment.

achieved by Comp-Summarizer which generated the most representative snippets while
maintaining contrastiveness almost as often as Contra-PageRank (81%).

Example analysis In Table 4, we present three arguments on the topic Cloud Seeding,
along with the snippets generated by each of the approaches. These snippets are the
paraphrased version of the top two sentences selected from the argument. We notice
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that the baseline ArgPageRank tends to select general sentences like ”Cloud seeding
should be used in certain areas.” or ”no new evidence or arguments to be found..”, while
CompSummarizer generated snippets that focus on aspects unique to the argument like
scientific consensus” and ”harmless to the environment”.

5. Conclusion

In this work, we argued for the importance of contrastive snippets in argument search,
that is, snippets that emphasize an argument’s unique aspects in the context of others.
Building on related work, we have proposed two extractive summarization approaches.
Despite room for improvement, our experiments showed their effectiveness and the in-
hererent trade-off between snippet’s contrastiveness and representativeness. While the
graph-based summarizer turned out to foster contrastiveness most, the comparative sum-
marizer seems to balance the trade-off better. By focusing on both representativeness and
representativeness, we believe that argument snippet generation can produce snippets
that help in distinguishing different arguments efficiently.
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Abstract. Explainable artificial intelligence (XAI) has gained increasing interest in
recent years in the argumentation community. In this paper we consider this topic
in the context of logic-based argumentation, showing that the latter is a particu-
larly promising paradigm for facilitating explainable AI. In particular, we provide
two representations of abductive reasoning by sequent-based argumentation frame-
works and show that such frameworks successfully cope with related challenges,
such as the handling of synonyms, justifications, and logical equivalences.

Keywords. Explainable AI, sequent-based argumentation, abductive logics

1. Introduction

EXplainable Artificial Intelligence (XAI) is an AI research area aimed at providing ex-
planation to inferences and decisions made by intelligent systems [1]. Argumentative
XAI is a fast growing area that studies XAI by means of computational argumentation
(see, e.g., the recent survey papers in [2,3]).

Computational argumentation is based here on argumentation frameworks (AFs) [4],
which are pairs of set of arguments and attack relation between the arguments, where
conclusions are derived by determining subsets of arguments that can collectively be ac-
cepted in the framework. In logic-based argumentation [5,6] the arguments are instan-
tiated by applying an underlying logic. Studying argumentative XAI from a logic-based
perspective has several advantages. Beyond the fact that explanations in this context can
be justified in a logical and rational manner, a logic-based setting is especially suitable
for modeling abductive reasoning [7], which can be viewed as inference to the best ex-
planation. Thus, it allows also for ‘backwards reasoning’, seeking for explanations for
drawing conclusions from a set of observations.

In this work, we show that logic-based argumentation (and in particular sequent-
based argumentation [6,8]) provides robust mechanisms for abductive reasoning in argu-
mentative settings. In particular, we consider two ways in which abductive reasoning can
be modeled by sequent-based argumentation. The first one is based on the derived argu-
mentative conclusions, where explanations can be determined in terms of entailment re-
lations. In the other approach, abductive reasoning is represented within the frameworks,
where explanations are incorporated in the arguments and in the attack relations. The two
approaches are then related and are used for providing information on how explanations
are justified relative to the assumptions.
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2. Preliminaries; Sequent-Based Argumentation

In this paper, we denote by L a propositional language. Atomic formulas in L are denoted
by p,q,r, formulas are denoted by φ ,ψ,δ ,γ,ε , sets of formulas are denoted by X, S,
E, and finite sets of formulas are denoted by Γ,Δ,Π,Θ, all of which can be primed or
indexed. The set of atomic formulas appearing in the formulas of S is denoted Atoms(S).
The set of the (well-formed) formulas of L is denotedWFF(L), the power set ofWFF(L)
is denoted℘(WFF(L)). Sequent-based argumentation is then described as follows:

• The base logic is an arbitrary propositional logic, namely a pair L= 〈L,�〉, consisting
of a language L and a consequence relation � on℘(WFF(L))×WFF(L). � is assumed
to satisfy: reflexivity (S � φ if φ ∈ S), monotonicity (if S′ � φ and S′ ⊆ S, then S � φ ),
and transitivity (if S � φ and S′,φ � ψ then S,S′ � ψ).

Let L = 〈L,�〉 be a logic and let S be a set of L-formulas. The �-closure of S is
the set CNL(S) = {φ | S � φ}. We say that S is �-consistent, if there are no formulas
φ1, . . . ,φn ∈ S for which � ¬(φ1∧·· ·∧φn).

• The language L contains at least a �-negation operator¬, satisfying p 	� ¬p and¬p 	� p
(for atomic p), and a �-conjunction operator ∧, for which S � ψ ∧φ iff S � ψ and S � φ .
We denote by

∧
Γ the conjunction of all the formulas in Γ. We shall sometimes assume

the availability of a deductive implication→, satisfying S,ψ � φ iff S � ψ → φ .

• Arguments based on a logic L = 〈L,�〉 are single-conclusioned L-sequents [9],
namely: expressions of the form Γ ⇒ ψ , where⇒ is a symbol that does not appear in L,
and such that Γ � ψ . Γ is called the argument’s support (also denoted Supp(Γ ⇒ ψ)) and
ψ is the argument’s conclusion (denoted Conc(Γ ⇒ ψ)). Given a set S of L-formulas
(premises), an S-based argument is an L-argument Γ ⇒ ψ , where Γ ⊆ S. We denote by
ArgL(S) the set of all the L-arguments that are based on S.

We distinguish between two types of non-intersecting premises: a �-consistent set
X of strict (i.e., non-attacked) premises, and a set S of defeasible premises. Their non-
defeasible character will give them a special status when we define argumentative attacks
below. We write ArgXL (S) for the set ArgL(X∪S). In particular, Arg/0L(S) = ArgL(S).

• Attack rules are sequent-based inference rules for representing attacks between se-
quents. Such rules consist of an attacking argument (the first condition of the rule), an
attacked argument (the last condition of the rule), conditions for the attack (the other con-
ditions of the rule) and a conclusion (the eliminated attacked sequent). The outcome of
an application of such a rule is that the attacked sequent is ‘eliminated’ (or ‘invalidated’;
see below the exact meaning of this). The elimination of Γ ⇒ φ is denoted by Γ 	⇒ φ .

Given a set X of strict (non-attacked) formulas, some common attack rules are:

• Defeat:
Γ1 ⇒ ψ1 ψ1 ⇒¬∧

Γ2 Γ2,Γ′
2 ⇒ ψ2

Γ2,Γ′
2 	⇒ ψ2

(Γ2 	= /0, Γ2∩X= /0)

• Direct Defeat:
Γ1 ⇒ ψ1 ψ1 ⇒¬γ Γ2,γ ⇒ ψ2

Γ2,γ 	⇒ ψ2
(γ 	∈ X)

• Undercut:
Γ1 ⇒ ψ1 ψ1 ⇒¬∧

Γ2 ¬∧
Γ2 ⇒ ψ1 Γ2,Γ′

2 ⇒ ψ2
Γ2,Γ′

2 	⇒ ψ2
(Γ2 	= /0, Γ2∩X= /0)
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• Direct Undercut:
Γ1 ⇒ ψ1 ψ1 ⇒¬γ ¬γ ⇒ ψ1 Γ2,γ ⇒ ψ2

Γ2,γ 	⇒ ψ2
(γ 	∈ X)

• Consistency Undercut:
Γ1 ⇒¬∧

Γ2 Γ2,Γ′
2 ⇒ ψ

Γ2,Γ′
2 	⇒ ψ

(Γ2 	= /0,Γ2∩X= /0,Γ1⊆X)

For instance, in the particular case where Γ1 = /0, consistency undercut indicates that an
argument with an inconsistent support is eliminated.

• A (sequent-based) argumentation framework (AF), based on the logic L and the
attack rules in AR, for a set of defeasible premises S and a �-consistent set of strict
premises X, is a pair AFX

L,AR(S) =
〈
ArgXL (S),A

〉
where A ⊆ ArgXL (S)×ArgXL (S) and

(a1,a2) ∈ A iff there is a rule RX ∈ AR, such that a1 RX-attacks a2. In what follows we
shall use AR and A interchangeably, denoting both of them by A.

• Semantics of sequent-based frameworks are defined as usual by Dung-style exten-
sions [4]: Let AF = AF

X
L,A(S) =

〈
ArgXL (S),A

〉
be an argumentation framework and let

E ⊆ ArgXL (S) be a set of arguments. It is said that: E attacks a if there is an a′ ∈ E such
that (a′,a) ∈ A, E defends a if E attacks every attacker of a, and E is conflict-free (cf) if
for no a1,a2 ∈ E it holds that (a1,a2) ∈ A. We say that E is admissible if it is conflict-
free and defends all of its elements. A complete (cmp) extension of AF is an admissible
set that contains all the arguments that it defends. By this, various argumentative seman-
tics may be defined. For instance, the grounded (grd) extension of AF is the ⊆-minimal
complete extension of ArgXL (S), a preferred (prf) extension of AF is a ⊆-maximal com-
plete extension of ArgXL (S), and a stable (stb) extension of AF is a conflict-free set in
ArgXL (S) that attacks every argument not in it.

2 We denote by Extsem(AF) the set of all
the extensions of AF of type sem.

• Entailments induced from an argumentation frameworkAF=AF
X
L,A(S)= 〈ArgXL (S),A〉

are based on the extensions derived from AF under a semantics sem:

• Skeptical entailment: S |∼∩,sem
L,A,X φ if there is an argument a ∈ ⋂

Extsem(AF) such
that Conc(a) = φ .

• Weakly skeptical entailment: S |∼�,semL,A,X φ if for every extension E ∈ Extsem(AF)
there is an argument a ∈ E such that Conc(a) = φ .

• Credulous entailment: S |∼∪,sem
L,A,X φ iff there is an argument a ∈⋃

Extsem(AF) such
that Conc(a) = φ .

Example 1. Consider an AF, based on classical logic CL and the following set of defea-
sible assumptions:

S=

{
clear skies, rainy, clear skies→¬rainy, rainy→¬sprinklers,
rainy→ wet grass, sprinklers→ wet grass

}

Suppose further that there are no strict assumptions (X= /0) and that the only attack rule
is undercut (Ucut). Then, for instance, the arguments

a1 : clear skies, clear skies→¬rainy⇒¬rainy,
a2 : rainy, clear skies→¬rainy⇒¬clear skies

2Further extensions and the relations among them are discussed e.g. in [10].
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Ucut-attack each other. In this case there are two stable/preferred extensions E1 and E2,
where a1 ∈ E1 and a2 ∈ E2. It follows, for instance, that with respect to these seman-
tics, wet grass credulously follows from the framework (since, e.g. rainy, rainy→
wet grass⇒ wet grass is in E2), but it does follow skeptically (since there is no ar-
gument in E1 whose conclusion is wet grass).

3. Abductive Reasoning in Sequent-Based Frameworks

Abductive reasoning is a common method of providing explanations in logic-based con-
texts. Sequent-based formalisms are particularly adequate for this, as instead of the usual
understanding of a sequent Γ,Δ ⇒ φ by ‘φ is a conclusion of Γ∪Δ’, one may intuitively
read it as ‘Δ is a (prima facia) explanation of φ in the presence of Γ’. This kind of ‘back-
ward reasoning’ is also our starting point for showing the usefulness of sequent-based
frameworks for abductive reasoning. We then proceed in two directions, external and
internal ones, for defining abductive reasoning in sequent-based argumentation.

3.1. Explanations: External View

We start with an ‘external’ approach, which is based on argumentative entailment rela-
tions. Let L= 〈L,�〉 be a logic and |∼ a non-monotonic entailment induced by it.3 Given
sets of strict (X) and defeasible (S) assumptions, an explanation E of an explanandum φ
with respect to |∼, is a finite set that satisfies at least the following two properties:

Sufficiency (w.r.t. |∼): X,S,E |∼ φ
Consistency (w.r.t. �): X 	� ¬∧

E

Thus, the set of explanations should be �-consistent with the strict assumptions, and
together with the strict and defeasible assumptions they are sufficient for |∼-inferring the
explanandum φ . We call these two conditions the basic explanation properties.

The basic explanation properties per-se may sometimes be too weak, and so they are
usually accompanied with further conditions. The following ones are inspired by [11]:

Non-vacuity (w.r.t. �): E � φ
Minimality (w.r.t. |∼): S,E′ 	|∼ φ for every E′ for which E,X �∧

E′ and E′,X �
∧
E.

Non-vacuity prevents self-explanations, and minimality assures the conciseness of the
explanations. In order to make sure that the explanation is indeed necessary (i.e., the ex-
planandum cannot be inferred from the assumptions alone), the property of non-idleness
(X,S 	� φ ) or strict non-idleness (X � φ) may be required. Here it will be convenient to
use the following argumentative variations of this property:

Non-idleness (w.r.t. sem): there is no a ∈⋃
Extsem(AF

X
L,A(S)) s.t. Conc(a) = φ .

Strict non-idleness (w.r.t. sem): there is no a ∈⋃
Extsem(AF

X
L,A( /0)) s.t. Conc(a) = φ .

By the above principles, external argumentative explanations are defined as follows:

3In our case, |∼ is the entailment induced from a framework that is based on L.
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Definition 1. Given a framework AF = AF
X
L,A(S) based on a logic L = 〈L,�〉, a finite

set E of L-formulas is called:

• external skeptical sem-explanation of φ if it satisfies |∼∩,sem
L,A,X -sufficiency (X,S,E

|∼∩,sem
L,A,X φ ), �-consistency (X 	� ¬∧

E), and holds in every sem-extension: for every
E ∈ Extsem(AF

X
L,A(S∪E)) there is a ∈ E, such that Conc(a) =

∧
E.

• external weakly-skeptical sem-explanation of φ if it satisfies |∼�,semL,A,X -sufficiency
(X,S,E |∼�,semL,A,X φ ), �-consistency (X 	� ¬∧

E), and holds in every sem-extension:
for every E ∈ Extsem(AF

X
L,A(S∪E)) there is a ∈ E, such that Conc(a) =

∧
E.

• external credulous sem-explanation of φ if it satisfies |∼∪,sem
L,A,X -sufficiency (X,S,E

|∼∪,sem
L,A,X φ ), �-consistency (X 	� ¬∧

E), and holds in some sem-extension: there is
some E ∈ Extsem(AF

X
L,A(S∪E)) and a ∈ E, such that Conc(a) =

∧
E.

Example 2. Consider again the framework in Example 1. Note that E= {sprinklers}
is a (stable and preferred) credulous explanation for wet grass. Indeed, using the no-
tations of Example 1, the framework that is based on S∪E has two stable/preferred ex-
tensions: E′

1 and E
′
2 = E2 (see Figure 1). In E′

1 the grass is wet since the sprinklers are
activated, and in E′

2 the grass is wet since it rains.

clear skies⇒ clear slies

sprinklers⇒ sprinklers

sprinklers,rainy→¬sprinklers
⇒¬rainy

clear skies,clear skies→¬rainy
⇒ ¬rainy

sprinklers,sprinklers→ wet grass

⇒ wet grass

rainy⇒ rainy

rainy,rainy→¬sprinklers
⇒¬sprinklers

rainy,clear skies→¬rainy
⇒¬clear skies

rainy,rainy→ wet grass

⇒ wet grass

E1 E2

Figure 1. Part of the AF of Example 2. The arguments with dark background are added by the explanation.

3.2. Explanations: Internal View

We now turn to the ‘internal’ approach, where abductive explanations are handled by
ingredients of the framework. We do so by considering another type of sequents, called
‘abductive sequents’. These are expressions of the form φ ⇐ Γ, [ε],4 and it intuitively
means that ‘φ may be inferred from Γ under the assumption that ε holds’. Note that
while Γ ⊆ S∪X, ε may not be an assumption, but rather a hypothetical explanation of
the conclusion.

4Note the reverse direction of the sequent sign, to emphasize the backward inference in this case.
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Abductive sequents may be produced by the following rule that roughly models the
usual idea of abductive inference as backwards reasoning:

ε,Γ ⇒ φ
φ ⇐ Γ, [ε]

(Abduction)

In our running example, this rule will allow us to produce abductive sequents such as

wet grass⇐ [sprinklers], sprinklers→ wet grass

that provides an alternative explanation to the wetness of the grass (i.e., sprinklers, in
addition to rainy), or

¬rainy⇐ [sprinklers], rainy→¬sprinklers

that provides another possible evidence for refuting the defeasible assumption that it is
rainy (i.e., sprinklers, in addition to the assumption that the sky is clear).

Since abductive reasoning is a form of non-monotonic reasoning, which in logic-
based argumentation is modeled with the attack relations, we need a way to attack ab-
ductive sequents. To this end, we consider rules similar to those from Section 2, e.g.:

Γ1 ⇒ φ1 φ1 ⇒¬γ φ2 ⇐ [ε], Γ2
φ2 	⇐ [ε], Γ2

γ ∈ (Γ2∪{ε})\X (Abductive Direct Defeat)

which models an attack on a subset of the assumptions and a hypothetical explanation of
an abductive sequent. Note that this attack rule assures, in particular, the consistency of
explanations with the strict assumptions, thus it renders the following rule admissible:

Γ1 ⇒¬ε φ ⇐ [ε], Γ2
φ 	⇐ [ε], Γ2

Γ1 ⊆ X (Consistency)

Abductive reasoning has to fulfill certain requirements to ensure proper behavior also in
the internal view. This time, attack rules may be introduced for obtaining counterparts of
the properties discussed in Section 3.1 for the external view. Note that, since abductive
sequents are now derived according to the underlying sequent calculus and the abduction
rule introduced above, the sufficiency property is automatically satisfied. Attack rules for
the other properties are given next.

Non-vacuity Rules for preventing self-explanations:

� ε → φ φ ⇐ [ε]
φ 	⇐ [ε]

(Non Vacuity)

Thus, in our running example, wet grass⇐ [wet grass] is excluded.

Minimality Rules for assuring that explanations will be as general as possible.

φ ⇐ [ε1], Γ1 � ε2 → ε1 � ε1 → ε2 φ ⇐ [ε2], Γ2
φ 	⇐ [ε2], Γ2

(Minimality)
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This rule assures that in our example sprinklers∧irrelevant fact should not ex-
plain wet grass, since sprinklers is a more general and so more relevant explanation.

Non-Idleness The [strict] assumptions should not already explain the explanandum.

Γ1 ⇒ φ φ ⇐ [ε], Γ2
φ 	⇐ [ε], Γ2

(Defeasible Non Idleness)

Γ1 ⇒ φ φ ⇐ [ε], Γ2
φ 	⇐ [ε], Γ2

Γ1 ⊆ X (Strict Non Idleness)

Note that defeasible non-idleness excludes the explanation sprinklers for wet grass,
since the latter is already inferred from the defeasible assumptions (assuming that it is
rainy), while strict non-idleness will allow this alternative explanation (since wet grass

cannot be inferred from the strict assumptions).

The next step is to adapt sequent-based argumentation frameworks to an abductive
setting, using abductive sequents, the new inference rule, and additional attack rules.
Given a sequent-based framework AF

X
L,A(S), an abductive sequent-based framework

AAF
X
L,A�(S) is constructed by adding to the arguments in ArgXL (S) also abductive argu-

ments, produced by Abduction, and where A� is obtained by adding to the attack rules in
A also (some of) the rules for maintaining explanations that are described above. Expla-
nations according to the internal view are then defined as follows:

Definition 2. Given an abductive sequent-based framework AAF
X
L,A�(S) as described

above, a finite set E of L-formulas is called:

• internal skeptical sem-explanation of φ , if there is Γ ⊆ S such that the abductive
argument φ ⇐ [

∧
E], Γ is in every sem-extension of AAFX

L,A�(S).
• internal weakly-skeptical sem-explanation of φ , if in every sem-extension of
AAF

X
L,A�(S) there is an abductive argument φ ⇐ [

∧
E], Γ for some Γ ⊆ S

• internal credulous sem-explanation of φ , if there is Γ ⊆ S such that the abductive
argument φ ⇐ [

∧
E], Γ is in some sem-extension of AAFX

L,A�(S).

Example 3. As noted above, wet grass⇐ [sprinklers], sprinklers→ wet grass

is producible by the Abduction rule from the sequent-based framework in Example 1,
and belongs to a stable/preferred extension of the corresponding abductive sequent-based
framework. Therefore, sprinklers credulously stb/prf-explains wet grass also ac-
cording to Definition 2.

3.3. Explanations: Relating the Two Views

Next, we relate the two approaches for producing argumentative explanations by ab-
ductive reasoning in sequent-based frameworks. In what follows we restrict ourselves
to singleton explanations in the assumptions language.5 We consider {ConUcut} ⊂ A⊆
{ConUcut,DirectDefeat,DirectUndercut}. The main results are the following:
5Thus, using the notations of the previous sections, E= {ε}, where Atoms(ε)⊆ Atoms(S∪X).
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Theorem 1. Let AF = AF
X
L,A(S) where L = CL, A is as specified above, and AAF =

AAF
X
L,A�(S) where A� = A∪{Abductive Direct Defeat}. For sem ∈ {stb,prf}, E is an

external weakly skeptical (resp. skeptical) sem-explanation of φ w.r.t. AF iff E is an
internal weakly skeptical (resp. skeptical) sem-explanation of φ w.r.t. AAF. Moreover,
E satisfies non-vacuity and/or strict non-idleness iff the non-vacuity and/or the strict
non-idleness attack rule is added to A�.

Theorem 2. Let AF = AF
X
L,A(S) where L = CL, A is as specified above, and AAF =

AAF
X
L,A�(S) where A� = A∪{Abductive Direct Defeat}. Then E is an external weakly

skeptical (resp. skeptical) grd-explanation of φ w.r.t. AF iff E is an internal weakly skep-
tical (resp. skeptical) grd-explanation of φ w.r.t. AAF. Moreover, E satisfies non-vacuity
and/or strict non-idleness iff the non-vacuity and/or the strict non-idleness attack rule is
added to A�.

The proofs of Theorems 1 and 2 are based on the correspondence to reasoning with
maximally consistent sets of assumptions, shown in [12]. Next, we sketch the proof
of Theorem 1 for A� = A∪ {Abductive Direct Defeat} and the weakly skeptical ver-
sion (the proof for the skeptical version and the proof of Theorem 2 are similar). In the
proof, MCSXL(S) is the set of the maximally �-consistent subsets of S, which are also
�-consistent with X.
Proof outline of Theorem 1. [⇒] Suppose that E = {ε} is an external weakly skeptical
sem-explanation of φ w.r.t. AFX

L,A(S), where sem ∈ {stb,prf}. In particular, S,ε |∼�,semL,A,X

φ , and for every E ∈ Extsem(AF
X
L,A(S∪ {ε}) there is a ∈ E, such that Conc(a) = ε .

By [12, Theorem 1], (†) for all Δ ∈MCSXL (S∪{ε}) we have that X,Δ � φ and X,Δ � ε .
Let now E ∈ Extsem(AAF

X
L,A�(S)). Then E∩ArgXL (S) ∈ Extsem(AF

X
L,A(S)), and so,

by [12, Theorem 1] again, E∩ArgXL (S) = ArgXL (Δ) for some Δ ∈MCSXL (S). By (†), for
all Ω ∈ MCSXL (S), Ω,X � ¬ε . So, X,Δ � ¬ε . Thus Δ∪{ε} ∈ MCSXL (S∪{ε}). By (†),
there is some finite Γ ⊆ Δ \ {ε}, for which X,Γ,ε � φ . It follows that φ ⇐ [ε], Γ is an
abductive argument in AAFX

L,A�(S).
Note that X,Δ 	� ¬γ for all γ ∈ (Γ∪{ε})\X, otherwise X,Δ � ¬ε , in a contradiction

to (†) and the consistency of Γ ⊆ Δ. Thus φ ⇐ [ε], Γ is not abductively attacked by any
element of E, and so φ ⇐ [ε], Γ ∈ E. It follows that ε is an internal weakly skeptical
sem-explanation of φ w.r.t. AAFX

L,A�(S).

[⇐] Suppose that E = {ε} is an internal weakly skeptical sem-explanation of φ w.r.t.
AAF

X
L,A�(S). Let E ∈ Extsem(ArgXL (S∪{ε})). By [12, Theorem 1], E = ArgXL (Δ) for

some Δ ∈ MCSXL (S∪{ε}). Then X,Δ � ¬ε , and so Δ′ = Δ∩ S ∈ MCSXL (S). Let E
′ be

the set of all the (X∪Δ)-based sequents and (X∪Δ)-based abducitive sequents. It can be
shown that E′ ∈ Extsem(AAF

X
L,A�(S)). Thus, there is an φ ⇐ [ε], Γ ∈ E, and Γ,ε � φ (for

Γ ⊆ Δ∪X). Thus, X,Δ � φ and X,Δ � ε . It follows that ε is an external weakly skeptical
sem-explanation of φ w.r.t. AFX

L,A(S).

We note that not in all cases the external and internal explanations coincide, even
when L= CL and A= {Direct Defeat,ConUcut}. The next example illustrates this:
Example 4. Let L= CL, A= {Direct Defeat,ConUcut}, S= {p,¬p∧q} and X= {q∧
r → s}. Then:
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1. q∧ r is an external weakly-skeptical stb-explanation of s, since the correspond-
ing sequent-based framework has two stable extensions: ArgXL ({p, q ∧ r}) and
ArgXL ({¬p∧q, q∧r}), both of which contain arguments for q∧r and for q∧r → s.
Note that this explanation satisfies Non-vacuity (s does not follow from q∧ r).

2. q∧ r is an internal weakly-skeptical stb-explanation of s, since the correspond-
ing abductive sequent framework also has two stable extensions, both with the ab-
ducible sequent s ⇐ [q∧ r], q∧ r → s.This holds also when the non-vacuity and/or
strict non-idleness attack rules are part of the framework.

This is in accordance with Theorem 1. Suppose now that minimality is imposed. Then:

1. q∧ r remains an external weakly-skeptical stb-explanation of s, since it satisfies
the minimality condition.

2. q ∧ r is no longer an internal weakly-skeptical stb-explanation of s, since one
extension also contains a minimality attacker of s ⇐ [q∧ r], q∧ r → s, namely:
s ⇐ [r], ¬p∧q, q∧ r → s.

4. Some Further Considerations

In this section we briefly comment on some other aspects of argumentation explanation.

4.1. Handling of Synonyms and Antonyms

Synonyms and antonyms may be handled by the strict assumptions, as they should not
be revised. This may be done either to clarify the meaning of some terminology used by
defeasible formulas, or for extending the vocabulary describing the domain of discourse.
For instance, suppose that in our running example we add the strict assumption X =
{blue skies↔ clear skies}. Then, since

blue skies, blue skies↔ clear skies, clear skies→¬rainy � ¬rainy

we derive, by the Abduction rule, the abductive sequent

¬rainy⇐ [blue skies], blue skies↔ clear skies, clear skies→¬rainy

Thus, under stable or preferred semantics, blue skies explains ¬rainy. Similarly,
blue skies explains ¬wet grass, etc.

4.2. Keeping Track of Explanations; Explanations Justifications

In the context of defeasible reasoning explanatory arguments are threatened by defeaters.
While abductive sequents φ ⇐ [ε],Γ state that in the context Γ the explanandum φ is de-
ducible from the explanation ε , it contains no information of how this explanation is jus-
tified against the background of possible defeaters. In the terminology of argumentation
theory, abductive sequents cover the illative tier (support) but not the dialectic tier (de-
feating defeaters) of argumentation [13,14]. In order to keep track of the latter, we incor-
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porate some ideas in the spirit of [15], adapted to logic-based argumentation in general
and abductive argumentation frameworks in particular.

Let AAFX
L,A�(S) be an abductive sequent-based framework with a set ArgXL (S) of

ordinary and abductive arguments, and a set A of attack rules on ArgXL (S)×ArgXL (S). For
a semantics sem and operator � ∈ {∪,∩}, we consider the following sets:

• AbdArg(φ , [ε]) = {a ∈ ArgXL (S) | a is of the form φ ⇐ Γ, [ε] for some Γ ⊆ S}
• AbdArg�sem(φ , [ε]) = {a ∈ AbdArg(φ , [ε]) | a ∈�Extsem(AAF

X
L,A�(S))}

Thus, AbdArg�sem(φ , [ε]) consists of all the abductive arguments in which ε explains φ
(namely, the elements of AbdArg(φ , [ε])), and that belong to the intersection (if �= ∩)
or the union (if �= ∪) of all the sem-extensions of AAFX

L,A�(S).
To justify the explanation of φ by ε with respect to sem and �, we therefore need

to compute the supports of the arguments that defend the elements in AbdArg�sem(φ , [ε])
(divided by sem-extensions)

• DefE(a) = {Supp(b) | b ∈ E, b defends a in AAFX
L,A�(S)}

• Justify�sem(φ , [ε]) = {DefE(a) | a ∈ AbdArg�sem(φ , [ε]), E ∈ Extsem(AAF
X
L,A�(S))}

Example 5. Suppose that we want to justify the comment in Example 3 that sprinklers
credulously stb-explains wet grass. For this, note that:

1. The abductive sequent a = wet grass⇐ [sprinklers], sprinklers→ wet grass

is in AbdArg(wet grass, [sprinklers]) and AbdArg∪stb(wet grass, [sprinklers]).

2. By Abductive Defeat, the abductive sequent a in Item 1 is attacked by the sequent
b= rainy, rainy→¬sprinklers⇒¬sprinklers, which in turn is counter-attacked
(using Defeat) by c = clear skies,clear skies → ¬rainy ⇒ ¬rainy. It follows
that c defends a.

3. By the introduced notation, Supp(c) = {clear skies,clear skies→¬rainy} is
in DefE(a), where E is one of the two stable extensions of the abductive argumentation
framework under consideration. Thus, for these a and E, we have:

(�)
DefE(a) ∈ Justify∪stb(wet grass, [sprinklers]),
{clear skies,clear skies→¬rainy} ∈ DefE(a).

An intuitive description of (�) is the following: sprinklers is an explanation for
wet grass. The set {clear skies, clear skies→¬rainy} is a justification for this
explanation. Indeed, it is assumed that the sky is clear, and in that case there is no rain.
Therefore, the wetness of the grass can be explained by the operation of the sprinklers.

4.3. Explanations Reduction; Avoiding Logically Equivalent Explanations

By its definition, if ε explains φ (either internally or externally), then – unless the range
of the explanations is restricted – every formula that is logically equivalent to ε according
to the base logic L also explains φ . This ‘explosion’ in the number of explanations may
be avoided in several ways, e.g., by introducing appropriate attack rules that exclude
logically equivalent alternatives of a derived explanation, or by switching to equivalence
classes of logically equivalent formulas (see, e.g., [16]). Briefly, the idea is the following:
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1. equivalence in L is defined as usual by: ψ ≡ φ iff ψ � φ and φ � ψ .
2. classes of arguments are defined by: �Γ ⇒ ψ� = {Δ ⇒ φ | Δ ∈ �Γ�, φ ∈ �ψ�}, where:

�ψ� = {φ | φ ≡ ψ} and �ψ1, . . . ,ψn� = {{φ1, . . . ,φn} | ∀1≤ i ≤ n φi ∈ �ψi�}.
Now, given a framework AF

X
L,A(S) =

〈
ArgXL (S),A

〉
we switch to a framework whose

arguments are classes �a� for a ∈ ArgXL (S), and where �a� attacks �b� if there are some
a′ ∈ �a�∩ArgXL (S) and b′ ∈ �b�∩ArgXL (S) such that (a′,b′) ∈ A. As usual, one has to
show independence of the choice of representatives. This is rather routine.

5. Discussion and Conclusion

Abduction has been widely applied in different deductive systems, such as adaptive log-
ics (see, e.g., [17,18]), and AI-based disciplines, perhaps the most prominent one is logic
programing (see [19,20] for surveys). Argumentation-based approaches include frame-
works for agent-based dialogues [21,22] and assumption-based argumentation frame-
works [23]. In [24,25] abduction is studied as the problem of adding arguments to a given
argumentation framework so that a given argument is rendered acceptable.

Our approach offers several novelties. In terms of knowledge representation we
transparently represent abductive inferences by an explicit inference rule that produces
abductive arguments. The latter are a new type of hypothetical arguments that are sub-
jected to potential defeat. A variety attack rules address the quality of the offered expla-
nation and thereby model critical questions [26] and meta-argumentative reasoning [27].
This is both natural and philosophically motivated, as argued in [28], where also a gap
in argumentative accounts of abduction is identified. Instead of imposing desiderata on
abductive inferences from the outside we incorporate them in the argumentative reason-
ing process. Our framework offers a high degree of modularity, and in comparison to ap-
proaches in logic programming we allow for fully propositional base logics. Desiderata
on abductive arguments can be disambiguated in various ways by simply changing the
attack rules, all in the same base framework. This allows for a thorough logical analysis
and disambiguation of these properties as demonstrated in Theorems 1, 2 and Example 4.

The presented work is mainly focused on representation considerations. In future
work we plan to take advantage of the uniformity of the sequent-based methods for expla-
nation, and carry them on to more expressive logics (involving, e.g., preference relations
among arguments) and to other types of explanations. We also plan to further develop
meta-theoretical results concerning our setting and incorporate other approaches to the
dialectic tier of explanation, such as related admissibility [14] or strong explanation [29].
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Abstract. Recently, Strength-based Argumentation Frameworks (StrAFs) have
been proposed to model situations where some quantitative strength is associated
with arguments. In this setting, the notion of accrual corresponds to sets of argu-
ments that collectively attack an argument. Some semantics have already been de-
fined, which are sensitive to the existence of accruals that collectively defeat their
target, while their individual elements cannot. However, until now, only the surface
of this framework and semantics have been studied. Indeed, the existing literature
focuses on the adaptation of the stable semantics to StrAFs. In this paper, we push
forward the study and investigate the adaptation of admissibility-based semantics.
Especially, we show that the strong admissibility defined in the literature does not
satisfy a desirable property, namely Dung’s fundamental lemma. We therefore pro-
pose an alternative definition that induces semantics that behave as expected. We
then study computational issues for these new semantics, in particular we show that
complexity of reasoning is similar to the complexity of the corresponding decision
problems for standard argumentation frameworks in almost all cases. We then pro-
pose a translation in pseudo-Boolean constraints for computing (strong and weak)
extensions. We conclude with an experimental evaluation of our approach which
shows in particular that it scales up well for solving the problem of providing one
extension as well as enumerating them all.

Keywords. abstract argumentation, argument strength, accrual of arguments

1. Introduction

Among widespread knowledge representation and reasoning techniques proposed in the
literature of Artificial Intelligence over the last decades, Abstract Argumentation [1] is
an intuitive but yet powerful tool for dealing with conflicting information. Since then,
the initial work of Dung has been actively extended and enriched in many directions,
e.g. considering other kinds of relations between arguments [2] or additional information
associated with arguments or attacks [3,4]. Among them, Strength-based Argumentation
Frameworks (StrAFs) [5] allow to associate a quantitative information with each argu-
ment. This information is a weight that intuitively represents the intrinsic strength of an
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argument, and is then naturally combined with attacks between arguments to induce a
defeat relation that allows either to confirm an attack between two arguments or to cancel
it, if the attacked argument is stronger than the attacker (w.r.t. their respective weights).
StrAFs extend further this notion of defeat among arguments by building a defeat that is
based on a collective attack of a group of arguments (or accrual) and by offering associate
semantics. Within these semantics, arguments can collectively defeat arguments that they
cannot defeat individually. Intuitively speaking, these accrual-sensitive semantics allow
some kind of compensation among arguments, where the accumulation of weak argu-
ments can create a synergy and get rid of a stronger one they collectively attack. This
reasoning approach allows to produce extensions that are not considered when applying
classical semantics. In [5] the authors presented the basics of StrAFs inspired by Dung’s
semantics for abstract argumentation along with some theoretical and computational re-
sults concerning classical issues related to abstract argumentation (i.e. acceptability se-
mantics, semantics inclusion, extensions existence and verification, etc.). In this paper
we propose a state of the art advancement in StrAFs by presenting original theoretical
and computational results related to different aspects. More particularly the contribution
of this work lies into the following aspects. The semantics proposed in [5] exist in two
versions (namely strong, and weak). Roughly speaking, a set is strongly conflict-free
iff none of its elements attacks another one, whereas a set is weakly conflict-free iff it
does not contain any (successful) accrual against one of its elements. After detecting that
strong admissibility fails to satisfy a desirable property in Dung’s abstract argumentation
frameworks, namely his Fundamental Lemma [1], we propose an alternative definition
for strong admissibility in order to remedy this issue and we define new admissibility-
based semantics for StrAFs. Furthermore, we study the complexity of reasoning with
these semantics and in particular we show that, surprisingly, the complexity does not in-
crease w.r.t. the complexity of reasoning with AFs. For computing the extensions under
these semantics, we propose algorithms based on pseudo-Boolean constraints.

2. Background Notions

We assume that the reader is familiar with abstract argumentation [1]. We consider fi-
nite argumentation frameworks (AFs) 〈A ,R〉, where A is the set of arguments, and
R ⊆ A ×A is the attack relation. We will use cf(AF) and ad(AF) to denote, respec-
tively, the conflict-free and admissible sets of an AF AF, and co(AF), pr(AF) and st(AF)
for its extensions under the complete, preferred and stable semantics. For more details
on the semantics of AFs, we refer the interested reader to [1,6]. A Strength-based Argu-
mentation Framework (StrAF) [5] is a triple StrAF = 〈A ,R,S 〉 where A and R are
arguments and attacks, and S : A → N is a strength function. An example of such a
StrAF is depicted at Figure 1, where nodes represent arguments, edges represent attacks,
and the numbers close to the nodes represent the arguments strength. These strengths

a1

2

a4

4

a2

1

a3

2

a5

1

Figure 1. A StrAF Example

intuitively represent the intrinsic robustness associated with an argument and allow to
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induce a defeat relation: an argument a defeats another argument b when a attacks b
and the strength associated with b does not overcome that with a. This framework also
offers the notion of collective defeat, i.e. sets of arguments that can jointly defeat their
target while they cannot do so separately. First, we call an accrual a set of arguments that
collectively attack a same target, i.e. a set κ ⊆ A s.t. ∃c ∈ A s.t. ∀ a ∈ κ , (a,c) ∈ R.
Moreover, we say that κ is an accrual that attacks c. Then, for κ ′ ⊆ A an accrual, κ
attacks κ ′ iff ∃a ∈ κ ′ s.t. κ attacks a.

Example 1. Consider again StrAF from Figure 1. We can observe several examples of
accruals, e.g. κ1 = {a1,a2} and κ2 = {a1,a3}, that both attack a4. Notice that any attack
(ai,a j) ∈ R induces an accrual {ai} attacking a j.

We need to assess the collective strength of an accrual.

Definition 1 (Collective Strength). Let StrAF = 〈A ,R,S 〉 be a StrAF and κ =
{a1, ...,an} ⊆ A be an accrual. Then the collective strength associated with κ is
coval⊕(κ) =⊕(S (a1), . . . ,S (an)) where ⊕ is an aggregation operator.

The operator⊕must satisfy some properties discussed in [5]. An example of suitable
operator is ⊕= ∑. If ⊕ is clear from the context, we simply write coval for coval⊕.
Definition 2 (Collective Defeat). Let StrAF = 〈A ,R,S 〉 be a StrAF, a ∈ A , and ⊕ an
aggregation operator. Then, an accrual κ defeats a with respect to coval⊕, denoted by
κ�⊕ a, iff κ ⊆A is an accrual that attacks a and coval⊕(κ)≥S (a). If ⊕ is clear from
the context, we use κ�a instead of κ�⊕ a.

In the rest of the paper, we focus on⊕= ∑ in examples and the pseudo-Boolean en-
coding defined in Section 4.2. But, unless explicitly stated otherwise, our results remain
valid for any ⊕ satisfying the properties from [5].
Definition 3. Let StrAF = 〈A ,R,S 〉 be a StrAF, ⊕ an aggregation operator and κ ⊆
A , κ ′ ⊆ A two accruals. Then κ defeats κ ′, denoted by κ�⊕ κ ′, iff ∃a ∈ κ ′ s.t. κ�⊕ a.

Example 2. Continuing Example 1, notice that coval∑(κ1) = 3<S (a4), so κ1 ��a4. On
the contrary, coval∑(κ2) = 4≥ S (a4), so κ2�a4.

StrAF semantics rely on two possible adaptations of the notion of conflict-freeness:

Definition 4 (Conflict-freeness/Defence). Given StrAF = 〈A ,R,S 〉 a StrAF, ⊕ an ag-
gregation operator, and S ⊆ A ,

• S is strongly conflict-free iff �a,b ∈ S s.t. (a,b) ∈ R.
• S is weakly conflict-free iff there are no accruals κ1 ⊆ S and κ2 ⊆ S s.t. κ1�⊕ κ2.
• S defends an element a ∈ A iff for all accruals κ1 ⊆ A , if κ1�⊕ a, then there

exists an accrual κ2 ⊆ S s.t. κ2�⊕ κ1.

Intuitively, strongly conflict-free sets are “classically” conflict-free, i.e. there is no
attack between two arguments members of such a set. On the contrary, weakly conflict-
free sets are “defeat-free”: attacks between arguments are permitted as long as they do
not result in a defeat neither individual nor collective. We use (respectively) cf⊕S and cf

⊕
W

to denote these sets (or simply cfS and cfW when ⊕ is clear from the context). Then, ad-
missibility and extension-based semantics can be defined either strong or weak. Namely:
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Definition 5 (Semantics for StrAFs [5]). Given StrAF = 〈A ,R,S 〉 a StrAF, ⊕ an ag-
gregation operator, and S ⊆ A a strong (resp. weak) conflict-free set,

• S is a strong (resp. weak) admissible set iff S defends all elements of S.
• S is a strong (resp. weak) preferred extension iff S is a ⊆-maximal strong (resp.

weak) admissible set.
• S is a strong (resp. weak) stable extension iff ∀a ∈ A \S, ∃κ ⊆ S s.t. κ�⊕ a.

For σ an extension-based semantics and X ∈ {S,W} meaning respectively strong
and weak, we use σ⊕

X (StrAF) to denote the X-σ extensions of StrAF. We drop ⊕ from
the notation where there is no possible ambiguity. It is proven in [5] that Dung’s AFs are
a subclass of StrAFs, where strong and weak semantics coincide. This result is useful for
proving complexity results. However, in [5] authors only focus on complexity issues for
the (weak and strong) stable semantics.

3. Admissibility-based Semantics for StrAFs

In our study, we investigate computational issues for admissibility-based semantics. A
formal definition of (weak or strong) complete semantics is missing in [5], but match-
ing the definition of (weak or strong) admissibility with the classical definition of the
complete semantics, a straightforward definition can be stated as follows:

Definition 6. Let StrAF = 〈A ,R,S 〉 be a StrAF, and ⊕ an aggregation operator. A
strong (resp. weak) admissible set S ⊆ A is a strong (resp. weak) complete extension of
StrAF if S contains all the arguments that it defends.

Now we study these semantics and in particular, we show that surprisingly this in-
tuitive definition of the complete semantics based on strong admissibility fails to satisfy
a desirable property, namely the Fundamental Lemma, which states that admissible sets
can be extended by the arguments that they defend. This leads us to redefine strong ad-
missibility (and the associated complete and preferred semantics) in Section 3.1. On the
contrary, the definition of weak admissibility is proved to be suitable in Section 3.2.

3.1. Revisiting Strong Admissibility

First, we observe that the usual inclusion relation between the preferred and complete
semantics is not satisfied for the strong semantics of StrAFs. Moreover, the universal
existence of complete extensions does not hold either.

Proposition 1. There exists StrAF s.t. prS(StrAF)� coS(StrAF), and coS(StrAF) = /0.

a
5

b

4

c
3

Figure 2. Example proving that prS(StrAF)� coS(StrAF)

The StrAF from Figure 2 shows that the Fundamental Lemma does not hold for
strong semantics of StrAFs: {a} is strongly admissible, and defends c, but {a}∪{c} is
not strongly admissible. A way to solve this issue is to redefine strong admissibility:
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Definition 7 (Strong Semantics Revisited). Let StrAF = 〈A ,R,S 〉 be a StrAF and
⊕ an aggregation operator. A set S ∈ cfS(StrAF) strongly defends an argument a if S
defends a against all the accruals that defeat it, i.e. ∀κ ⊆ A s.t. κ � a, ∃κ ′ ⊆ S s.t.
κ ′�κ , and S∪{a} is strongly conflict-free. Then, a set S ⊆ A is strongly admissible if
it is strongly conflict-free and it strongly defends all its elements. Moreover, S is a strong
preferred extension iff S is a ⊆-maximal strong admissible set; and S is a strong complete
extension iff S strongly defends all its elements.

If we consider again the StrAF from Figure 2, observe that this time, the strongly
admissible set {a} does not strongly defends c, since {a,c} is not strongly conflict-free.
Thus {a} is a strong complete extension of this StrAF, following Definition 7. Now,
Dung’s Fundamental Lemma can be adapted to strong admissibility.

Lemma 1 (Fundamental Lemma for Strong Admissibility). Let StrAF = 〈A ,R,S 〉 be
a StrAF and ⊕ an aggregation operator. Let S ⊆ A be a strongly admissible set, and
a,a′ two arguments that are strongly defended by S against all their defeaters. Then,
S′ = S∪{a} is strongly admissible.

Lemma 1 implies a relation between strong preferred and complete extensions:

Proposition 2. For any StrAF and ⊕, pr⊕S (StrAF)⊆ co⊕S (StrAF).

This guarantees the existence of at least one strong complete extension for any
StrAF: since /0 is a strong admissible set for any StrAF, then StrAF admits some ⊆-
maximal strong admissible sets, i.e. prS(StrAF) �= /0, which implies coS(StrAF) �= /0.

Example 3. Let us consider again the StrAF provided by Figure 1. Its strongly admis-
sible sets are adS(StrAF) = { /0,{a1},{a2},{a3},{a1,a2},{a1,a3,a5}}. Then, the strong
preferred and complete extensions are prS(StrAF)= coS(StrAF)= {{a1,a2},{a1,a3,a5}}.

Finally, we prove that the new definition of strong admissibility does not change the
fact that strong stable extensions are strongly admissible (and even strong preferred).

Proposition 3. For any StrAF and ⊕, st⊕S (StrAF)⊆ pr⊕S (StrAF).

3.2. Properties of the Weak Semantics

Regarding now weak semantics as defined in [5], the usual result still holds for StrAFs.

Lemma 2 (Fundamental Lemma for Weak Admissibility). Let StrAF = 〈A ,R,S 〉 be
a StrAF and ⊕ an aggregation operator. Given S ∈ adW (StrAF), and a,a′ two arguments
that are defended by S, S′ = S∪{a} is weakly admissible, and S′ defends a′.

Proposition 4. For any StrAF and ⊕, pr⊕W (StrAF)⊆ co⊕W (StrAF).

Similarly to what we have noticed previously for strong admissibility, /0 is weakly
admissible for any StrAF. This implies the existence of at least one weak preferred ex-
tension, and then one weak complete extension for any StrAF.

Example 4. Consider again the StrAF from Figure 1. One identifies the weakly ad-
missible sets adW (StrAF) = adS(StrAF)∪{{a2,a3},{a1,a2,a3},{a1,a2,a3,a5}}}. Then,
prW (StrAF) = coW (StrAF) = {{a1,a2,a3,a5}}.
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Contrary to the case of stable semantics [5], we do not have coS(StrAF) ⊆
coW (StrAF). This comes from the fact that our strong and weak complete semantics are
not based on the same notion of defense. However, we observe that, for any StrAF, each
strong complete extension is included in some weak preferred (and complete) extension.

Proposition 5 (Strong/Weak Semantics Relationship). Given StrAF = 〈A ,R,S 〉 and
⊕ an aggregation operator, ∀E ∈ coS(StrAF), ∃E ′ ∈ prW (StrAF) s.t. E ⊆ E ′.

We do not need a counterpart to Proposition 3: the definition of semantics based on
weak admissibility is not modified, so [5, Proposition 1] still holds in this case.

3.3. Dung Compatibility

Previous work on StrAFs showed that this framework generalizes Dung’s AF, with a
correspondence of StrAF semantics with AF semantics in this case. Following the new
definition of strong admissible sets, one might fear that this property does not hold for
strong admissibility-based semantics. However, we show here that it still does, as well as
for weak complete semantics. Let us recall the transformation of an AF into a StrAF [5].

Definition 8. Given an argumentation framework AF = 〈A ,R〉, the StrAF associated
with AF is StrAFAF = 〈A ,R,S 〉 with S (a) = 1,∀a ∈ A and coval= ∑.

Now we can state the following proposition, that extends Dung Compatibility from
[5] to the semantics studied in this paper.

Proposition 6 (Dung Compatibility). Let AF = 〈A ,R〉 be an AF, and StrAFAF =
〈A ,R,S 〉 from Def. 8. For σ ∈ {ad,pr,co}, σ(AF) = σX (StrAFAF), for X ∈ {S,W}.

4. Complexity and Algorithms

Now we provide some insight on computational issues for admissibility-based seman-
tics of StrAFs, i.e. we identify the computational complexity of several classical rea-
soning problems under these semantics, and we provide algorithms (based on pseudo-
Boolean encoding) for solving them. While the complexity results are generic regarding
the choice of ⊕, the algorithms focus on ⊕= ∑.

4.1. Complexity Analysis

We assume that the reader is familiar with basic notions of complexity, and otherwise
we refer to [7] for details on complexity in argumentation, and [8] for a more general
overview of complexity. We focus on three classical reasoning problems in abstract argu-
mentation, namely verification (“Is a given set of arguments an extension?”), credulous
acceptability (“Is a given argument in some extension?”) and skeptical acceptability (“Is
a given argument in each extension?”). Formally, for σ ∈ {ad,pr,co} and X ∈ {S,W}:

• σ -X-Ver: Given StrAF = 〈A ,R,S 〉 and S ⊆ A , is S a member of σX (StrAF)?
• σ -X-Cred: Given StrAF = 〈A ,R,S 〉 and a ∈ A , is a in some S ∈ σX (StrAF)?
• σ -X-Skep: Given StrAF = 〈A ,R,S 〉 and a ∈ A , is a in each S ∈ σX (StrAF)?
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We recall that these reasoning problems are already considered only for the (weak
and strong) stable semantics in [5]. In the following, we assume a fixed ⊕, that can
be computed in polynomial time. This is not a very strong assumption, since it is the
case with the classical aggregation operators (e.g. ∑,max, . . . ). Proposition 6 implies that
the complexity of reasoning with standard AFs provides a lower bound complexity of
reasoning with StrAFs. So we focus on identifying upper bounds.

Proposition 7. The complexity of the decision problems σ -X-Ver, σ -X-Cred and σ -X-
Skep is as described in Table 1.

σ -X-Ver σ -X-Cred σ -X-Skep
adX P NP-c Trivial
coX P NP-c in coNP

prX coNP-c NP-c ΠP
2 -c

Table 1. Complexity of reasoning for σX with σ ∈ {ad,co,pr} and X ∈ {S,W}. Trivial means that all instances
are trivially “NO” instances, and C -c means C -complete, for C a complexity class in the polynomial hierarchy.

As for the strong (resp. weak) stable semantics [5], we prove here that the higher ex-
pressivity of StrAFs (compared to AFs) does not come at the price of a complexity blow-
up. Only the case of skeptical acceptability under strong (resp. weak) complete seman-
tics requires a deeper analysis, since we only provide the coNP upper bound. We observe
that the choice of the weak or strong semantics does not impact on the complexity.

4.2. Algorithms

For computing the strong (resp. weak) admissible sets and complete extensions, we pro-
pose a translation of StrAF semantics in pseudo-Boolean (PB) constraints [9]. Such
a constraint is an (in)equality ∑i wi × li#k where wi and k are positive integers, and
# ∈ {>,≥,=, �=,≤,<}. li is a literal, i.e. li = vi or li = vi = 1− vi, where vi is a Boolean
variable. Determining whether a set of PB constraints has a solution is a NP-complete
problem, that generalizes the Boolean satisfiability (SAT) problem. Despite the high
complexity of this problem, it can be efficiently solved in many cases, see e.g. [10,11].

Strong and Weak Conflict-freeness. Now we describe our PB encoding of StrAF se-
mantics. For ensuring self-containment of the paper, we recall the encoding of strong and
weak conflict-freeness [5]. Given StrAF = 〈A ,R,S 〉 and coval= ∑, we define a set of
Boolean variables {xi | ai ∈ A } associated with each argument, where xi = 1 means that
ai belongs to the set of arguments characterized by the solutions of the PB constraints.
Then, strong and weak conflict-freeness are respectively encoded by (1) and (1’):

(1) ∀(ai,a j) ∈ R, add the constraint xi + x j ≤ 1
(1’) ∀a ∈ A , add the constraint ∑ai∈Γ−(a)S (ai)× xi < x×S (a)+ x×M

with M an arbitrary large natural number that is greater than the sum of the strengths of
the arguments (i.e. M > ∑a∈A S (a)), Γ−(a) = {b | (b,a) ∈ R} is the set of attackers
of a ∈ A , and x is the Boolean variable associated with a.1 A solution to the set of

1Notice that the constraints referring to Γ−(a) must be added even when Γ−(a) = /0.
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constraints (1) (resp. (1’)) yields a strong (resp. weak) conflict-free set E = {ai | xi = 1}.
We prove this claim with Proposition 8. First, let us introduce some notations. Given
S ⊆ A , ωS : {xi | ai ∈ A }→ {0,1} is a mapping s.t. ωS(xi) = 1 iff ai ∈ S.

Proposition 8. Given StrAF = 〈A ,R,S 〉 and S ⊆ A , S ∈ cfS(StrAF) (resp. S ∈
cfW (StrAF)) iff ωS satisfies the set of constraints (1) (resp. (1’)).

Strong and Weak Admissibility. For encoding strong (resp. weak) admissibility, one
must add to the set of constraints (1) (resp. (1’)) some new constraints that represent the
strong defense (resp. defense) property. To do so, one needs to introduce new Boolean
variables {yi | ai ∈ A } s.t. yi = 1 means that ai is defeated by the set of arguments
characterized by the solution of the PB constraints. Then, three constraints are added (the
same ones for strong and weak admissibility):

(2) ∀a ∈ A , add the constraint ∑ai∈Γ−(a)S (ai)× xi ≥ y×S (a)
(3) ∀a ∈ A , add the constraint ∑ai∈Γ−(a)S (ai)× xi ≤ y×S (a)+ y×M
(4) ∀a ∈ A , add the constraint ∑ai∈Γ−(a)S (ai)× yi ≤ x×S (a)+ x×M

The sets of constraints (2) and (3) ensure that y = 1 iff a is defeated by some κ ⊆ E =
{ai | xi = 1}, and the constraints (4) ensure that E defends all its elements. The following
proposition shows the correctness of the encodings.

Proposition 9. Given StrAF = 〈A ,R,S 〉 and S ⊆ A , S ∈ adS(StrAF) (resp. S ∈
adW (StrAF)) iff ωS satisfies the sets of constraints (1) (resp. (1’)), (2), (3) and (4).

Strong and Weak Complete Semantics. Now, for computing the strong (resp. weak)
extensions, one must consider the sets of constraints (1) (resp. (1’)), (2), (3) and (4), and
add a last set of constraints, respectively (5) for strong complete semantics, and (5’) for
weak complete semantics:

(5) ∀a∈A , add the constraint∑ai∈Γ−(a)(S (ai)×yi)+∑ai∈Γ−(a)(M×xi)+∑a′i∈Γ+(a)(M×
x′i)≥ x×S (a)

(5’) ∀a ∈ A , add the constraint ∑ai∈Γ−(a)S (ai)× yi ≥ x×S (a)

where Γ+(a) = {b ∈ A | (a,b) ∈ R} is the set of arguments attacked by a. These con-
straints ensure that an argument is not accepted only if it is not (strongly) defended.
Again, we prove the correctness of the encodings:

Proposition 10. Given StrAF = 〈A ,R,S 〉 and S ⊆ A , S ∈ coS(StrAF) (resp. S ∈
coW (StrAF)) iff ωS satisfies the sets of constraints (1) (resp. (1’)), (2), (3), (4) and (5)

(resp. (5’)).

Acceptability and Verification. Obtaining one (resp. each) solution for one of the sets of
constraints defined previously corresponds to obtaining one (resp. each) extension of the
StrAF under the corresponding semantics. For checking whether a given argument ai is
credulously accepted, one simply needs to add the constraint xi = 1. If a solution exists,
then it corresponds to an extension that contains ai, proving that this argument is cred-
ulously accepted. Otherwise, ai is not credulously accepted. For skeptical acceptability,
one needs to add the constraint xi = 0. In this case, a solution exhibits an extension that
does not contain ai, thus this argument is not skeptically accepted. In the case where no

Y. Bacquey et al. / Admissibility in Strength-Based Argumentation: Complexity and Algorithms 51



solution exists, then the argument is skeptically accepted. Finally, for checking whether
a set of arguments S ⊆ A is an extension, one needs to add the constraints xi = 1 for
each ai ∈ S, as well as xi = 0 for each ai ∈ A \ S. A solution exists for the new set of
constraints iff S is an extension under the considered semantics.

Strong and Weak Preferred Semantics. Finally, let us mention an approach to handle
reasoning with strong and weak preferred semantics. Because of the higher complexity
of skeptical reasoning under these semantics (recall Proposition 7), it is impossible (un-
der the usual assumption that the polynomial hierarchy does not collapse) to find a (poly-
nomial) encoding of these semantics in PB constraints. However, PB solvers can be used
as oracles to find (with successive calls) preferred extensions. Algorithm 1 describes our
method to do this for strong preferred semantics (replacing (1) by (1’) provides an algo-
rithm for weak preferred semantics). At start, we add the four constraints corresponding
to a strong (resp. weak) admissible set and solve the instance, with the PB solver as a
coNP oracle. Then we force the arguments within the extension to stay in the next one
by adding the constraint on line 4. To avoid getting the same solution as in the previous
step, we make sure that at least one argument outside the previous extension will be in
the next one (line 5). This method iteratively extends an admissible set into a preferred
extension, that is finally returned when the solver cannot find any (larger) solution.

Algorithm 1 Compute a strong preferred extension
P = PB problem with constraints (1), (2), (3) and (4)

while P.solve() �= null do

E ← P.solve()
P.add constraint(x1+ x2+ · · ·+ xn = n), with E = {a1,a2, . . . ,an}
P.add constraint(x1+ x2+ · · ·+ xm ≥ 1), with A \E = {a′1,a

′
2, . . . ,a

′
m}

end while

return E

5. Experimental Evaluation

For estimating the scalability of our method based on pseudo-Boolean constraints, we
present now some results obtained from our experimental evaluation using two promi-
nent PB solvers: Sat4j [12] and RoundingSat [11]. While Sat4j is based on saturation,
RoundingSat uses the division rule (see [11] for a discussion on both approaches). We
focus here on the most relevant results; full results are presented in [13].

Benchmark Generation. We generate benchmarks in a format adapted to StrAFs, in-
spired by ASPARTIX formalism [14]. We consider two classes of randomly generated
graphs. First, with the Erdös–Rényi model (ER) [15], given a set of arguments A , and
p ∈ [0,1], we generate a graph such that for each (a,b) ∈ A ×A , a attacks b with a
probability p. We consider two values for the probability, namely p ∈ {0.1,0.5}. Then,
with the Barabási–Albert (BA) model [16], a graph of n nodes is grown by attaching
new nodes with m edges that are preferentially attached to existing nodes with a high
degree. These types of graphs have been frequently used for studying computational as-
pects of formal argumentation, in particular during the ICCMA competitions [17]. The
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choice of a generation model provides the arguments A and attacks R. We attach a
random strength S (a) ∈ {1, . . . ,20} to each a ∈ A . For each generation model, we
build 20 StrAFs for each |A | ∈ {5,10,15, . . . ,60}. Parameters (p ∈ {0.1,0.5} for ER,
m = 1 for BA) are chosen to avoid graphs with a high density of attacks, that would pre-
vent the existence of meaningful extensions (e.g. non-empty ones). Larger StrAFs (with
|A | ∈ {5,10, . . . ,250}) have been generated with the same parameters (p ∈ {0.1,0.5}
for ER, m = 1 for BA) for studying the problem of providing one extension.

Experimental Setting. The experiments were run on a Windows computer (using Win-
dows Subsystem for Linux), with an Intel Core i5-6600K 3.50GHz CPU and 16GB of
RAM. The timeout is set to 600 seconds (same as the timeout at ICCMA [18]).

Results. We are interested in the semantics σX , with σ ∈ {pr,st,co} and X ∈ {S,W}.
The encodings for stX (X ∈ {S,W}) are those proposed in [5], while the encoding for the
other semantics are those described in Section 4.2. For each generated StrAF, and each
of these semantics σX , the two tasks we are interested in consist in enumerating all exten-
sions and finding one extension. We first focus on the runtime for enumerating σX exten-
sions, which provides an upper bound of the runtime for solving other classical reasoning
tasks. To do so, we use a Python script that converts a StrAF into a set of PB constraints.2

The set of extensions is then obtained in a classical iterative way: once an extension is re-
turned by the PB solver, we add a new constraint that forbids this extension, and we call
again the solver on this updated set of PB constraints. This process is repeated until the
set of constraints becomes unsatisfiable, which means that all the extensions have been
obtained. Concerning the preferred extensions, this iterative approach is combined with
Algorithm 1. In order to measure the performance of our approach, and since there is no
other computational approach for StrAF semantics yet, we also implemented a so-called
naive algorithm that enumerates all sets of arguments and then checks, for each of them,
if it is a σX extension. Figure 3 presents the average runtimes w.r.t. instance sizes (i.e.
|A |) for various semantics and StrAF families as described before. As a first result, we
observe in Figure 3a that runtime for enumerating extensions (with the PB approach) is
reasonable (i.e. less than a minute) for most of the cases considered in our study, when
the PB approach is used, while the naive approach reaches the timeout for most of the
large instances (in particular, all the instances with |A | ≥ 45). The average runtimes are
higher in only two situations: the enumeration of strong preferred and strong complete
extensions, with the BA graphs. However, even in such situations where the enumeration
is harder (e.g. for prS-extensions on BA graphs, as depicted on Figure 3b), the PB solvers
clearly outperform the naive algorithm, which reaches the timeout in every instance when
|A | ≥ 30, while the PB approach can enumerate extensions for larger graphs.

We also study the classical problem of providing one extension, for StrAFs of larger
sizes (recall that here |A | ∈ {5,10, . . . ,250}). Figure 4 shows that the PB solvers (in par-
ticular, Sat4j) provide one extension for these large graphs under two minutes, even for
the preferred semantics (which is the hardest one, in our study, from the computational
point of view). Concerning the respective performances of the two PB solvers, Figure 4
shows that RoundingSat processes faster for fast-to-compute instances (i.e. the smallest
ones), while Sat4j outperforms it for instances of larger size. While we do not have expla-
nations for this phenomenon, a plausible assumption is that it is related to the difference

2The script is available here: https://github.com/BacqueyYohann/SolvingStrafs.

Y. Bacquey et al. / Admissibility in Strength-Based Argumentation: Complexity and Algorithms 53

https://github.com/BacqueyYohann/SolvingStrafs
https://github.com/BacqueyYohann/SolvingStrafs


(a) coW on ER graphs (p = 0.1) (b) prS on BA graphs

Figure 3. Enumeration runtime

of the underlying algorithms (saturation for Sat4j and division rule for RoundingSat).
Similar things have been observed for SAT solvers used in the case of standard AFs [19].

Figure 4. Finding one extension runtime under prs on BA graphs

As a general conclusion on our experimental analysis, we observe that the PB ap-
proach for reasoning with StrAFs generally scales up well, for both problems of enumer-
ating extensions and providing one extension.

6. Conclusion

Strength-based Argumentation Frameworks (StrAFs) have originally been proposed
in [5]. Contrary to this work, in this paper we focused on admissibility-based seman-
tics. We showed that the weak admissibility-based semantics defined in the original work
satisfy some expected properties, namely Dung’s Fundamental Lemma. However, the
definition for strong admissibility proposed in [5] does not yield semantics that behave
as expected. This has conducted us to revisit the definition of strong admissibility, and
this allowed us to introduce strong complete and preferred semantics. We have also en-
hanced the StrAFs literature by studying the computational complexity of classical rea-
soning problems for these semantics, and we have shown that it is the same as for the
corresponding tasks in Dung’s framework, in spite of the increase of expressivity. Then
we have proposed a method based on pseudo-Boolean constraints for computing the ex-
tensions of a StrAF under the various semantics defined in this paper, and we have em-
pirically evaluated the scalability of this approach for the new semantics defined in this
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paper, as well as the (weak and strong) stable semantics from [5]. Future work include
the study of (weak and strong) grounded semantics, and tight complexity results for the
skeptical reasoning under the (weak and strong) complete semantics. We also plan to an-
alyze the relation between StrAFs and other frameworks, in particular the comparison of
the signatures of StrAFs semantics and SETAFs semantics [20,21,22]. Finally, we want
to study argument strength and accrual in a context of structured argumentation.
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Abstract. We propose a generic notion of consistency in an abstract labelling set-
ting, based on two relations: one of intolerance between the labelled elements and
one of incompatibility between the labels assigned to them, thus allowing a spec-
trum of consistency requirements depending on the actual choice of these relations.
As a first application to formal argumentation, we show that traditional Dung’s
semantics can be put in correspondence with different consistency requirements
in this context. We consider then the issue of consistency preservation when a la-
belling is obtained as a synthesis of a set of labellings, as is the case for the tradi-
tional notion of argument justification. In this context we provide a general char-
acterization of consistency-preserving synthesis functions and analyze the case of
argument justification in this respect.

Keywords. Consistency, Argumentation semantics, Argument justification

1. Introduction

In formal argumentation, the presence of conflicts between arguments is a key aspect
that calls for mechanisms able to produce sensible reasoning outcomes. In particular, it
is typically required that these outcomes satisfy properties which have intuitively to do
with the notion of consistency. For instance, in abstract argumentation semantics [1,2]
either extensions or labellings are typically required to satisfy the property of conflict-
freeness, while, moving from abstract to structured argumentation, it is desired that the
conclusions of arguments regarded as acceptable are not contradictory, as indicated by
the properties of direct and indirect consistency in [3]. While consistency appears to per-
meate the field of formal argumentation as a crucial component, to our knowledge no at-
tempts are available in the literature to provide a general formal treatment of this notion,
consistency-related definitions being usually embedded in the context of specific for-
malisms, without a common reference framework. This appears to be a limitation regard-
ing the possibility of bridging together the consistency notions considered in different
formalisms and possibly investigating variations and developments thereof.

To fill this gap, in this paper we introduce a generalized notion of (in)consistency
applicable in any context where a labelling approach is adopted. The proposed notion re-
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lies on two basic elements: an intolerance relation between the labelled elements and an
incompatibility relation between the labels, as presented in Section 2. As a first example
of the application of the proposed concept, we show in Section 3 that Dung’s traditional
semantics can be put in correspondence with different consistency requirements, partic-
ularly with different incompatibility relations. As a further step, in Section 4, we con-
sider the issue of consistency preservation when a labelling derives from a set of other la-
bellings. We provide some results concerning consistency preservation when a labelling
is obtained through a synthesis function and apply these concepts to the case of deriving
the argument justification status. The relationships of this work with previous literature
and various perspectives of future development are finally discussed in Section 5.

2. Generalizing consistency for labelling-based systems

In a variety of contexts the assessments of entities of various kind are expressed by
assigning them a label taken from a predefined set. In many cases these sets of labels
have an intuitive underlying order according to some notion of positivity. In order to
provide a common ground to characterize different assessment labels and to relate and
compare them, we first introduce the notion of assessment classes.

Definition 1 A set of assessment classes is a set C equipped with a total order ≤ and
including a maximum and a minimum element, which are assumed to be distinct.

In the following we will abbreviate the term ‘set(s) of assessment classes’ as sac(s).
Intuitively, the order is meant to capture an abstract distinction between different levels
of positivity of the assessment, with c1 ≤ c2 meaning that c2 corresponds to an at least as
positive assessment as c1 (whatever a positive assessment means in a given context). In
the following we will mostly use a tripolar sac C3 = {pos,mid,neg} with neg ≤mid ≤
pos and the intuitive meaning that pos corresponds to a definitely positive assessment,
neg to a definitely negative assessment, and mid to an intermediate situation. The basic
idea, expressed by the following definition, is that a sac is used to classify the elements
of a set of labels according to their level of positivity. Note that the elements of a sac are
called classes because in general more than one label can be mapped to the same class.

Definition 2 Given a set of assessment classes C, a C-classified set of assessment labels
is a set Λ equipped with a total function CΛ : Λ → C. The total preorder induced on Λ
by CΛ will be denoted by � where λ1 � λ2 iff CΛ(λ1) ≤ CΛ(λ2). As usual, λ1 ≺ λ2 will
denote λ1 � λ2 and λ2 � λ1

We will abbreviate the term ‘set(s) of assessment labels’ as sal(s) and omit ‘C-
classified’, whenC is not ambiguous. Also, to distinguish preorders referring to different
sals, given a sal Λ we will denote the relevant preorder as �Λ.

The notion of labelling based on a sal is the usual one.

Definition 3 Given a sal Λ and a set S a Λ-labelling of S is a function L : S → Λ.

Different sals can be used to express assessments in distinct, but possibly re-
lated, evaluation contexts. For instance, in the context of argument acceptance evalu-
ation based on the labelling-based version of Dung’s semantics [1,2], the sal ΛIOU =
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{in,out,und} is used, while in Defeasible Logic Programming (DeLP) arguments are
marked as D(efeated) or U(ndefeated) corresponding to the use of the sal ΛDe =
{D,U}, and in [4] an approach using the set of four labels ΛJV = {+,−,±, /0}
is proposed. We assume that the sals mentioned above are C3-classified as fol-
lows: C3

ΛIOU
= {(in,pos),(out,neg),(und,mid)}; C3

ΛDe
= {(D,neg),(U,pos)}; C3

ΛJV
=

{(−,neg),(+,pos),(±,mid),( /0,mid)}.
We can now introduce a generalized notion of inconsistency in this formal context.

Intuitively, an inconsistency arises when two elements of a set which cannot stand each
other are assigned labels which are ‘too positive’ altogether.

This suggests that, in general terms, inconsistency can be understood as arising from
two components: an intolerance relation at the level of the assessed elements, indicating
who cannot stand whom, and an incompatibility relation at the level of the labels, in-
dicating which pairs of positive assessments correspond to a clash if ascribed to a pair
of elements connected by the intolerance relation. In the following we will assume that
an incompatibility relation on assessment labels is always induced by an incompatibility
relation on assessment classes.

Definition 4 Given a set S, an intolerance relation on S is a binary relation int ⊆ S×S,
where (s1,s2) ∈ int indicates that s1 is intolerant of s2 and will be denoted as s1� s2,
while (s1,s2) /∈ int will be denoted as s1	 s2.

Note that we do not make any assumption on the intolerance relation, in particular
it needs not to be symmetric.

To exemplify, in languages equipped with negation, typically intolerance between
language elements coincides with negation (a symmetric relation where each element
has exactly one opposite), however more general forms of contrariness have been con-
sidered in argumentation contexts, where the corresponding intolerance relation may not
be symmetric and allows the existence of multiple contraries for an element [5,6]. At the
argument level, the attack relation in Dung’s frameworks can be regarded as an example
of intolerance relation.

Definition 5 Given a sac C, an incompatibility relation on C is a relation inc ⊆ C×C,
where (c1,c2) ∈ inc indicates that c1 is incompatible with c2 and will be denoted as
c1� c2, while (c1,c2) /∈ inc will be denoted as c1� c2. Given a C-classified sal Λ, we
define the induced incompatibility relation inc′ ⊆ Λ×Λ as follows: for every λ1,λ2 ∈ Λ,
(λ1,λ2) ∈ inc′ iff (CΛ(λ1),CΛ(λ2)) ∈ inc. With a little abuse of notation we will also
denote (λ1,λ2)∈ inc′ as λ1�λ2, and analogously for λ1�λ2. Given a label λ , we define
the set of labels which are compatible with λ as sc(λ )� {λ ′ ∈ Λ | (λ ,λ ′) /∈ inc′}.

We remark again that incompatibility refers to the situation where labels are assigned
to entities which are linked by intolerance. For intance, in a context where statements
are assessed and intolerance between them corresponds to contradiction, two (not neces-
sarily distinct) positive labels expressing belief should be incompatible: they cannot be
assigned to two contradictory statements, since you cannot believe both of them.

We can now introduce our generalized notion of inconsistency of a labelling.

Definition 6 Given a set S equipped with an intolerance relation int, a sac C equipped
with an incompatibility relation inc, and a C-classified sal Λ, a Λ-labelling L of S is
int-inc-inconsistent iff ∃s1,s2 ∈ S such that s1� s2 and L(s1)�L(s2).
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We say that a labelling is int-inc-consistent if it is not int-inc-inconsistent and that a
setL of labellings is int-inc-consistent if every L ∈ L is int-inc-consistent.

From the intuition underlying Definition 6, some rather natural properties can be
identified for an incompatibility relation on a sacC, based on the idea that inconsistency
arises from a sort of ‘excess of simultaneous positiveness’ in the assessment of some
elements linked by intolerance. First, an obvious requirement is that max(C)�max(C):
two maximally positive labels cannot be ascribed together to conflicting elements. More
generally one can observe that if c1� c2, then for every pair c′1,c

′
2 such that c1 ≤ c′1 and

c2 ≤ c′2 it must hold that c′1� c′2, since the simultaneous positiveness expressed by c′1
and c′2 is not lesser that the one expressed by c1 and c2. We call such an incompatibility
relation monotonic and take this property for granted in the following.

Note that max(C)�max(C) is a consequence of the monotonicity property if one as-
sumes that inc is not empty. Accordingly we define, for any sacC, the minimal nonempty
incompatibility relation as incC = {(max(C),max(C))}.

It also follows that, to avoid a degenerate situation where every labelling is incon-
sistent, it must hold that min(C)�min(C).

Moreover, assuming that the intolerance relation is not empty, for max(C) to be
attainable for every element without necessarily generating inconsistencies it must be the
case that the following stronger condition (implying the previous one) holds: max(C)�
min(C) and min(C)�max(C) or equivalently �c∈C such that c�min(C) or min(C)�c.
Note that this implies that for any C-classified sal Λ, sc(λ ) �= /0 for any λ ∈ Λ under the
mild condition that ∃λ ∈ Λ :CΛ(λ ) =min(C), which we will assume in the following.

The generic definition of inconsistency we have introduced is ‘tunable’ as its in-
stances can be ‘adjusted’ varying the incompatibility relation, and possibly also the un-
derlying intolerance relation and C-classification, giving rise to a family of alternative
(in)consistency notions. In particular, different argumentation semantics can be put in
correspondence with different (in)consistency notions, as discussed next.

3. Consistency properties in argumentation semantics

As well-known, in abstract argumentation an argumentation semantics is a formal spec-
ification of a criterion to determine the possible outcomes of a situation of conflict, rep-
resented by a binary relation of attack (denoted as→ in the following), between a set A
of arguments, as expressed by the traditional notion of argumentation framework [1].

Definition 7 An argumentation framework is a pair AF = (A ,→) where A is a set of
arguments and →⊆ A ×A is a binary relation of attack between them.

In the extension-based approach to argumentation semantics the conflict outcomes
are expressed as sets of arguments called extensions and, in this context, a basic consis-
tency notion called conflict-freeness has been traditionally considered: a set of arguments
is conflict-free if it does not include any pair of arguments α,β such that (α,β )∈→ (also
denoted as α ∈ β−). In the labelling-based approach to argumentation semantics, the
outcomes are expressed as arguments labellings, i.e. as assignments of labels, taken from
a given set, to the set of arguments A . Using the set of three labels ΛIOU a correspon-
dence can be drawn between extensions and labellings, while in general the labelling-
based approach is more expressive than the extension-based approach. Combining the
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generalized notion of consistency with three-valued labellings enables to identify corre-
spondences between different notions of consistency and different semantics. In particu-
lar, given an abstract argumentation framework, we naturally assume that the intolerance
relation coincides with the attack relation, i.e. α � β iff α ∈ β−, and use the classifi-
cation C3

ΛIOU
introduced above. Then, an analysis of labelling-based semantics in this

perspective can be developed, as we do in the following, where we review the defini-
tions of some fundamental labelling-based semantics [2] and analyze their generalized
consistency properties.

The simplest semantics notion is the one of conflict-freeness, which is recalled in
Definition 8.

Definition 8 Let L be a labelling of an argumentation framework AF = (A ,→). L is
conflict-free iff for each α ∈ A it holds that:

1. if L(α) = in then �β ∈ α− : L(β ) = in

2. if L(α) = out then ∃β ∈ α− : L(β ) = in

Item 1 in Definition 8 corresponds exactly to the weakest form of consistency, i.e. to
the incompatibility relation incC3 = {(pos,pos)}.

Admissibility of a set of arguments was introduced in [1] with reference to the notion
of defense, i.e. the ability of a conflict-free set to defend its members by counterattacking
their attackers. The labelling-based counterpart of this idea is given in Definition 9.

Definition 9 Let L be a labelling of an argumentation framework AF = (A ,→). L is
admissible iff for each α ∈ A it holds that:

1. if L(α) = in then ∀β ∈ α− : L(β ) = out

2. if L(α) = out then ∃β ∈ α− : L(β ) = in

Item 1 in Definition 9 is a strengthening of item 1 of Definition 8, while item 2 is
the same in both Definition 8 and 9. Interestingly, this strengthening corresponds to the
choice of a stronger form of consistency: having an attacker labelled und is forbidden for
an argument labelled in, while having an attacker labelled in is allowed for an argument
labelled und. This coincides with adopting the following asymmetric incompatibility
relation inca

C3 = {(pos,pos),(mid,pos)}.
Proposition 1 The set of admissible labellings coincides with the set of conflict-free la-
bellings which are →-inca

C3 -consistent.

Proof: For a labelling L let us first assume that L is admissible. Then L is conflict-
free and by item 1 of Definition 9 �α,β ∈ A such that β ∈ α− (i.e. β � α) and
(L(β ),L(α)) ∈ inca

C3 (i.e. L(β )� L(α)). Hence L is →-inca
C3 -consistent. Let now as-

sume L is conflict-free and→-inca
C3 -consistent. To complete the proof we have to show

that item 1 of Definition 9 holds: assume by contradiction that ∃α such that L(α) = in

and ∃β ∈ α− : L(β ) �= out. It follows that (L(β ),L(α)) ∈ inca
C3 which contradicts the

hypotesis that L is→-inca
C3 -consistent. �

Completeness of a set of arguments was introduced in [1] and is based on the idea
that if an argument is defended by an admissible set of arguments, it should be accepted
together with its defenders. The labelling-based counterpart of this idea is given in Defi-
nition 10.
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Definition 10 Let L be a labelling of an argumentation framework AF = (A ,→). L
is complete if it is admissible and for each α ∈ A it holds that if L(α) = und then
�β ∈ α− : L(β ) = in and ∃β ∈ α− : L(β ) = und

In words a complete labelling is an admissible labelling with the additional require-
ment that an argument which is labelled und must have an und-labelled attacker and no
in-labelled attackers. This amounts to further strengthening the notion of consistency
by adopting the incompatibility relation incc

C3 = {(pos,pos),(pos,mid),(mid,pos)} to-
gether with enforcing the following reinstatement property.

Definition 11 A labelling L satisfies the reinstatement property if ∀α ∈ A it holds that
if ∀β ∈ α− L(β ) = out then L(β ) = in

Proposition 2 The set of complete labellings coincides with the set of admissible la-
bellings which are →-incc

C3 -consistent and satisfy the reinstatement property.

Proof: For a labelling L let us first assume that L is complete, hence admissi-
ble. From Proposition 1 we have that �α,β such that β ∈ α− and (L(β ),L(α)) ∈
{(pos,pos),(mid,pos)}. From Definition 10 we have also that if L(α) = und then
�β ∈ α− : L(β ) = in, i.e. �α ,β such that β ∈ α− and (L(β ),L(α)) ∈ {(pos,mid)}.
It follows that L is →-incc

C3 -consistent. Moreover, it is well known that complete la-
bellings satisfy the reinstatement property [2]. Let us now assume L is admissible, →-
incc

C3 -consistent and satisfies the reinstatement property. Given an argument α such that
L(α) = und it follows (from consistency) that �β ∈ α− : L(β ) = in and (from the rein-
statement property) that ∃β ∈ α− : L(β ) �= out, hence ∃β ∈ α− : L(β ) = und and L is a
complete labelling. �

Stability of a set of arguments can be characterized in several ways, its key feature
being that no room is left for undecidedness (an argument is either accepted or attacked
by an accepted argument) as indicated by Definition 12.

Definition 12 Let L be a labelling of an argumentation framework AF = (A ,→). L is
stable if it is complete and �α ∈ A : L(α) = und.

This constraint can be put in correspondence with the adoption of the strongest
notion of consistency, namely with the choice of the incompatibility relation incC3 =
{(pos,pos),(pos,mid),(mid,pos),(mid,mid)}.

Proposition 3 The set of stable labellings coincides with the set of complete labellings
which are →-incC3 -consistent.

Proof: For a labelling L let us first assume that L is stable. It follows that no argument is
labelled und hence �α,β such that β ∈ α− and (L(β ),L(α)) ∈ {(pos,mid),(mid,pos),
(mid,mid)} and from conflict-freeness we have also that �α ,β such that β ∈ α− and
(L(β ),L(α)) = (pos,pos). Therefore L is →-incC3 -consistent. Assume now L is com-
plete and →-incC3 -consistent and suppose by contradiction that ∃α such that L(α) =
und. It follows that α− �= /0, otherwise by the reinstatement property it would hold that
L(α) = in. For every β ∈ α− we have that L(β ) /∈ {in,und} otherwise L would not be
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→-incC3 -consistent. But then ∀β ∈ α− we get L(β ) = out which, by the reinstatement
property, contradicts L(α) = und. �

To summarize, admissible labellings can be characterized in terms of strengthening
consistency with respect to conflict-freeness without resorting to the traditional notion
of defense, while further strengthenings of consistency, together with the reinstatement
property, characterize complete and stable labellings.

In the next section we move beyond the evaluation of acceptability of arguments
carried out on the basis of argumentation semantics and consider further evaluations that
can be derived from it and raise the issue of preserving consistency across the derivation.

4. Consistency preservation in labelling derivation mechanisms

The outcomes prescribed by an argumentation semantics are typically used as the start-
ing point for the derivation of further evaluations, for instance whether an argument is
skeptically justified. It is then interesting to consider the question of whether and how the
consistency properties of the original evaluation are preserved in the derived evaluation
and of the requirements that can be posed on the derivation mechanism to ensure this
preservation.

We focus here on what we call pure synthesis labelling derivation, namely a mech-
anism where a labelling of a set S is generated from a set of labellings of the same set
S. To exemplify, the evaluation of the argument justification status according to a given
semantics is derived from the set of the argument extensions/labellings prescribed by the
same semantics.

The simplest notion of argument justification, which we will use as running example,
is based on three possible states.

Definition 13 Given a set L of ΛIOU-labellings of a set of arguments A , an argument
α ∈ A is:

• skeptically justified iff ∀L ∈ L L(α) = in;
• credulously justified iff it is not skeptically justified2 and ∃L ∈ L : L(α) = in;
• not justified iff �L ∈ L : L(α) = in

Considering a sal ΛAJ = {SkJ,CrJ,NoJ}, the evaluation of argument justification
can be modelled as the generation of a ΛAJ-labelling from a set of ΛIOU-labellings. Con-
cerning ΛAJ it is intuitive to assume the classification C3

ΛAJ
= {(SkJ,pos),(NoJ,neg),

(CrJ,mid)}.
At a general level, pure synthesis labelling derivations, like the one of argument

justification, can be formalized through a simple synthesis function.

Definition 14 Given two sets of labels Λ1 and Λ2, a simple synthesis function (ssf) from
Λ1 to Λ2 is a mapping syn : 2Λ1 \{ /0}→ Λ2.

The idea is that given a set of Λ1-labellings of a set S a Λ2-labelling of S can be
derived by applying a ssf to the set of labels relevant to each element of S.

2Traditionally credulous justification id regarded as including skeptical justification, we enforce this distinc-
tion so that argument justification can be properly modelled as a labelling.
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Definition 15 Let S be a set, Λ1 and Λ2 sets of labels, syn a ssf from Λ1 to Λ2, and L1 a
set of Λ1-labellings of S. The Λ2-labelling L2 derived from L1 through syn is denoted as
DLsyn

L1
defined, for every s ∈ S as:

DLsyn
L1

(s) = syn({L1(s) | L1 ∈ L1})

To exemplify, it is easy to see that the argument justification evaluation described
above corresponds to the use of a ssf synAJ from ΛIOU to ΛAJ defined, for every Λ ⊆
ΛIOU as follows:

• synAJ(Λ) = SkJ if Λ = {in};
• synAJ(Λ) = CrJ if Λ � {in};
• synAJ(Λ) = NoJ otherwise.

Assuming that the labellings used for derivation satisfy some consistency properties,
a preservation of these properties in the derived labelling appears to be desirable.

Definition 16 Let C be a sac equipped with an incompatibility relation inc, and Λ1 and
Λ2 be two C-classifed sets of labels. A ssf syn from Λ1 to Λ2 is consistency preserving iff
for any set S equipped with an intolerance relation int and any int-inc-consistent set L1
of Λ1-labellings of S it holds that the labelling DLsyn

L1
is int-inc-consistent.

This in turn raises the issue of analyzing at a general level some properties of the ssf
that can ensure consistency preservation.

To start, we introduce a notion of well-behaved ssf which intuitively means that
the function is monotonic with respect to some positiveness ordering of sets of labels,
introduced in next definition.

Definition 17 Given a sal Λ, and Λ1,Λ2 ⊆ Λ, we say that Λ2 is at least as positive as
Λ1, denoted as Λ1 �P Λ2, iff ∀λ ∈ Λ1 ∃λ ′ ∈ Λ2 such that λ �Λ λ ′ and ∀λ ′ ∈ Λ2 ∃λ ∈ Λ1
such that λ �Λ λ ′.

The idea of the �P relation is that every element of Λ1 can be mapped into an
at least as positive element of Λ2 and at the same time every element of Λ2 can be
mapped into a no more positive element of Λ1. �P is reflexive and transitive, i.e. a
preorder. To exemplify, ∀ /0 � Λ ⊆ ΛIOU it holds that Λ �P {in} and {out} �P Λ.
Also {in,out}�P {in,und,out} and {in,und,out}�P {in,out}while {in,out}�P
{und} and {und}�P {in,out},

We can now introduce the notion of well-behaved ssf.

Definition 18 A ssf syn is well-behaved iff whenever Λ1 �P Λ2 syn(Λ1)� syn(Λ2).

We then move to consider, given a set of labels Λ1, whether a set of labels Λ2 is a
compatible dual of Λ1, meaning that, given an int-inc-consistent set of labellings L1, if
Λ1 = {L1(s) | L1 ∈ L1} for some element s, then it is possible that Λ2 = {L1(s′) | L1 ∈
L1} for some s′ such that s� s′.

Definition 19 Given a sal Λ, and Λ1 ⊆ Λ, we say that Λ2 ⊆ Λ is a compatible dual of
Λ1, denoted as Λ2 ∈CD(Λ1), iff ∀λ ∈ Λ1 ∃λ ′ ∈ Λ2 such that λ ′ ∈ sc(λ ), and ∀λ ′ ∈ Λ2
∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ).
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Proposition 4 Let C be a sac equipped with an incompatibility relation inc and Λ be
a C-classifed set of labels. For any set S equipped with an intolerance relation int, any
int-inc-consistent set L1 of Λ-labellings of S, and any s1,s2 ∈ S such that (s1,s2) ∈ int,
it holds that L ↓

1 (s2) ∈ CD(L ↓
1 (s1)) where for any set L of Λ-labellings of S and any

s ∈ S, L ↓(s)� {L(s) | L ∈ L }.

Proof: Since every L∈L1 is int-inc-consistent it must be the case that L(s2)∈ sc(L(s1)),
hence ∀λ ∈ L ↓

1 (s1) ∃λ ′ ∈ L ↓
1 (s2) such that λ ′ ∈ sc(λ ) and also ∀λ ′ ∈ L ↓

1 (s2) ∃λ ∈
L ↓
1 (s1) such that λ ′ ∈ sc(λ ), henceL ↓

1 (s2) ∈CD(L ↓
1 (s1)). �

Towards characterizing well-behaved ssfs which are consistency preserving we fo-
cus on the case where the set of labellings to be synthesized is finite, which is common
in argumentation semantics and many other kinds of assessments. The case of infinite
sets of labellings is left to future work.

To start, we need to consider a compatible dual of a finite set of labels which turns
out to be not less positive than any other compatible dual.

Definition 20 Given a sal Λ, and a finite Λ1 ⊆ Λ we define MCD(Λ1)�
⋃

λ∈Λ1 M̂C(λ ),
where M̂C(λ )� {λ ′ ∈ sc(λ ) | �λ ′′ ∈ sc(λ ) : λ ′ ≺ λ ′′}

Note that non emptyness of MCD(Λ1) follows from the non emptyness of sc(λ )
for every λ (Section 2) and from the finiteness of Λ1 together with the total ordering
of C. The following propositions, which assume again Λ1 finite, provide two interesting
properties of MCD(Λ1): it belongs toCD(Λ1) and is maximal with respect to �P.

Proposition 5 MCD(Λ1) ∈CD(Λ1).

Proof: From the definition it is immediate to see that for every λ ∈ Λ1 ∃λ ′ ∈ MCD(Λ1)
such that λ ′ ∈ sc(λ ) and that for every λ ′ ∈ MCD(Λ1) ∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ). �

Proposition 6 ∀D ∈CD(Λ1) it holds that D �P MCD(Λ1).

Proof: For any λ ′ ∈ D, from Definition 19 it holds that ∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ).
Then, by Definition 20 ∃λ ′′ ∈ MCD(Λ1) such that λ ′′ ∈ sc(λ ) and �λ ′′′ ∈ sc(λ ) : λ ′′ ≺
λ ′′′ which implies that λ ′ � λ ′′. Consider now any λ ′′ ∈ MCD(Λ1): by Definition 20 it
holds that ∃λ ∈ Λ1 such that λ ′′ ∈ sc(λ ). Moreover by Definition 19 ∃λ ′ ∈ D such that
λ ′ ∈ sc(λ ). Now by Definition 20 we have again that �λ ′′′ ∈ sc(λ ) : λ ′′ ≺ λ ′′′ and hence
λ ′ � λ ′′. �

On this basis, we can now derive a necessary and sufficient condition for a well-
behaved ssf to be consistency preserving for finite sets of labels.

Proposition 7 A well-behaved ssf syn is consistency preserving if and only if for every
finite set Λ1 ⊆ Λ it holds that syn(MCD(Λ1)) ∈ sc(syn(Λ1)).

Proof: Let syn be a ssf satisfying the hypotheses and assume by contradiction that
syn is not consistency preserving. This means that there are two elements s1,s2 ∈ S
such that s1 � s2 and a set L1 of Λ-labellings of S such that DLsyn

L1
(s1)�DLsyn

L1
(s2).
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Now DLsyn
L1

(s1) = syn(L ↓
1 (s1)) and similarly DLsyn

L1
(s2) = syn(L ↓

1 (s2)). Let Λ1 =

syn(L ↓
1 (s1)). From Proposition 4 we have L ↓

1 (s2) ∈CD(L1) and hence from Proposi-
tion 6L ↓

1 (s2)�P MCD(Λ1). Since syn is well-behaved syn(L ↓
1 (s2)� syn(MCD(Λ1)),

but this, together with syn(MCD(Λ1)) ∈ sc(syn(Λ1)), contradicts syn(L ↓
1 (s1)) �

syn(L ↓
1 (s2)). As to the other direction of the proof, assume now that syn is consis-

tency preserving. Since by Proposition 5 for every set Λ1 ⊆ Λ it holds that MCD(Λ1) ∈
CD(Λ1), we can identify a consistent setL1 of Λ-labellings such thatL ↓

1 (s1) = Λ1 and
L ↓
1 (s2) = MCD(Λ1) with s1� s2. Then by consistency preservation it must also hold

that syn(MCD(Λ1)) ∈ sc(syn(Λ1)). �

As an example of application of the above concepts, we show that the function synAJ
is consistency preserving for the incompatibility relations incC3 , inc

a
C3 , and inc

c
C3 while

it is not for incC3 .
First we need to show that synAJ is well-behaved.

Proposition 8 The ssf synAJ is well-behaved.

Proof: Since the strict order ≺ induced on ΛAJ is total, it is sufficient to show that for
any two non-empty sets Λ1,Λ2 ⊆ ΛIOU whenever synAJ(Λ1) ≺ synAJ(Λ2) it does not
hold that Λ2 �P Λ1. First, it is easy to see that {in} �P Λ1 for any Λ1 ⊆ ΛIOU, with
Λ1 /∈ { /0,{in}} which covers all cases where synAJ(Λ1) ≺ SkJ. Then, it is also easy to
see that for any non-empty set Λ1 such that in /∈ Λ1 and any set Λ2 such that {in}� Λ2,
Λ2 �P Λ1, covering all cases where synAJ(Λ1)≺ CrJ and thus completing the proof. �

Proposition 9 The ssf synAJ is consistency preserving for the incompatibility relations
incC3 , inca

C3 , and incc
C3 while it is not for incC3 .

Proof: We need to show that for every non-empty set Λ1 ⊆ ΛIOU it holds that
synAJ(MCD(Λ1)) ∈ sc(synAJ(Λ1)). For incC3 , inc

a
C3 , and inc

c
C3 this is illustrated in

Table 1, where the first column presents the various possible cases for Λ1 with the
relevant value of synAJ(Λ1) and the following columns (illustrating incC3 , inc

a
C3 ,

and incc
C3 respectively) show the corresponding MCD(Λ1) and the relevant value of

synAJ(MCD(Λ1)). By inspection, it can be checked that, as desired, for every pair
(synAJ(Λ1),synAJ(MCD(Λ1))) obtained by taking the first element from a row of the
first column, and the second element from any other cell (say the i-th with i ∈ {2,3,4})
of the same row it holds that (synAJ(Λ1),synAJ(MCD(Λ1))) /∈ inc′ where inc′ is the
incompatibility relation induced by the inc relation specified at the top of the column
from which the second element of the pair was taken. For instance, considering the
fifth row, with Λ1 = {in,out} and (synAJ(Λ1)) = CrJ and its second cell where (ac-
cording to incC3 ) MCD(Λ1) = {in,und} we have (synAJ(MCD(Λ1))) = CrJ and then
(CrJ,CrJ) /∈ inc′ since (mid,mid) /∈ incC3 .

Concerning incC3 a counterexample is provided byΛ1= {in,out}withMCD(Λ1)=
{in,out} and synAJ(Λ1) = synAJ(MCD(Λ1)) = CrJ while (mid,mid) ∈ incC3 . �

The fact that synAJ is not consistency preserving according to incC3 is not surprising,
given that incC3 essentially reflects the fully bipolar nature of stable semantics, while
synAJ admits tripolar assessments.
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Λ1 incC3 inca
C3 incc

C3

synAJ(Λ1)
{in} {und} {und} {out}
SkJ NoJ NoJ NoJ

{out} {in} {in} {in}
NoJ SkJ SkJ SkJ

{und} {in} {und} {und}
NoJ SkJ NoJ NoJ

{in,out} {in,und} {in,und} {in,out}
CrJ CrJ CrJ CrJ

{in,und} {in,und} {und} {und,out}
CrJ CrJ NoJ NoJ

{und,out} {in} {in,und} {in,und}
NoJ SkJ CrJ CrJ

{in,und,out} {in,und} {in,und} {in,und,out}
CrJ CrJ CrJ CrJ

Table 1. Illustration of the proof of Proposition 9.

5. Discussion and conclusion

We have introduced a generalized notion of consistency and provided two initial exam-
ples of its possible uses in formal argumentation: revisiting some of Dung’s traditional
semantics from a perspective of progressive strengthening of consistency requirements
and characterizing the consistency preservation of operators which produce assessments
as a synthesis of sets of labellings, as is the case for the traditional notion of argument
justification.

To our knowledge, providing a generalized form of the notion of consistency has not
been previously considered in the formal argumentation literature, while other related
and complementary research directions have been pursued. For instance, in [7] the idea
of encompassing some inconsistency tolerance, through an inconsistency budget in the
semantics of weighted argumentation systems is considered. This proposal does not ad-
dress the issues we consider for traditional argumentation frameworks, while extending
our approach to the case of weighted systems appears to be an important direction for
future work. In [8] the notion of conflict-tolerant semantics is introduced, which is es-
sentially based on lifting the requirement of conflict-freeness in semantics definition. In
the context of our approach, this corresponds to making the intolerance relation empty,
while keeping other constraints: again, we consider drawing correspondences between
our approach and this proposal as interesting future work. In [9] the problem of mea-
suring inconsistency in (abstract and structured) argumentation formalisms is addressed:
this is an orthogonal research direction as we do not aim at quantifying inconsistency in
a given setting, but rather at encompassing different notions of inconsistency. Bridging
the two directions appears worth investigating.

Extending the analysis beyond tripolar classifications is another important future de-
velopment. For example, more articulated notions of argument justification have been
considered in the literature [10,11,12,13]. Dealing with consistency and its preserva-
tion in such a context might require considering different sets of assessment classes and
defining a notion of refinement between them.
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Addressing the evaluation of argument conclusions and their consistency is a fur-
ther key step. In particular, it would be interesting to extend the notions presented in this
paper to the formalism of multi-labelling systems [14], which can capture a variety of
approaches to derive the assessment of conclusions from the assessment of arguments.
This will require to tackle several additional aspects, like addressing the connections be-
tween intolerance relations involving entities at different levels and dealing with the var-
ious possible mechanism for synthesizing the labellings of conclusions after projecting
argument labellings on them.

Finally, we suggest that, in the long term, the potential uses of the proposed approach
go beyond the formal argumentation field. Consistency is a crucial aspect of most, if
not all, reasoning formalisms, typically defined using their structural elements. Expos-
ing the elementary concepts composing the notion of consistency brings, among others,
the following advantages. Firstly, it may enable inter-formalism analyses, comparisons,
and cross-fertilization. Further, it may provide a basis for developing novel theoretical
and practical tools, like, for instance, methods to preserve consistency across different
reasoning stages or general-purpose parametric consistency checkers.
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Argument Schemes for Factor Ascription

Trevor BENCH-CAPON and Katie ATKINSON
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Abstract. Reasoning with legal cases by balancing factors (reasons to decide for
and against the disputing parties) is a two stage process: first the factors must be
ascribed and then these reasons for and against weighed to reach a decision. While
the task of determining which set of reasons is stronger has received much attention,
the task of factor ascription has not. Here we present a set of argument schemes for
factor ascription, illustrated with a detailed example.

Keywords. argument schemes, explanation, factors, legal reasoning

1. Introduction

Reasoning with legal cases provides a paradigmatic example of reasoning involving the
weighing of reasons for and against to come to a conclusion which will be consistent with
decisions made in the past. It is a central feature of legal reasoning, and as such has been
central to the study of AI and Law. The most successful approach has been to use factors,
which were introduced in CATO [2] as a development from the dimensions introduced
in HYPO [22]. Further developments are described in [5], and the most recent has been
a summary of formalisations of this approach [18]. Such reasoning has received recent
attention in [13] as a way of the explaining in the output of approaches using machine
learning techniques to predict the outcomes of legal cases, such as [1] and [17]. The same
techniques have also been used to explain classifications from machine learning systems
in areas other than law [19].

Since [2], cases have been represented as sets of factors. Factors are stereotypical
patterns of facts which offer a reason to decide for one or other of the parties to the
dispute. Once cases are available in terms of factors, the reasoning becomes a matter of
deciding which set of reasons is the stronger1, given the need to be consistent with the
preferences expressed in previous cases (the legal principle of stare decisis). Argumenta-
tion about a new case then typically involves the exchange of moves (shown in italics in
the bullets below) structured in the form of a three-ply dialogue, as originated in HYPO:

• Plaintiff cites a favourable precedent case with factors in common with the current
case;

• Defendant replies either by citing an unfavourable case with factors in common
with the current case (counter example) or distinguishes the case, by pointing to
factors favourable to the defendant in the current case but not in the precedent, or
factors favourable to the plaintiff in the precedent but not the current case;

1Often the strength of a reason is seen in terms of the social values it promotes or demotes [10]
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• Plaintiff rebuts by distinguishing the counter examples, or by down playing the
distinctions by finding a factor to substitute for the missing favourable factor or
cancel the unfavourable factor.

This three ply structure corresponds to the use of argument schemes as introduced by
Walton [24], with the proposal of an argument scheme (cite) being answered with critical
questions (counter example and distinguish), which are in turn responded to (distinguish,
substitute and cancel). This style of argument has been formalised as a set of argument
schemes in [20], and used to explain the output of machine learning systems in [19].

In order to reason with factors, however, factors must be ascribed to the cases. Rea-
soning with legal precedents is a two stage process, in which first factors are ascribed to
cases and then weighed to see whether the reasons for the defendant or the plaintiff are
the stronger (see e.g. [12] and [8]). Both these stages may be the subject of argument: it
may not be clear whether or not a factor should be ascribed on the basis of the facts.

Moreover, precedents guide the ascription of factors. Whilst the systems which look
back to CATO see precedents as determining preferences between sets of factors (e.g.
[16]), some precedents are concerned with whether or not a factor should be ascribed:
once the factors are ascribed, the balance between them is obvious. For example, in the
domain used by CATO, US Trade Secrets – where cases cover the misappropriation (or
not) of a trade secret – in the case of Arco Industries Corp. v. Chemcast Corp (1980) all
the factors favoured the defendant, and so, once the factors had been ascribed, the case
was entirely clear cut. The plaintiff had, however, argued that certain factors favourable
to him should be ascribed, but his arguments were rejected: in particular the court re-
jected the argument that the defendant’s product was identical to the plaintiff’s, setting
a precedent for how similar the products needed to be for the purposes of this factor.
Similarly in Technicon Data Systems Corp. v. Curtis 1000, Inc (1984) , the case turned
on whether or not the information was reverse engineerable. The court held that, given
the time the defendant had expended on attempting to reverse engineer the information,
the factor should not be ascribed. In doing so the Court set a precedent for how much
effort precluded reverse engineerability. As a case where a disputed factor was held to
be present, it was held in Space Aero Products Co. v. R.E. Darling Co (1965), that for-
mer employees who had acquired the information in the course of their employment
were in a confidential relationship with the employer, even if they had signed no explicit
non-disclosure agreement, again setting a precedent for future cases. Thus while some
precedents guide preferences between factors, others, termed ascription precedents in
[8], guide the ascription of factors.

Thus the explanation of an outcome in terms of the factors pro and con, and the
preferences between them, may not be enough: an explanation of why the factors are
considered present (or absent) may be what is needed.

In this paper we present a set of argument schemes to justify factor ascription. Our
contribution is the articulation of four new schemes and their critical questions that
demonstrate how factors can be ascribed, to enable the second stage of reasoning with
legal cases to be undertaken. The new schemes complement the set presented previously
in [20] to now provide full coverage of both stages of the process described earlier: this
enables a complete explanation of both stages of the decision that was not previously
available. Use and effectiveness of the schemes is demonstrated by walking through a
detailed example.
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Section 2 identifies different ways of ascribing factors, giving rise to different
schemes to provide justification. Section 3 presents schemes for each of these types, with
an extended example following in Section 4 and concluding remarks in Section 5.

2. Types of Factor Ascription

Factors are ascribed on the basis of facts. But the relationship between factors and facts
is not always straightforward, since the cases exhibit an enormous variety of facts, which
need to be mapped into a relatively small set of factors.

The most straightforward case is where the facts licence the ascription of the factor
through an ordinary understanding of the words involved. Thus, in the often discussed
wild animals property law cases introduced in [11] – where the cases concerned deter-
mining when an individual can be deemed to possess (or not) a wild animal being pur-
sued – one factor was whether those involved were pursuing their livelihoods. In one
case2, Keeble rented a pond frequented by ducks which he regularly shot and sold at
market. In another3, Young was a professional fisherman looking for fish in his trawler.
Both are clearly pursuing their livelihoods. In contrast, in Pierson v Post (1805)4, Post
was hunting a fox in pursuit of pleasure: fox hunting played no part in his professional
activities. No special judgement, or knowledge of past cases, is needed to ascribe the
factor. In these cases there are no issues as to extent: either the plaintiff was pursuing his
livelihood or he was not.

But things are not always so simple: often the ascription of the factor does require
knowledge of past cases. In HYPO [3], in the domain of US Trade Secrets Law, facts are
used to position the case on a set of dimensions. One such dimension is SecurityMea-
sures, which relates to the steps taken by plaintiffs to protect their information. The mea-
sures taken in any given case will be very different. Moreover, the rigour of the measures
will vary greatly: at one end of the dimension no measures will have been taken, which
will be a reason to find for the defendant. At the other end, the very rigorous measures
taken will be a reason to find for the plaintiff. Thus the dimension gives rise to two fac-
tors, one for each side, depending on the nature of the measures taken in the particular
case. Between them theremay be a neutral range in which neither side is favoured and no
factor is applicable. At one end we have the pro-defendant factor NoSecurityMeasures,
and at the other end the pro-plaintiff factor, AdequateSecurityMeasures. At some point
on the dimension the measures will be sufficient to be no longer a reason to find for the
defendant. At some, possibly later, point the measures will be sufficiently strong to be a
reason to find for the plaintiff. These points are not a matter of ordinary language, but
are determined in the context of actual cases, and dependent on past decisions. These
points were discussed by Rigoni [21], who termed them switching points. SecurityMea-
sures has two factors: a pro–defendant factor, followed by a neutral range, followed by a
pro-plaintiff factor. Other dimensions may differ. Some map to only one factor with the
rest of the range neutral. Others may map to more than one factor for a given side: in
Trade SecretsDisclosuresToOutsiders has a neutral range followed by a pro-plaintiff fac-
tor representing a significant number of disclosures, followed by a stronger pro-plaintiff

2Keeble v Hickeringill (1707) 103 ER 1127
3Young v Hitchens (1844) 115 ER 228
4Pierson v Post (1805) 3 Cai. R. 175, 2 Am. Dec. 264
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factor if the information has been put into the public domain. For all factors of this type
we have a dimension with ranges in which the factors that are applicable are demarcated
by switching points constrained by precedents.

A third type of ascription arises when a pair of dimensions need to be considered
together, because one may trade off against the other so that we need to strike a balance
between them. For example, as discussed in [9], in the US Fourth Amendment which
protects against unreasonable search, the privacy of the citizen must be balanced against
the exigency of the need to enforce the law. If the life of the President is thought to be
under threat, privacy will be respected less than if we are dealing with a minor offence.
Neither exigency nor privacy can provide a reason to decide the case by themselves: they
must be considered together. Thus the factor is something like SufficientRespectforPriva-
cyGivenExigency, and we can picture the dimensions as the x- and y-axes and precedents
determining a line separating the area where the factor applies from where it does not, as
discussed in [7] and [6]. Again, this line will be constrained by previous decisions as to
the applicability of the factor. A diagram for the worked example is given in Figure 1.

The fourth type of justification we will consider is analogy. Here the problem is not
whether the extent of some aspect of a case is sufficient, and so it could be a case for or-
dinary interpretation, but the facts do not allow the ascription of the factor on an ordinary
interpretation, and so it is argued that the factor should be ascribed on the basis of an
analogy between the situations. Analogy has often been seen as determining a relation
between whole cases, as in [25] and [23]. We, however, argue that the analogy is rather
between particular aspects of the case. In Steven’s prime example in [23] the (hypotheti-
cal) case turns on whether a kindergarten teacher should be considered sufficiently anal-
ogous to the mother in the case of Dillon v Legg5 to receive compensation for witnessing
an injury to a child. In Dillon it was held that one factor was whether the victim and
the emotional sufferer had “a close relationship”6. The case turns on the point because
the other pro-claimant factors are in place, and so all that is at issue is whether being
a kindergarten teacher enables the factor CloseRelationship, introduced to describe the
mother-son relation, to be applied. In ordinary language most people would not say that
a kindergarten teacher had a close relationship of this sort to the child, but Stevens argues
that there is a possible analogy to be drawn on the basis that both love the child. In our
opinion this analogy is too tenuous, but a similar analogy might succeed in the case of a
more intimate non-blood relationship such as a wet nurse. Walton’s key example is the
well known Popov v Hayashi case7 [4], in which there was a dispute over the ownership
of a potentially valuable baseball, hit by Barry Bonds to set a home run record. Here
the analogy is not with a particular case, but with the body of cases including Pierson,
Keeble and Young discussed above, by drawing an analogy to a baseball hit out of the
ball park and the wild animals of those cases [14]. Here what is at stake is the ascription
of the factors relating to the quarry: once these factors have been ascribed, Popov can
then be argued about with the other wild animals cases as precedents.

5Dillon v Legg 68 Cal. 2d 728 (1968).
6The Court had been deliberately vague, saying that it “cannot now predetermine the defendant’s obligation

in every situation by a fixed category; no immutable rule can establish the extent of that obligation for every
circumstance in the future.” It is quite normal for a Court to use a term which is clearly satisfied in the current
case, but leave more precise lines to be drawn later.
7Popov v HayashiWL 31833731 Ca. Sup. Ct. (2002). The case was the subject of a 2004 comic documentary

film, Up For Grabs, https://www.imdb.com/title/tt0420356/.
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3. Argumentation Schemes For Factor Ascription

In this section we will provide an argumentation scheme for the ascription of each of the
types of factor discussed in the previous section.

3.1. Ordinary Meaning Scheme

The most straightforward scheme is where the facts of the case justify the ascription of a
factor, on a ordinary interpretation of the terms involved.

Ordinary Meaning Scheme

Facts Premise: Facts a1...an are true in CaseC1
Usage Premise: As F is ordinarily understood, a1...an are sufficient for Factor F to

be considered present inC1
Conclusion: F is present inC1

The following is a set of critical questions to enable the scheme’s components to be
questioned:

MCQ1: Does a1...an really justify the ascription of F? There might be some addi-
tional fact which is needed. For example we might require that the activity be sufficiently
remunerative if it to be considered the person’s livelihood.

MCQ2: Does some other fact, b, provide an exception which prevents the ascription
of F? There might be some unusual feature in the situation which should prevent ascrip-
tion. For example suppose a duck hunter takes a pot shot at a fox. Though out pursuing
his livelihood, hunting that particular quarry is not really part of that pursuit.

MCQ3: Do other facts b1...bn justify the ascription of factor F2, which is incompat-
ible with F? For example if the person concerned was trespassing, then they might be
considered to be engaged in an activity such as poaching, which would not be considered
earning a livelihood.

3.2. Switching Point Scheme

The next scheme is based on Rigoni’s notion of a switching point [21]. If we consider
a dimension with a factor favouring the plaintiff at one end and a factor favouring the
defendant at the other, there will be points (possibly the same) at which one factor ceases
to apply and the other factor begins to apply. These are the switching points. Thus given
a precedent more favourable on the dimension than the new case, we can say that the
factor applies to the new case. Similarly, if the new case is less favourable, we can argue
that the factor does not apply. We can use this notion as the basis of an argumentation
scheme:

Switching Point Scheme

Precedent Premise: P1 is a precedent with location L1 on dimension D at which
factor F is present.

Case Premise:C1 is a case with L2 on dimension D
Party Premise: F favours the plaintiff (defendant)
Value Premise: L2 is more (less) favourable to the plaintiff (defendant) than L1
Conclusion: F applies (does not apply) toC1
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We can question an instantiation of ths scheme with the following critical questions:
SCQ1: Is L2 so much more favorable that a different factor applies? For example in

the US Trade Secret domain of [2] there are two pro-defendant factors on the disclosures
dimension, DisclosedToOutsiders and the stronger DisclosedInPublicForum.

SCQ2: When arguing that the factor does not apply because L2 is less favourable:
Is L2 sufficiently close to L1 that the same factor applies? It is possible that P1 does not
precisely identify the switching point, and that C1 may become a new precedent for the
factor, giving a more generous switching point.

SCQ3: Is there another precedent, P2, which can ground an instantiation of the
switching point scheme to give an argument that the factor does not (does) apply?. It
may be that some additional information is needed to say which precedent should apply.

3.3. Trade Off Scheme

The next scheme concerns trade-offs between two dimensions, as described in [6]. For
example in the US Fourth Amendment domain there is a trade-off between being able to
enforce the law and respect for privacy [9]. The factor involves balancing these two con-
cerns and is something like “Sufficient respect for privacy while enabling enforcement”.
The idea in [6] is that a line, e.g a.D1+ b.D2+ c = 0, can be fitted to the precedents8,
separating the pro-plaintiff and pro-defendant regions of the case space. In the equation
a and b are the coefficients of the variables D1 and D2, representing the values on the two
dimensions. This determines the gradient of the line which indicates how much more D1
is need to compensate for less D2, and c is a constant showing where the line crosses the
axes given these coefficients.

Trade Off Scheme

Precedents Premise: P1...Pn are precedent cases in which factor F is present.
Locations Premise: Precedent Pi ∈ {P1..,Pn} have locations D1i and D2i for dimen-

sions D1 and D2,
Case Premise:C1 is a case with L1 on dimension D1 and L2 on dimension D2
Line Premise: All a.D1i +b.D2i + c ≥ 0
Point Premise: a.L1+b.L2+ c ≥ (<) 0
Conclusion: F applies (does not apply) toC1

For this scheme we have the following key critical questions;
TCQ1: Is there a counter example, a precedent, Pn+1, such that a.D1n+1 +b.D2n+1

+ c < (≥) 0?. There might be a precedent which does not fit the line.
TCQ2: Can the line be drawn less (more) tightly? If the precedents are not precisely

on the line the constant c could be adjusted to lower (raise) the line to allow (disallow)
more cases to qualify unless this created a counter example.

8Of course more complicated curves can be used, but a straight line is the simplest.
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3.4. Analogy Scheme

There are a number of schemes for analogy in the literature. Different schemes are given
in [26], [25] and [23]. Here we give one tailored to our need to analogise between aspects
of cases rather than cases as a whole.

Analogy Scheme

Base Premise: A situation S1 is described in precedent P1.
Derived Premise: Factor F is plausibly ascribed to P1 on the basis of S1.
Case Premise: CaseC1 contains situation S2
Similarity Premise: As it relates to F , situation S2 is similar to situation S1.
Conclusion: Factor F is plausibly ascribed toC1.

The following set of critical questions is based on the account given in [26] for the
basic scheme for argument from analogy.

ACQ1: Are there respects in which P1 andC1 are different that would tend to under-
mine the force of the similarity with respect to F? For example, the kindergarten teacher
has a transient relationship, whereas the maternal relation is permanent.

ACQ2: Is the similarity sufficient for F to be ascribed? The love felt by a kinder-
garten teacher might not be considered to have the same quality as mother-love.

ACQ3: Is there some other precedent P2 that is also similar to C1, but in which F
was not ascribed? Suppose there was a precedent with a nanny, where the relationship
was not considered sufficiently close.

In the next section we will give an extended example to show these schemes in
action.

4. Change of Domicile Example

Our example will be based on the example used in [15]. The idea is that a person has
applied for a change of fiscal domicile, for tax purposes. A decision will be taken in the
light of the particular facts of the case, which will be very varied as people have many
different reasons for changing country, and many different ways of arranging their lives
as they transition from one place to another. We will suppose the following facts are rel-
evant. Some will be dimensional, the particular fact representing a point on a dimension,
while others will be Boolean.

• Absence: The length of absence (dimensional).
• IncomeSource: The percentage of income earned abroad (dimensional).
• Spouse Whether there are family connections with the new country. For example
the spouse may be a national of that country (Boolean).

• Age. The age of the person concerned (dimensional).
• Dwelling: Whether links with the old country had been maintained. For example
a house may still be owned there (Boolean).

From these we can form the following factors. The dimensional facts will give rise
to switching point and trade off factors. Boolean factors may be argued for either on
the basis of a literal interpretation or an analogy. The conflicting principles are that tax
should be paid where income is earned, but that tax should be paid where benefits are
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Table 1. Facts of Example Cases

Case Absence IncomeSource Spouse Age Dwelling

LowPay 48 20 No 35 Timeshare

HighPay 6 100 No 17 No

Married 36 60 Spouse 26 No

Owner 60 20 No 48 House

NewCase1 54 20 Spouse 66 Caravan

NewCase2 36 60 Partner 18 No

Table 2. Factors Present In Precedent Cases

Case F1 suff F2 Insuff F3 Family F4 Working F5 Minor Links

LowPay X X

HighPay X X

Married X X X

Owner X X X

received, and so the current domicile should receive tax until the connection has been
severed by prolonged absence and abandoning other connections.

F1 SufficientAbsence. This will mean that the absence is sufficient with respect to
the amount of income earned abroad. This is a trade off factor. In general, the
higher the percentage earned abroad the shorter the absence required. The factor
will favour change.

F2 InufficientAbsence. If the absence is not sufficient, this can mean that a pro
noChange factor is present.

F3 Family. There are close family ties with the new country. This favours change.
Here there is no corresponding noChange factor: lacking family ties is no reason
to decide for noChange.

F4 WorkingAge. If a person is of working age, this favours no change.
F5 Minor.If a person is a minor, this favours change, since minors are held to have no

control of their domicile. Note, however, that being retired is neutral: thus, some
points on the age dimension are neutral.

F6 Links. This is a Boolean factor favouring noChange. It applies if the claimant has
maintained links such as property in the old country.

We now consider a set of precedent cases, with facts as shown in Table 1. The factors
ascribed to the four precedent cases are shown in Table 2. We are now presented with a
new case, NewCase1, with facts as shown in Table 1.

We now consider how these factors should be ascribed to NewCase1. First we will
consider the income/absence trade off.

4.1. Trade Off Between Absence and Income Percentage

NewCase1 has the same amount of income as the unfavourable LowPay and the
favourable Owner. But the length of absence is midway between the two. So argument
is required. Suppose first that the advocate of no change wishes to argue that F1, Suf-
ficientAbsence does not apply. He can draw a line separating the favourable from the
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Figure 1. Trade off between absence and income

unfavourable precedents as shown in Figure 1. The line shown is 3× income + 5×
absence−360= 0. We can now instantiate the TradeOff scheme.

Precedents Premise: Married and Owner are precedent cases in which factor Suf-
ficientAbsence is present.
Locations Premise: These precedents have locations (36,60) and (60,20) on the
absence and income dimensions.
Case Premise: NewCase1 has location (54,20)
Line Premise: For Married and Owner 3× income+5×absence−360 ≥ 0
Point Premise: 3×20+5×54−360=−30 and −30< 0
Conclusion: SufficientAbsence does not apply to NewCase1

We can now consider how we might challenge this argument. In HighPay, we have
a negative value for 3× 100+ 5× 6− 360, and yet it was held that SufficientAbsence
applied to HighPay. This counter example to the Line Premise allows us to pose TCQ1.
The proponent would likely argue that the relationship is not linear for extreme values,
as shown in Figure 1, so that 100% income will mean that any absence is sufficient. The
court would have to decide whether this rebuttal was effective, or whether NewCase1
should also be included in SufficientAbsence.

The line in Figure 1 has been drawn very tightly on the precedents, and so there
is scope for challenging this argument with TCQ2. If the constant factor is reduced to
330, NewCase1 would now lie on the line, and the two precedents would remain in-
cluded, while the counterexample LowPay would remain excluded. This would have the
additional strength of including HighPay with no need to make it a special case, and so
represents a powerful challenge. A rebuttal would have to argue in terms of the values
promoted: that the new line does not give enough weight to the claims of the current
domicile.

4.2. Switching Point on Age Dimension

The factors for which this is the argument scheme are WorkingAge and Minor. Let us
first consider NewCase1. Here a proponent of no change would instantiate the scheme
using Owner.

Precedent Premise: Owner is a precedent with location 48 on dimension Age at
which factor WorkingAge is present.
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Case Premise :NewCase1 is a case with 66 on dimension Age.
Party Premise: WorkingAge favours no change.
Value Premise: 66 is more favourable to no change than 48
Conclusion: WorkingAge applies to NewCase1.

But we can pose critical questions against this, knowing that beyondWorkingAge on
the Age dimension is a neutral area for the retired. So one can pose SCQ1, arguing that
the difference between 66 and 48 is sufficiently great that we have entered the neutral
range. We have no precedents setting the switching point here: if the court decides that a
person of 66 should be considered retired so thatWorkingAge does not apply, NewCase1
will become a precedent putting an upper bound on WorkingAge.

The other two critical questions do not apply to NewCase1, so now consider New-
Case2. Here HighPay can be used as a precedent to argue that Minor does not apply.

Precedent Premise: HighPay is a precedent with location 17 on dimension Age at
which factor Minor is present.
Case Premise :NewCase2 is a case with 18 on dimension Age.
Party Premise: Minor favours change.
Value Premise: 18 is less favourable to change than 17
Conclusion: Minor does not apply to NewCase2.

Here we can pose SCQ2. We can argue that 18 is sufficiently close to 17 that Minor
can also be taken to apply the NewCase2, raising the lower bound on the switching point
for this factor. This could be supported by also posing SCQ3, using Married to argue
that WorkingAge does not apply to NewCase2. The decision on the court could be made
on the basis of the value concerned, namely the autonomy of the person with respect to
place of residence of a person of that age, or by considering other legislation in the two
jurisdictions concerning the age of majority.

4.3. Ordinary Meaning Scheme

We now turn to the Ordinary Meaning Scheme. Consider here NewCase1, where the
applicant has a spouse of the other nationality.

Facts Premise: Applicant has a spouse of the appropriate nationality in NewCase1,
Usage Premise: As ordinarily understood, spouse justifies the ascription of Family,
which requires a close family tie.
Conclusion: Family is present in NewCase1,

Since spouse is a paradigmatic close family tie, the only possibility of arguing
against this is to find an exception, and pose MCQ2. For example if the couple were
legally separated this would provide a possible reason to withhold the factor.

For the other critical questions, consider NewCase2. Here we have a partner, but no
legal marriage, yet a partnership might well be considered effectively the same as a for-
mal marriage. However, it is possible that additional conditions could be suggested using
MCQ1. For example it could be argued that to be treated equally with marriage there
should be some evidence of permanence, such as the relationship having existed for a
significant period of time. For MCQ3 it might be possible to point to another concept
such as cohabitee, which is treated differently from a spouse with regard to, e.g. inher-
itance and welfare benefits. Here it could be argued that a partner is more readily seen
under this concept than as a spouse.
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4.4. Analogy Scheme

We will discuss the analogy scheme and its relation to the Links factor, specifically
whether a dwelling had been maintained in the country of origin, with Owner as the
precedent. While the caravan in NewCase1 would not be interpreted as a dwelling in the
ordinary meaning of the word, it could be argued that there is a sufficient analogy to
allow the Links factor to apply.

Base Premise: A house in the country of origin is present in Owner.
Derived Premise: Links is plausibly ascribed to Owner on the basis of the retained
house.
Case Premise: In NewCase1 a caravan in the country of origin has been retained.
Similarity Premise: As it relates to Links, a caravan is similar to a house since they
can both be used to live in.
Conclusion: Links is plausibly ascribed NewCase1.

This analogy can, of course, be questioned. Using ACQ1, it could be argued that
there are significant differences between a house and a caravan, such as mobility and
that the latter is used typically as a second home for short stays. ACQ2 is similar, but
whereas ACQ1 could be answered by suggesting that the other caravans were in use as
permanent dwellings, ACQ2 suggests that the similarity is still insufficient. For example
that given the disparity in cost between retaining a house and a caravan, the caravan did
not demonstrate a big enough commitment to qualify for ascription of the Links factor.
Finally, for ACQ3 we can point to LowPay, where it was held that a Timeshare was not
enough to ascribe the Links factor. This would allow the argument that the Timeshare is
a better analogy for a caravan than a house.

5. Concluding Remarks

A full explanation of a decision in a legal case requires not only an indication of why
one set of factors was preferred over another, as in [20], but also why these reasons
were considered applicable to the case, and why others were not. To enable this kind of
explanation we have provided a set of argumentation schemes for factor ascription. We
have identified different kinds of factors, which require different kinds of justification.
One key aspect is whether the factor is derived from a dimension or a Boolean attribute.
Another is whether aspects of the case trade off against one another. We have identified
four schemes, and their associated critical questions to enable critical discussion in the
manner of [24], which can be deployed as a three ply dialogue as advocated in HYPO
[22]. When coupled with the schemes of [20], a complete explanation of the reasoning
in legal cases is enabled. We propose that these schemes could be used as in [19] to give
a full explanation of the output of a machine learning prediction system, both in law and
in other domains.

We have illustrated the schemes with an extended example, based on one in [15],
but in future work we will analyse an actual body of case law using these schemes. One
possibility would be US Trade Secrets, allowing comparison with a range of other work
[5]. We anticipate that this may require us to expand our initial set of critical questions.
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Serialisable Semantics for Abstract
Argumentation

Lars BENGEL and Matthias THIMM
Artificial Intelligence Group, University of Hagen, Germany

Abstract. We investigate the recently proposed notion of serialisability of seman-
tics for abstract argumentation frameworks. This notion describes semantics where
the construction of extensions can be serialised through iterative addition of min-
imal non-empty admissible sets. We investigate general relationships between se-
rialisability and other principles from the literature. We also investigate the novel
unchallenged semantics as a new instance of a serialisable semantics and, in par-
ticular, analyse it in terms of satisfied principles and computational complexity.

Keywords. abstract argumentation, serialisability, principles, computational complexity

1. Introduction

Abstract argumentation frameworks [1] are a simple, yet powerful formalism for repre-
senting argumentative scenarios and investigating matters regarding the acceptability of
arguments. They consist simply of a set of arguments and an attack relation between ar-
guments and can thus be represented as a directed graph. Abstract argumentation seman-
tics [2] are used to interpret abstract argumentation frameworks by appropriately con-
straining the space of possible outcomes of the underlying argumentation. In particular,
extension-based semantics define when a set of arguments (called extension) represents
a plausible constellation of arguments that makes “sense” given the attacks in a frame-
work. While we also consider extension-based semantics in this paper, it is noteworthy
to mention that there are also other approaches for semantics such as the labelling-based
approach [3], ranking and gradual semantics [4], and probabilistic approaches [5].

In [6] it has been shown that many of the mainstream extension-based semantics can
be serialised, meaning that there is non-deterministic construction principle that allows
to iteratively construct extensions by selecting minimal non-empty admissible sets—
called initial sets [7]—and moving to the reduct [8]. Individual semantics can be distin-
guished by the way they select initial sets (via a so-called selection function) and how
they terminate the construction (via a so-called termination function). For example, pre-
ferred semantics can be serialised by selecting initial sets arbitrarily until no further ini-
tial sets can be found [6]. Satisfaction of this principle of serialisability by a semantics
allows a deeper inspection of the reasons why certain arguments are contained in an ex-
tension and therefore facilitates the explanatory power of an argumentation semantics
[9,10]. In this paper, we aim at a better understanding of the principle of serialisability, in
particular with respect to its connections to other principles for argumentation semantics
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[11,12]. As it turns out, serialisability is an independent principle that is neither implied
by nor implies other similar properties such as directionality.

As it has already been mentioned above, a serialisable semantics is characterised by
a selection and termination function. This parametrisation of a semantics allows the easy
development of further semantics simply by defining those two components. In [6], a
specific candidate for such a semantics has already been suggested, which we coin here
the unchallenged semantics. This semantics is defined by exhaustively adding unattacked
and unchallenged initial sets (the formal definitions of these terms will be introduced in
Section 3) and it has some interesting connections to preferred and ideal semantics. We
investigate unchallenged semantics in more depth, in particular wrt. its compliance to
principles from [11,12,13] and in terms of computational complexity. As with regard to
the latter, unchallenged semantics turns out to be highly intractable, with credulous and
skeptical reasoning shown to be ΣP

2 - and ΠP
2 -complete, respectively.

To summarise, the contributions of this paper are as follows.

1. We recall the principle of serialisability and analyse its relationship with other
principles (Section 3).

2. We investigate unchallenged semantics as a new instance of a serialisable seman-
tics wrt. to its compliance to principles (Section 4).

3. We analyse unchallenged semantics wrt. computational complexity (Section 5).

Section 2 presents the necessary background on abstract argumentation and Section 6
concludes. Proofs of technical results are omitted due to space restrictions but can be
found in an online appendix.1

2. Preliminaries

Let A denote a universal set of arguments. An abstract argumentation framework AF
is a tuple AF = (A,R) where A ⊆ A is a finite set of arguments and R is a relation
R ⊆ A×A [1]. Let AF denote the set of all abstract argumentation frameworks. For
two arguments a,b ∈ A, the relation aRb means that argument a attacks argument b. For
AF = (A,R) and AF′ = (A′,R′) we write AF′ � AF iff A′ ⊆ A and R′ = R∩ (A′ ×A′).
For a set X ⊆ A, we denote by AF|X = (X ,R∩ (X ×X)) the projection of AF on X . For
a set S ⊆ A we define

S+AF = {a ∈ A | ∃b ∈ S : bRa} S−AF = {a ∈ A | ∃b ∈ S : aRb}
If S is a singleton set, we omit brackets for readability, i. e., we write a−AF (a

+
AF) instead

of {a}−AF ({a}+AF). For two sets S and S′ we write SRS′ iff S′ ∩ S+AF �= /0. We say that a
set S ⊆ A is conflict-free if for all a,b ∈ S it is not the case that aRb. A set S defends an
argument b ∈A if for all a with aRb there is c ∈ S with cRa. A conflict-free set S is called
admissible if S defends all a ∈ S. Let adm(AF) denote the set of admissible sets of AF.

Different semantics can be phrased by imposing constraints on admissible sets [2].
In particular, an admissible set E

• is a complete (co) extension iff for all a ∈ A, if E defends a then a ∈ E,
• is a grounded (gr) extension iff E is complete and minimally so,

1http://mthimm.de/misc/lbmt_uncsem_proofs.pdf
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• is a stable (st) extension iff E ∪E+
AF = A,

• is a preferred (pr) extension iff E is maximal.
• is a semi-stable (sst) extension iff E ∪E+

AF is maximal,
• is an ideal (id) extension iff E is the maximal admissible set with E ⊆ E ′ for each
preferred extension E ′.

• is a strongly admissible (sa) extension iff E = /0 or each a ∈ E is defended by some
strongly admissible E ′ ⊆ E \{a}.

All statements on minimality/maximality are meant to be with respect to set inclusion.
For σ ∈ {co,gr,st,pr,sst, id,sa} let σ(AF) denote the set of σ -extensions of AF.

3. Initial Sets and Serialisability

Non-empty minimal admissible sets have been coined initial sets by Xu and Cayrol [7].

Definition 1. For AF = (A,R), a set S ⊆ A with S �= /0 is called an initial set if S is
admissible and there is no admissible S′ � S with S′ �= /0. Let IS(AF) denote the set of
initial sets of AF.

Initial sets are not supposed to be used to solve the whole argumentation represented
in an argumentation framework, but rather a single atomic conflict within the framework.
We can also differentiate between three types of initial sets [6].

Definition 2. For AF= (A,R) and S ∈ IS(AF), we say that

1. S is unattacked iff S− = /0,
2. S is unchallenged iff S− �= /0 and there is no S′ ∈ IS(AF) with S′RS,
3. S is challenged iff there is S′ ∈ IS(AF) with S′RS.

In the following, we will denote with IS �←(AF), IS �↔(AF), and IS↔(AF) the set of
unattacked, unchallenged, and challenged initial sets, respectively.

In [6] the notion of serialisability has been introduced as a new approach for con-
structing admissible sets (and extensions of a variety of semantics) iteratively using ini-
tial sets. This approach relies also on the notion of the reduct [8].

Definition 3. For AF = (A,R) and S ⊆ A, the S-reduct AFS is defined via AFS =
AF|A\(S∪S+).

The idea behind the approach of [6] to construct admissible sets is quite simple: We
solve an atomic conflict in AF by selecting an initial set S. Afterwards, we move to the
reduct AFS which may reveal further conflicts and therefore new initial sets. This process
is continued until some termination criterion is satisfied. In order to formalise this idea,
we need a way to select initial sets in each step and also a criterion for determining if the
construction of an admissible set is finished. The following concepts have been defined
for this purpose.

Definition 4. A state T is a tuple T = (AF,S) with AF ∈ AF and S ⊆ A.

Definition 5. A selection function α is any function α : 22
A × 22A × 22A → 22

A
with

α(X ,Y,Z)⊆ X ∪Y ∪Z for all X ,Y,Z ⊆ 2A.
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Figure 1. The argumentation framework AF1 from Example 1.

We will apply a selection function α in the form α(IS �←(AF), IS �↔(AF), IS↔(AF))
(for some AF), so α selects a subset of the initial sets as eligible to be selected in the
construction process. We explicitly differentiate the different types of initial sets as pa-
rameters here as a technical convenience.

Definition 6. A termination function β is any function β : AF×2A →{0,1}.
A termination function β is used to indicate when a construction of an admissible

set is finished (this will be the case if β (AF,S) = 1).
For some selection function α , consider the following transition rule:

(AF,S)
S′∈α(IS �←(AF),IS �↔(AF),IS↔(AF))−−−−−−−−−−−−−−−−−−−→ (AFS′ ,S∪S′)

If (AF′,S′) can be reached from (AF,S) via a finite number of steps (this includes no
steps at all) with the above rule we write (AF,S)�α (AF′,S′). If, in addition, the state
(AF′,S′) also satisfies the termination criterion of β , i. e., β (AF′,S) = 1, then we write
(AF,S)�α,β (AF′,S′).

Given concrete instances of α and β , let E α,β (AF) be the set of all S with
(AF, /0)�α,β (AF′,S) (for some AF′).

Definition 7. A semantics σ is serialisable if there exists a selection function α and a
termination function β with σ(AF) = E α,β (AF) for all AF. Then σ is also called the
α,β -semantics.

In [6] it has already been shown that all of the standard admissible-based semantics
adm, co, gr, pr and st as well as sa are serialisable. On the other hand, the semi-stable,
ideal and eager semantics are not serialisable.

Example 1. As shown in [6], the preferred semantics can be serialised by the selection
function αad(X ,Y,Z) = X ∪Y ∪Z and the termination function

βpr(AF,S) =
{
1 if IS(AF) = /0
0 otherwise

Consider the argumentation framework AF1 in Figure 1. The initial sets of AF1 are
{b}, {e} and { f}. In order to obtain the preferred extensions we start with the state
(AF1, /0). According to the αad all three initial sets can be selected. Assume we select
{b} first, then we apply the transition rule as

(AF1, /0)
{b}−−→ (AF

{b}
1 ,{b}).
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In this reduct AF{b}
1 , we have two initial sets, namely {e} and { f}. If we select { f}, the

next transition would be

(AF
{b}
1 ,{b}) { f}−−→ (AF

{b, f}
1 ,{b, f}).

This leaves us with one more possible transition via

(AF
{b, f}
1 ,{b, f}) {c}−−→ (( /0, /0),{b,c, f}).

Now, trivially, the termination function is true, since there is no initial set for the empty
framework and {b,c, f} is a preferred extension of AF1. Similarly, we could have se-
lected {e} in the state (AF{b}

1 ,{b}). In that case, we also obtain an empty argumentation
framework and the set {b,e}, which is the only other preferred extension of AF1.

The principle of serialisability allows to define a semantics simply by specifying a
selection function for initial sets and a termination function. In Section 4 we will define a
completely new semantics using this approach and investigate its properties. However, in
the remainder of this section we will analyse the principle of serialisability a bit deeper.

3.1. Relationship to Other Principles

In the following, we will look further at the serialisability principle and investigate its
relationship with other principles from the literature [11]. First, we recall some basic
definitions. Let AF= (A,R) be an argumentation framework. A set of argumentsU ⊆ A
is called unattacked if and only if �a ∈ (A\U) : aRU . The set of unattacked sets of AF
is denoted as US(AF). Furthermore, a set S ⊆ A is a strongly connected component of
AF, if there is a directed path between any pair a,b ∈ S in AF and there is no S′ ⊃ S with
that property. Let SCCsAF be the set of strongly connected components of AF. For a set
S ⊆ A, we define opAF(S) = {a ∈ A | a /∈ S∧ aRS}. In order to define the principle of
SCC-Recursiveness [14], we need some additional concepts.

Definition 8. Given an argumentation frameworkAF=(A,R), a set E ⊆A and a strongly
connected component S ∈ SCCsAF, we define:

• DAF(S,E) = {a ∈ S | (opAF(S))Ra},
• PAF(S,E) = {a ∈ S | (E ∩opAF(S)) �Ra∧∃b ∈ (opAF(S)∩a−AF) : E �Rb},
• UAF(S,E) = S\ (DAF(S,E)∪PAF(S,E)).

Definition 9. Let AF = (A,R) be an argumentation framework and C ⊆ A is a set of
arguments.

1. A functionBF (AF,C) is called base function, if, given an argumentation frame-
work AF= (A,R) such that |SCCs(AF)|= 1 and a setC ⊆ A,BF (AF,C)⊆ 2A.

2. Given a base functionBF (AF,C) we define the function G FBF (AF,C)⊆ 2A
as follows: for any E ⊆ A,E ∈ G F (AF,C ) if and only if

• in case |SCCsAF|= 1, E ∈ BF (AF,C),
• otherwise, ∀S ∈ SCCsAF : E ∩S ∈ G FBF (AF|S\DAF(S,E),UAF(S,E)∩C).
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Definition 10. Let AF = (A,R) be an argumentation framework and E ⊆ A is a set
of arguments. We say that an argument a ∈ A is strongly defended by E (denoted as
sd(a,E)) iff ∀b ∈ A : bRa =⇒ ∃c ∈ E \{a} : cRb and sd(c,E \{a}).

Finally, we recall the definitions of the different principles from the literature, that
we considered in our analysis.

Definition 11. A semantics σ satisfies the principle of:

• conflict-freeness [11], iff for every AF AF, every E ∈ σ(AF) is conflict-free with
respect to the attack relation.

• admissibility [11], iff for every AF AF, every E ∈ σ(AF) is conflict-free and de-
fends itself in AF.

• strong admissibility [11], iff for every AF AF, for every E ∈ σ(AF) it holds that
a ∈ E implies that E strongly defends a.

• reinstatement [11], iff for every AF AF = (A,R) and E ∈ σ(AF) we have: if E
defends some a ∈ A then a ∈ E.

• naivety [11], iff for every AF AF= (A,R) and E ∈ σ(AF)we have: E conflict-free
and maximal among c f (AF).

• allowing abstention [15], iff for every AF AF and for every a ∈ A, if there exist
two extensions E1,E2 ∈ σ(AF) such that a ∈ E1 and a ∈ E+

2 then there exists an
extension E3 ∈ σ(AF) such that a /∈ (E3∪E+

3 ).
• I-maximality [11], iff for every AF AF and E1,E2 ∈σ(AF), E1⊆E2 =⇒ E1=E2.
• SCC-recursiveness [14], iff there is a base functionBF σ such that for every AF
AF= (A,R) we have that σ(AF) = G FBF σ (AF,A).

• directionality [11], iff for every AF AF= (A,R) and ∀U ∈ US(AF) we have that
σ(AF,U) = σ(AF|U ) with σ(AF,U) = {E ∩U | E ∈ σ(AF)}.

• modularization [16], iff for every AF AF we have: E1 ∈ σ(AF) and E2 ∈ σ(AFE1)
implies E1∪E2 ∈ σ(AF).

• reduct-admissibility [13], iff for every AF AF and E ∈ σ(AF), we have that ∀a ∈
E : if b attacks a then b /∈⋃

σ(AFE).
• semi-qualified-admissibility [13], iff for every AF AF and E ∈ σ(AF), we have
that ∀a ∈ E, if b attacks a and b ∈⋃

σ(AF) then ∃c ∈ E s.t. c attacks b.

The principle of serialisability is intrinsically linked with admissibility since the
building blocks of constructed extensions are the initial sets of an argumentation frame-
work. By design, every extension constructed by the transition system for some α and
β satisfies admissibility and thus also conflict-freeness. In other words, admissibility
and conflict-freeness are necessary criteria for serialisability. Interestingly, the recently
introduced principle of modularization [16] is also implied by serialisability.

Two of the more prominent principles from the literature are directionality and SCC-
recursiveness. Like serialisability, the SCC-recursiveness principle can also be used to
characterise existing semantics or define new semantics [14]. That raises the question if
there exists a connection between these principles.

Interestingly, the principles of directionality and serialisability are independent of
each other. The same holds true for SCC-recursiveness. While the above mentioned se-
rialisable semantics are all SCC-recursive, the unchallenged semantics, which is inves-
tigated further in the following section, is not SCC-recursive. The relevant results are
summarised in the following theorem.
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Theorem 1. Let σ be any semantics.

• If σ satisfies serialisability then it satisfies conflict-freeness.
• If σ satisfies serialisability then it satisfies admissibility.
• If σ satisfies serialisability then it satisfies modularization.
• Directionality does not imply serialisability and vice versa.
• SCC-recursiveness does not imply serialisability and vice versa.

For all other mentioned principles, we could not find any relationships to serialis-
ability. We will now take a closer look on the principle of directionality.

3.2. A Closer Look on Directionality

We now specify some additional property called αβ -closure that allows us to relate se-
rialisability and directionality. This property captures whether or not every path of the
transition system for ασ and βσ of the semantics σ eventually terminates for all argu-
mentation frameworks AF ∈ AF, i. e., every path leads to some σ -extension of AF.

Definition 12. Let σ be serialisable with ασ and βσ . We say that σ is αβ -closed for
all argumentation frameworks AF ∈ AF if and only if, for every state (AF′,S′) with
(AF, /0)�ασ (AF′,S′) we have that, there exists some AF′′ ∈ AF and some S′′ ⊆ A such
that (AF′,S′)�ασ ,βσ (AF′′,S′′).

The property of αβ -closure is satisfied by most of the existing serialisable seman-
tics. Only the transition system for the stable semantics does not terminate for all paths.
Due to space limitations we do not recall the corresponding selection and termination
functions but we refer to [6].

Theorem 2. The adm, co, gr, pr and sa semantics are αβ -closed, while the st semantics
is not, wrt. the selection and termination functions defined in [6].

The fact that stable semantics is not closed wrt. its transition system is no coinci-
dence since it is also the only semantics of the above that is not directional. In fact, if
a semantics σ is serialisable and also αβ -closed, then it follows that σ must also be
directional.

Theorem 3. If a semantics σ is serialisable via ασ and βσ and is ασ βσ -closed, then σ
satisfies directionality.

4. Unchallenged Semantics

The notion of serialisability allows to define completely new semantics by defining only
a selection and a termination function. One aspect behind the initial sets is that they
represent sets of arguments that solve a local conflict. We also have the differentiation
between unattacked, unchallenged, and challenged initial sets, essentially distinguishing
how convincing these sets solve their local conflict. In general, the grounded semantics
can be considered to represent a minimal consensus, i. e., a set of arguments that everyone
can agree on. The serialised characterisation of the grounded semantics shows us that this
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Figure 2. The argumentation framework AF2 from Example 2.

is achieved by only considering unattacked initial sets in the selection function σgr. This
is formalised by the selection function αgr(X ,Y,Z) = X and the termination function

βgr(AF,S) =
{
1 if IS �←(AF) = /0
0 otherwise

However, from the perspective of local conflicts, an unchallenged initial set S also re-
solves its conflict while being uncontested by any acceptable argument. Therefore, it is
reasonable to accept the arguments in an unchallenged initial set S as part of a consensus,
since there exists no competing acceptable solution to the conflict S is concerned with.
A natural approach to address this concern would now be to consider a semantics which
allows for unattacked as well as unchallenged initial sets to be selected until no further
unattacked or unchallenged initial sets exist. This means, we do not allow challenged
initial sets to be included since there is at least one other set of arguments that solves the
same local conflict, i. e., there is no consensual solution to this conflict. This approach
has already been suggested in [6] but we will now investigate it in-depth. The approach
can be implemented by the selection function αuc defined via

αuc(X ,Y,Z) = X ∪Y

and the termination function βuc defined via

βuc(AF,S) =
{
1 if IS �←(AF)∪ IS �↔(AF) = /0
0 otherwise

Essentially, this approach amounts to exhaustively adding unattacked and unchallenged
initial sets. In light of this aspect, we also call the αuc,βuc-semantics the unchallenged
semantics (uc) where uc(AF) = {E | (AF, /0)�αuc,βuc (AF′,E)} denotes the set of un-
challenged extensions.

Example 2. Consider AF2 depicted in Figure 2. There are four preferred extensions E1,
E2, E3, and E4 in AF2 defined via

E1 = {a,e} E2 = {a,d, f} E3 = {b,e} E4 = {b,d, f}
while the grounded and ideal extensions are empty. However, there is one unchallenged
extension E5 = {d, f}. The reason for that is that both {d} and { f} are unchallenged
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initial sets in AF2 (and once one is selected the other becomes an unattacked initial set
of the respective reduct and can be selected as well).

The unchallenged semantics is more skeptical than the preferred semantics but less
skeptical than the ideal semantics as has already been observed in [6].

Theorem 4. For every E ∈ uc(AF):

1. E ⊆ E ′ for some preferred extension E ′ and
2. Eid ⊆ E for the ideal extension Eid.

Also clear is the following observation:

Proposition 1. For every AF, uc(AF) �= /0.

In Definition 12 we introduced the property of αβ -closure for serialisable semantics.
This property is also satisfied by the unchallenged semantics.

Theorem 5. Unchallenged semantics is αucβuc-closed.

In light of Theorem 3 this directly implies that the unchallenged semantics is direc-
tional. In addition to the above characterisation via the selection and termination func-
tions, the unchallenged semantics can also be characterised in a different manner. The
following theorem gives a recursive definition of the unchallenged semantics based on
the notion of the reduct, but without use of the transition rule.

Theorem 6. Let AF= (A,R) be an abstract argumentation framework and E ⊆ A. E is
an unchallenged extension if and only if either

• E = /0 and IS�← ∪ IS �↔(AF) = /0 or
• E = E1∪E2, E1 ∈ IS �← ∪ IS �↔(AF) and E2 is an unchallenged extension in AFE1 .

a

b

c

d

Figure 3. The argumentation framework AF3 from Example 3.

Example 3. Consider the argumentation framework AF3 in Figure 3. The initial sets
of AF3 are {c} and {a}. Here, {c} is unattacked and {a} is considered unchallenged.
Therefore, both sets are valid in terms of the selection function αuc. Assume we select
the set {c}, we transition to the framework AF{c}

3 = ({a,b},{(a,b),(b,a)}). In this argu-
mentation framework we have two initial sets {a} and {b}. Both of which are challenged
by each other. This means, the termination function βuc is satisfied and therefore {c} is
an unchallenged extension of AF3.

On the other hand, if we select {a} as the first transition, we arrive at the argumen-
tation framework AF

{a}
3 = ({c,d},{(c,d)}). Here, {c} is the only initial set and it is
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unattacked, just like it was in AF3 itself. After the transition step, we obtain AF
{a,c}
3 =

( /0, /0), which means we are in a terminal state since we have that βuc(AF
{a,c}
3 ,{a,c}) = 1.

All in all, {c} and {a,c} are the unchallenged extensions of AF3.
In the following, we further investigate the compliance of the unchallenged seman-

tics with principles from the literature. The unchallenged semantics satisfies conflict-
freeness and admissibility by design. It also satisfies the more recently introduced prin-
ciple of modularization as well as the reinstatement principle. Furthermore, the unchal-
lenged semantics also satisfies the more complex principle of directionality.

Theorem 7. The unchallenged semantics satisfies the following principles: Conflict-
Freeness, Admissbility, Reduct Admissibility, Semi-Qualified Admissibility, Reinstate-
ment, Directionality, Modularization and Serialisability.

On the other hand, the unchallenged semantics does not satisfy strong admissibil-
ity. Like most admissible-based semantics, it does not satisfy the “allowing abstention”
principle. As we have seen in Example 3 the unchallenged semantics does not satisfy
I-maximality.

Interestingly, the SCC-recursiveness property is also not satisfied by this semantics.
The reason for that stems from the inclusion of unchallenged initial sets. This allows for
situations like in Example 3 where an unchallenged initial set can become challenged
in some reduct of AF, but it can still be part of the extension if selected in an earlier
transition step. Therefore, the unchallenged semantics serves as an example to show that
not all serialisable semantics must necessarily be SCC-recursive.

Theorem 8. The unchallenged semantics does not satisfy the following principles:
Strong Admissibility, Naivety, Allowing Abstention, I-Maximality and SCC-Recursiveness.

5. Computational Complexity

We assume familiarity with basic concepts of computational complexity and basic com-
plexity classes such as P, NP, coNP, see [17] for an introduction. We also require knowl-
edge of the classes ΣP

2 , Π
P
2 , and P

NP
‖ . The class ΣP

2 = NPNP is the class of decision prob-
lems that can be solved in polynomial time by a non-deterministic algorithm that has
access to an NP-oracle, i. e., in every step of the algorithm it can immediately obtain
the answer to an NP-complete problem. The class ΠP

2 = coΣP
2 = noNPNP is the com-

plement of ΣP
2 . The class P

NP
‖ [18] is the class of decision problems that can be solved

by a deterministic polynomial-time algorithm that can make polynomially many non-
adaptive (or parallel) queries to an NP-oracle. Note that PNP

‖ is sometimes denoted by

ΘP
2 and is equal to P

NP[log], i. e., the class of decision problems solvable by a determinis-
tic polynomial-time algorithm that can make logarithmically many adaptive NP-oracle
calls [17].

We consider the following computational tasks, cf. [19]:

Veruc Given AF= (A,R) and E ⊆ A,
decide whether E ∈ uc(AF).

Exists¬ /0uc Given AF= (A,R),
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decide whether there is an E ∈ uc(AF) with E �= /0.
Skeptuc Given AF= (A,R) and a ∈ A,

decide whether for all E ∈ uc(AF), a ∈ E.
Creduc Given AF= (A,R) and a ∈ A,

decide whether there is E ∈ uc(AF) with a ∈ E.

Note that we do not consider the problem Existsuc, which asks whether some unchal-
lenged extension exists, since this problem is trivial due to Proposition 1.

The results of our analysis are as follows.

Theorem 9.

1. Veruc is in ΣP
2 and PNP

‖ -hard.
2. Exists¬ /0uc is PNP

‖ -complete.
3. Skeptuc is ΠP

2 -complete.
4. Creduc is ΣP

2 -complete.

As can be seen, the exact computational complexity of the verification task is still
an open problem (which is a bit surprising since we have exact characterisations for the
more “complex” problems). However, all results are in line with our previous observation
that unchallenged semantics is somehow “in-between” ideal and preferred semantics, cf.
Theorem 4. While most tasks related to ideal semantics are PNP

‖ -complete [20], skeptical
reasoning with preferred semantics is ΠP

2 -complete [21]. But in difference to preferred
semantics, both skeptical and credulous reasoning is on the second level of the polyno-
mial hierarchy for unchallenged semantics. As before, the proof of Theorem 9 can be
found in the online appendix.2 While the proofs of items 1 and 2 from Theorem 9 follow
quite easily from existing results, in particular from [6], the hardness proofs of items 3
and 4 require quite a different reduction technique as, e. g., the ΠP

2 -hardness proof for
skeptical reasoning with preferred semantics [21].

6. Summary and Conclusion

We investigated the principle of serialisability in-depth, in particular wrt. its relationships
to other principles from the literature [11,12,13]. While serialisability implies conflict-
freeness, admissibility, and modularization, it is independent of similar principles like
directionality and SCC-recursiveness. However, if a serialisable semantics is αβ -closed,
it is also directional. We also analysed unchallenged semantics, a specific instance of
a serialisable semantics, in terms of satisfied principles and computational complexity.
This semantics is αucβuc-closed and thus directional. It also satisfies reinstatement, but
interestingly it is not SCC-recursive, in contrast to all other serialisable semantics. We
have also implemented a general serialisable reasoner as well as reasoners for all existing
serialisable semantics3.

In future work, we intent to further investigate serialisability. That includes defining
and analysing completely new semantics with more sophisticated selection and termina-

2http://mthimm.de/misc/lbmt_uncsem_proofs.pdf
3Link to implementation: https://tinyurl.com/serialisableReasoner
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tion functions. We will also consider applying the concept of serialisability to other types
of semantics such as naive- or weak-admissible-based semantics. Regarding the unchal-
lenged semantics, the question of whether there exists a non-recursive characterisation is
also subject to future work.
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Abstract Argumentation
with Conditional Preferences

Michael BERNREITER 1, Wolfgang DVOŘÁK and Stefan WOLTRAN
Institute of Logic and Computation, TU Wien, Austria

Abstract. In this paper, we study conditional preferences in abstract argumenta-
tion by introducing a new generalization of Dung-style argumentation frameworks
(AFs) called Conditional Preference-based AFs (CPAFs). Each subset of arguments
in a CPAF can be associated with its own preference relation. This generalizes ex-
isting approaches for preference-handling in abstract argumentation, and allows us
to reason about conditional preferences in a general way. We conduct a principle-
based analysis of CPAFs and compare them to related generalizations of AFs.
Specifically, we highlight similarities and differences to Modgil’s Extended AFs
and show that our formalism can capture Value-based AFs.

Keywords. Abstract argumentation, conditional preferences, principles.

1. Introduction

Preferences in argumentation have been studied from various points of view, be it in
terms of argument strength [1,2,3,4,5] or preferences between values [6,7]. Despite this,
conditional preferences have received only limited attention in the field of argumenta-
tion. Dung et al. investigated conditional preferences in the setting of structured argu-
mentation [8]. There, argumentation frameworks (AFs) are built from defeasible knowl-
edge bases containing preference rules of the form a1, . . . ,an → d0 � d1, where d0 and
d1 are defeasible rules. However, no work that deals with conditional preferences on the
abstract level is known to us. This is in contrast to unconditional preferences, which are
studied both in structured [9,10,11] and abstract [5,7] argumentation in the literature.

Conditional preferences can appear in many situations and formalisms. Dung et
al. [8] demonstrate this with the help of an example, which we now adapt:2

Example 1. Sherlock Holmes is investigating a murder. There are two suspects, Person 1
and Person 2. After analyzing the crime scene, Sherlock is sure:

• I1: Person 1 or Person 2 is the culprit, but not both.

Moreover, Sherlock adheres to the following rules:

• R1: If Person i has a motive but Person j, with j �= i, does not, then this supports
the case that Person i is the culprit.

1Corresponding Author: Michael Bernreiter; E-mail: michael.bernreiter@tuwien.ac.at.
2We specify the example in natural language. See [8] for how Dung’s original example can be modeled as a

defeasible knowledge base with conditional preferences. Our example can be formalized similarly.
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• R2: If Person i has an alibi but Person j, with j �= i, does not, then this supports
the case that Person j is the culprit.

• R3: Alibis have more importance than motives.

After interrogating the suspects, Sherlock concludes that:

• C1: Person 1 has a motive but Person 2 does not.
• C2: Person 1 has an alibi but Person 2 does not.

If C1 is trusted, but C2 is not, then this supports that Person 1 is the culprit. If C2 is trusted
then this supports that Person 2 is the culprit, regardless of our stance on C1.

This example demonstrates the importance of conditional preferences in common
reasoning tasks. We believe it is valuable to capture conditional preferences in argumen-
tation not only on the structured level as Dung et al. [8] did, but also on the abstract level.
Doing so will generalize existing formalisms for unconditional preferences in abstract
argumentation and provide a more direct target formalism for structured approaches.

To this end, we introduce Conditional Preference-based AFs (CPAFs), where each
subset of arguments S can be associated with its own preference relation�S. Preferences
are then resolved via so-called preference-reductions [5], which modify the attack rela-
tion based on the given preferences. As a consequence, S must be justified in view of its
own preferences, i.e., S must be an extension in view of �S.

We show that CPAFs generalize Preference-based AFs (PAFs), and demonstrate that
they are capable of dealing with conditional preferences in a general manner. Moreover,
we conduct a principle-based analysis of CPAF-semantics and show that especially com-
plete and stable semantics preserve desirable properties of regular PAFs. Lastly, we com-
pare CPAFs to related formalisms. Specifically, we show that CPAFs can capture other
generalizations of AFs such as Value-based AFs (VAFs) [6,7] in a straightforward way,
and compare CPAFs to Extended Argumentation Frameworks (EAFs) [12,13,14] in or-
der to highlight similarities and differences.

2. Preliminaries

We first define (abstract) argumentation frameworks [15].

Definition 1. An argumentation framework (AF) is a tuple F = (A,R) where A is a finite
set of arguments and R ⊆ A×A is an attack relation between arguments. Let S ⊆ A. We
say S attacks b (in F) if (a,b) ∈ R for some a ∈ S; S+F = {b ∈ A | ∃a ∈ S : (a,b) ∈ R}
denotes the set of arguments attacked by S. An argument a ∈ A is defended (in F) by S if
b ∈ S+F for each b with (b,a) ∈ R.

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions [16]. We consider for σ the functions cf (conflict-free),
adm (admissible), com (complete), stb (stable), grd (grounded), and prf (preferred).

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), written as
S ∈ cf (F), if there are no a,b ∈ S, such that (a,b) ∈ R. For S ∈ cf (F) it holds that

• S ∈ adm(F) if each a ∈ S is defended by S in F;
• S ∈ com(F) if S ∈ adm(F) and each a ∈ A defended by S in F is contained in S;
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Figure 1. PAF F and its preference reducts from Example 2.

• S ∈ stb(F) if each a ∈ A\S is attacked by S in F;
• S ∈ grd(F) if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
• S ∈ prf (F) if S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;

Preference-based AFs enrich regular AFs with preferences between arguments.

Definition 3. A preference-based AF (PAF) is a triple F = (A,R,�) where (A,R) is an
AF and � is an irreflexive and asymmetric binary relation over A.

If a and b are arguments and a � b holds then we say that a is stronger than b. An
established method of resolving preferences in PAFs are so-called preference reductions,
of which there exist four in the literature [5]. If in a PAF (A,R,�) there is an attack
(a,b) ∈ R and a preference b � a then (a,b) is called a critical attack. In other words,
critical attacks are from weak to strong arguments. The preference-reductions resolve
preferences by dealing with these critical attacks, e.g., by removing or reverting them.

Definition 4. Given a PAF F = (A,R,�), a corresponding AF Ri(F) = (A,R′) is con-
structed via Reduction i, where i ∈ {1,2,3,4}, as follows:

• i = 1: ∀a,b ∈ A : (a,b) ∈ R′ ⇔ (a,b) ∈ R,b �� a
• i= 2: ∀a,b∈ A : (a,b)∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((b,a) ∈ R,(a,b) /∈ R,a � b)
• i = 3: ∀a,b ∈ A : (a,b) ∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((a,b) ∈ R,(b,a) �∈ R)
• i= 4: ∀a,b∈ A : (a,b)∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((b,a) ∈ R,(a,b) /∈ R,a � b)

or ((a,b) ∈ R,(b,a) �∈ R)

The preference-based variant of a semantics σ relative to Reduction i is defined as
σ i

p(F) = σ(Ri(F)).

Intuitively, Reduction 1 removes critical attacks while Reduction 2 reverts them.
Reduction 3 removes critical attacks, but only if the stronger argument also attacks the
weaker one. Reduction 4 can be seen as a combination of Reduction 2 and 3. Note that on
symmetric attacks, all four reductions function in the same way. The following example
demonstrates the reductions and PAF-semantics.

Example 2. Consider the PAF F = ({a,b,c},{(a,b),(b,a),(c,b)},�) with b � a and
b � c. Figure 1 depicts F as well as Ri(F), i ∈ {1,2,3,4}. It can be checked that, for
Reduction 1, adm1p(F) = adm(Ri(F)) = { /0,{b},{c},{b,c}} and therefore com1p(F) =

prf 1p(F) = stb1p(F) = {{b,c}}. If we use Reduction 2 for example we get different exten-
sions, namely adm2p(F) = { /0,{b}} and com2p(F) = prf 2p(F) = stb2p(F) = {{b}}.

A principle-based analysis of the four preference reductions was conducted for com-
plete, grounded, preferred, and stable semantics [4,5]. To this end, the following six
PAF-properties were laid out and investigated.
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R1 R2 R3 R4

P1 × CGPS CGPS CGPS

P2 × × CS ×
P3 × × CS ×
P4 × × CGS ×
P5 × × CG ×
P6 G G CGPS G

Table 1. Satisfaction of various PAF-principles.C stands for complete, G for grounded, P for preferred, and S
for stable. × indicates that none of those four semantics satisfy this principle.

Definition 5. Let σ i
p be a PAF-semantics. Let �′⊆ (A×A) be irreflexive and asymmetric.

• σ i
p satisfies P1 (conflict-freeness) iff for all PAFs F = (A,R,�) there is no S ∈

σ i
p(F) such that {a,b} ⊆ S and (a,b) ∈ R.

• σ i
p satisfies P2 (preference selects extensions 1) iff σ i

p(A,R,�∪�′)⊆ σ i
p(A,R,�)

holds for all PAFs (A,R,�) and all �′.
• σ i

p satisfies P3 (preference selects extensions 2) iff σ i
p(A,R,�)⊆ σ i

p(A,R, /0) holds
for all PAFs (A,R,�).

• σ i
p satisfies P4 (extension refinement) iff for all S′ ∈ σ i

p(A,R,� ∪ �′) there exists
some S ∈ σ i

p(A,R,�) such that S ⊆ S′.
• σ i

p satisfies P5 (extension growth) iff
⋂
(σ i

p(A,R,�))⊆⋂
(σ i

p(A,R,�∪�′)) holds
for all PAFs (A,R,�) and all �′.

• σ i
p satisfies P6 (number of extensions) iff |σ i

p(A,R,� ∪�′)| ≤ |σ i
p(A,R,�)| holds

for all PAFs (A,R,�) and all �′.

Intuitively, P1 states that if there is an attack between two arguments, then there is
no extension containing both of them. P2 expresses that adding more preferences to a
PAF can exclude extensions, but not introduce them. P3 is a special case of P2. P4 states
that adding preferences means extensions will be supersets of extensions in the original
PAF. P5 says that adding preferences will preserve skeptically accepted arguments, and
might cause new arguments to be skeptically accepted. P6 expresses that the number of
extensions will not grow if new preferences are added.

Table 1 shows which semantics satisfy which principle. In addition to these fun-
damental principles [4], four more principles were introduced later [5], but we do not
consider them at this point and leave them for future work.

3. Conditional Preference-Based Argumentation Frameworks

As argued in the introduction, our aim is to provide a framework for reasoning about
conditional preferences in abstract argumentation. This means that arguments themselves
must be capable of expressing preferences, and that those argument-bound preferences
are relevant only if the corresponding arguments are themselves accepted. How this is
implemented must be considered carefully, as Example 1 demonstrates. There, the fact
that Person 1 has a motive (let us refer to this as m1) and the fact that Person 1 has an
alibi (a1) result in opposing preferences. When accepting bothm1 and a1 it seems natural
to combine these opposing preferences, i.e., to cancel them. But this does not allow us to
express that alibis are more important than motives, as required in Example 1. Therefore,
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RS
i (F), a1 ∈ S

Figure 2. CPAF F and its preference-reducts from Example 3.

we need to define our formalism in a general way such that the joint acceptance of argu-
ments must not necessarily result in the combination of their associated preferences. We
solve this by mapping each subset S of arguments to a separate preference relation �S.

Definition 6. A Conditional PAF (CPAF) is a triple F = (A,R,cond), where (A,R) is an
AF and cond : 2A → 2(A×A) is a function that maps each set of arguments S ⊆ A to an
irreflexive and asymmetric binary relation �S over A.

Note that we set no restriction on how exactly conditional preferences are repre-
sented. This is deliberate, as we wish to stay as general as possible. In practice, succinct
representations could be achieved, e.g., by expressing the cond-function via rules of the
form F → x � y where F is a propositional formula over the arguments.

Just as in regular PAFs, preferences in CPAFs are resolved with the help of the four
preference-reductions (cf. Definition 4). A set of arguments S is an extension of some
CPAF if it is an extension relative to its associated preference relation cond(S).

Definition 7. Let F = (A,R,cond) be a CPAF and let S ⊆ A. The S-reduct of F with
respect to a preference reduction i∈ {1,2,3,4} is defined as RS

i (F) =Ri(A,R,cond(S)).
Given an AF semantics σ , S ∈ σ i

cp(F) iff S ∈ σ(RS
i (F)).

Using CPAFs we can easily formalize our Sherlock Holmes example.

Example 3. We continue Example 1 and introduce two arguments c1 and c2 expressing
that Person 1 (resp. Person 2) is the culprit. Moreover, we introduce m1 and a1 to express
that Person 1 has a motive (resp. alibi) but Person 2 does not. c1 and c2 attack each other
while m1 and a1 have no incoming or outgoing attacks, but rather express preferences.
Formally, we model this via the CPAF F = ({c1,c2,m1,a1},{(c1,c2),(c2,c1)},cond)
with cond such that c1 �S c2 if m1 ∈ S but a1 �∈ S, c2 �S c1 if a1 ∈ S, and cond(S) = /0
for all other S ⊆ A. Figure 2 depicts F and the S-reducts of F. Note that m1 and a1 are
unattacked in all S-reducts of F. Therefore, both arguments must be part of any σ i

cp-
extension for σ ∈ {grd,com,prf ,stb} and we can conclude that σ i

cp(F) = {{m1,a1,c2}}.

Note that the preferred semantics defined above do not maximize over all admissible
sets of a CPAF, but rather over all admissible sets in the given S-reduct. This means that
if there is a set S that is admissible in the S-reduct of F , but there is also some T ⊃ S that
is admissible in the S-reduct of F , then S is not preferred in F . But this T does not have
to be admissible in F , since it might not be admissible in the T -reduct of F . Thus, the
following alternative semantics may be considered more natural:

Definition 8. Let F = (A,R,cond) be a CPAF and let S ⊆ A. Then S ∈ prf -glbi
cp(F) iff

S ∈ admi
cp(F) and there is no T such that S ⊂ T and T ∈ admi

cp(F).
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Intuitively, prf -glbi
cp maximizes globally over all admissible sets of a CPAF, while

prf i
cp maximizes locally over the admissible sets of the given S-reduct.

Example 4. Let F be the CPAF from Example 3 and recall that prf i
cp(F) = {{m1,a1,

c2}}. Observe that {m1,c1} is not preferred in the {m1,c1}-reduct of F, but it is a subset-
maximal admissible set in F. Thus, prf -glbi

cp(F) = {{m1,a1,c2},{m1,c1}}.

The difference between the two variants is not only philosophical, but impacts fun-
damental properties for maximization-based semantics such as I-maximality. A seman-
tics σ i

cp is I-maximal if, for all CPAFs F and all S,T ∈ σ i
cp(F), S ⊆ T implies S = T .

Proposition 1. prf -glbi
cp is I-maximal, but prf i

cp is not, where i ∈ {1,2,3,4}.

Proof. I-maximality of prf -glbi
cp follows from Definition 8. For our counter examples

we consider the preference-reductions separately. Reduction 1: consider the CPAF F =
({a,b},{(a,b)},cond} with cond such that b �{a,b} a. Then {a} ∈ prf 1cp(F) and {a,b} ∈
prf 1cp(F). Reductions 2 and 4: consider the CPAF F ′ = ({a,b,c},{(a,b),(b,c),(c,a)},
cond} with cond such that a �{a} c. Then /0 ∈ prf i

cp(F
′) and {a} ∈ prf i

cp(F
′). Reduc-

tion 3: consider the CPAF F ′′ = ({a,b,c},{(a,b),(b,a),(b,c),(c,a)},cond} with cond
such that a � /0 b. Then /0 ∈ prf 3cp(F

′′) and {b} ∈ prf 3cp(F
′′).

One may be tempted to deduce from the above proposition that prf -glbi
cp is more

suitable as a default preferred semantics than prf i
cp. However, we will see in Section 5.1

that prf i
cp allows us to capture the problems of subjective/objective acceptance in VAFs in

a natural way. In our subsequent analysis of CPAFs we consider both prf i
cp and prf -glbi

cp.
Like preferred semantics, stable semantics satisfy I-maximality on regular AFs. Interest-
ingly, on CPAFs, this depends on the preference-reduction.

Proposition 2. stb1cp is not I-maximal, but stb j
cp is, where j ∈ {2,3,4}.

Proof. For stb1cp we can use the same counter-example as for prf 1cp (cf. Proposition 1).
For stb j

cp with j ∈ {2,3,4} we proceed by contradiction: assume there is a CPAF F =

(A,R,cond) with S,T ∈ stb j
cp(F) such that S ⊂ T . Then there is x ∈ T such that x �∈ S.

Since S ∈ stb j
cp(F) there is y ∈ S such that (y,x) ∈ RS

j (F). Reductions 2, 3, and 4 do not
remove conflicts between arguments, and thus either (y,x) ∈ R or (x,y) ∈ R. Therefore,
(y,x) ∈ RT

j (F) or (x,y) ∈ RT
j (F). But y ∈ S implies y ∈ T , i.e., T �∈ cf j

cp(F).

Another interesting point is that grounded extensions are not necessarily unique in
CPAFs: consider F = ({a,b},{(a,b)},cond) with cond such that b �{b} a. Then {a} ∈
grd2cp(F) and {b} ∈ grd2cp(F). We stress that each grounded extension S is still unique in
the S-reduct of the given CPAF and thus unique with respect to its own preferences.

Lastly, by the following proposition we express that all CPAF-semantics considered
here generalize their corresponding PAF-semantics, i.e., that CPAFs generalize PAFs.

Proposition 3. Let F = (A,R,cond) be a CPAF such that the preference function cond
maps every set of arguments to the same binary relation, i.e., there is some � such
that cond(S) = � for all S ⊆ A. Let σ ∈ {cf ,adm,stb,com,prf ,grd}. Then σ i

cp(F) =

σ i
p(A,R,�). Furthermore, prf -glbi

cp(F) = prf i
p(A,R,�).
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4. Principle-Based Analysis

In this section, we generalize the principles of Kaci et al. for PAFs (cf. Definition 5)
to account for conditional preferences. We then investigate by which semantics these
principles are satisfied, and show that there are differences to the case of regular PAFs.

Definition 9. Let σ i
cp be a CPAF-semantics. In the following, given a CPAF (A,R,cond),

we denote by cond′ an arbitrary function such that cond(S) ⊆ cond′(S) for all S ⊆ A.
Furthermore, cond /0(S) = /0 for all S ⊆ A.

• σ i
cp satisfies P1∗ (conflict-freeness) iff for all CPAFs F = (A,R,cond) there is no

S ∈ σ i
cp(F) such that {a,b} ⊆ S and (a,b) ∈ R.

• σ i
cp satisfies P2∗ (preference selects extensions) iff for all CPAFs (A,R,cond) it

holds that σ i
cp(A,R,cond′)⊆ σ i

cp(A,R,cond).
• σ i

cp satisfies P3∗ (preference selects extensions 2) iff for all CPAFs (A,R,cond) it
holds that σ i

cp(A,R,cond)⊆ σ i
cp(A,R,cond /0).

• σ i
cp satisfies P4∗ (extension refinement) iff for all S′ ∈ σ i

cp(A,R,cond′) there exists
some S ∈ σ i

cp(A,R,cond) such that S ⊆ S′.
• σ i

cp satisfies P5∗ (extension growth) iff for all CPAFs (A,R,cond) it holds that
⋂
(σ i

cp(A,R,cond))⊆⋂
(σ i

cp(A,R,cond′)).
• σ i

cp satisfies P6∗ (number of extensions) iff for all CPAFs (A,R,cond) it holds that
|σ i

cp(A,R,cond′)| ≤ |σ i
cp(A,R,cond)|.

The following lemma establishes some relationships between the CPAF-principles
and is a generalization of known relationships between PAF-principles [5].

Lemma 4. If σ i
cp satisfies P2∗ then it also satisfies P3∗, P4∗, and P6∗. If σ i

cp always
returns at least one extension, and if it satisfies P2∗, then it also satisfies P5∗.

Observe that, since CPAFs are a generalization of PAFs (cf. Proposition 3), a CPAF-
semantics σ i

cp can not satisfy P j∗ if the corresponding PAF-semantics σ i
p does not satisfy

P j. Moreover, it is obvious that P1∗ is still satisfied under Reductions 2, 3, and 4, as con-
flicts are not removed by these reductions even if we consider conditional preferences.
We can also show that satisfaction of P2 carries over from PAFs to CPAFs.

Lemma 5. If some σ i
p satisfies P2 then σ i

cp satisfies P2∗.

Proof. Assume σ i
cp does not satisfy P2∗. Then there is a CPAF F = (A,R,cond) and

cond′ with cond(S)⊆ cond′(S) for all S ⊆ A such that σ i
cp(A,R,cond′) �⊆ σ i

cp(A,R,cond).
Thus, there is E ⊆ A such that E ∈ σ i

cp(A,R,cond′) but E �∈ σ i
cp(A,R,cond). Then E ∈

σ(Ri(A,R,cond′(E))) but E �∈ σ(Ri(A,R,cond(E))), i.e., σ i
p does not satisfy P2.

Lemma 5 implies that complete and stable semantics satisfy P2∗ on CPAFs under
Reduction 3. By Lemma 4 these semantics also satisfy P3∗, P4∗, and P6∗. However, we
can not use Lemma 4 to show that complete semantics satisfy P5∗, since conditional
preferences allow for frameworks without complete extensions. Indeed, we can find a
counter-example in this case. Counter-examples for the satisfaction of various principles
can also be found for grounded semantics and both variants of the preferred semantics.
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R1 R2 R3 R4

P1∗ × CGPS CGPS CGPS

P2∗ × × CS ×
P3∗ × × CS ×
P4∗ × × CS ×
P5∗ × × × ×
P6∗ × × CS ×

Table 2. Satisfaction of CPAF-principles. C stands for complete, G for grounded, P for preferred (local and
global maximization), and S for stable. × indicates that none of those semantics satisfy this principle.

Lemma 6. com3cp does not satisfy P5∗. grdi
cp, with i ∈ {1,2,3,4}, does not satisfy any of

P4∗, P5∗, or P6∗. Moreover, prf 3cp and prf -glb3cp do not satisfy P6∗.

Proof. For complete semantics, consider A = {a,b}, R = {(a,b),(b,a)}, cond such that
a � /0 b and a �{b} b, as well as cond′ such that a �′

/0 b, a �′
{b} b, and b �′

{a} a. Then
com3cp(A,R,cond) = {{a}} while com3cp(A,R,cond′) = /0.

For grounded semantics, consider A = {a,b}, R = {(a,b),(b,a)}, cond such that
a � /0 b and a �{a} b, as well as cond′ such that a �′

/0 b, a �′
{a} b, and b �′

{b} a. Then

grdi
cp(A,R,cond) = {{a}} while grdi

cp(A,R,cond′) = {{a},{b}}.
For preferred semantics, consider A = {a,b,c}, R = {(a,c),(c,a),(b,c),(c,b),

(c,c)}, cond such that cond(S) = /0 for all S ⊆ A, and cond′ such that c �′
{b} a, c �′

{a} b,

c �′
{a,b} a, and c �′

{a,b} b. Then prf 3cp(A,R,cond) = prf -glb3cp(A,R,cond) = {{a,b}}
while prf 3cp(A,R,cond′) = prf -glb3cp(A,R,cond′) = {{a},{b}}.

The above results constitute an exhaustive investigation of the six CPAF-principles
for all semantics considered in this paper. Thus, we can conclude:

Theorem 7. The satisfaction of CPAF-principles depicted in Table 2 holds.

To summarize, complete and stable semantics preserve the satisfaction of PAF-
principles in almost all cases. Grounded semantics no longer satisfy any of the principles
on CPAFs except P1∗ (conflict-freeness) since grounded extensions are not unique on
CPAFs, and since there are even CPAFs without a grounded extension (cf. Lemma 6).
Unlike on PAFs, complete semantics do not satisfy P5∗ (extension growth) under Re-
duction 3. Furthermore, neither variant of preferred semantics satisfies P6∗ (number of
extensions) under Reduction 3.

5. Related Formalisms

We now investigate the connection between CPAFs and two related formalisms. First,
we show that Value-based Argumentation Frameworks (VAFs) [6,7] can be captured
by CPAFs in a straightforward way. Secondly, we consider Extended Argumentation
Frameworks (EAFs) [12,13,14] and highlight similarities and differences to CPAFs.

5.1. Capturing Value-Based Argumentation

VAFs, similarly to CPAFs, are capable of dealing with multiple preference relations. But,
in contrast to CPAFs, these preferences are not over individual arguments but over values
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av1 b v1

cv2 d v2

(a) Initial VAF

a b

c d

(b) AF for p1

a b

c d

(c) AF for p2

p1

p2

x �S y if
S∩P = {p1}
y �T x if
T ∩P = {p2}

a b

c d

(d) CPAF (x ∈ {a,b},y ∈ {c,d})

Figure 3. A VAF with two audiences p1 (v1 � v2) and p2 (v2 � v1) translated to a CPAF.

associated with arguments. Which values are preferred depends on the audience. A set
of arguments may then be accepted in view of one audience, but not in view of another.

More formally, a VAF is a quintuple (A,R,V,val,P) such that (A,R) is an AF, V is
a set of values, val : A → V is a mapping from arguments to values, and P is a finite
set of audiences. Each audience p ∈ P is associated with a preference relation �p over
values, and FP = (A,R,V,val,�p) is called an audience-specific VAF (AVAF). The ex-
tensions of VAFs are determined for each audience separately. Specifically, an argument
x successfully attacks y in Fp iff (x,y) ∈ R and val(y) ��p val(x). Conflict-freeness and
admissibility are then defined over these successful attacks. In essence, this boils down
to using Reduction 1 on Fp, i.e., deleting attacks that contradict the preference ordering.

For example, Figure 3a shows a VAF with two values v1 and v2. Let us say there
are two audiences in this VAF, p1 with the preference v1 � v2 and p2 with v2 � v1. The
AFs associated with p1 and p2, i.e., the AFs containing only the successful attacks in the
AVAFs of p1 and p2, are depicted in Figures 3b and 3c.

The reasoning tasks typically associated with VAFs are those of subjective and ob-
jective acceptance. Let F = (A,R,V,val,P) be a VAF and x ∈ A. Then x is subjectively
accepted in F iff there is p ∈ P such that x is in a preferred extension of the AVAF
(A,R,V,val,�p). Similarly, x is objectively accepted in F iff for all p ∈ P we have that x
is in all preferred extensions of the AVAF (A,R,V,val,�p).

We now provide a translation where an arbitrary VAF F = (A,R,V,val,P) is trans-
formed into a CPAF Tr(F) = (A′,R′,cond) such that the subjectively and objectively
accepted arguments in F correspond to the credulously and skeptically preferred ar-
guments3 in Tr(F) respectively. Firstly, each audience in the initial VAF becomes an
argument in our CPAF, i.e., A′ = A ∪ P. Secondly, the attacks of the VAF are pre-
served and symmetric attacks are added between all audience-arguments, i.e., R′ =
R∪{(p, p′),(p′, p) | p, p′ ∈ P}. Lastly, the preferences in our CPAF correspond to the
preferences of each audience and are controlled by the newly introduced audience-
arguments, i.e., cond is defined such that for S ⊆ A′ we have a �S b iff there is p ∈ P with
S∩P = {p} and val(a)�p val(b). See Figure 3 for an example of this transformation.

Observe that the successful attacks in some AVAF Fp = (A,R,V,val,�p) are also
attacks in R

S∪{p}
1 (Tr(F)), where S ⊆ A, and vice versa. Thus, the admissible sets in the

initial VAF F stand in direct relationship to the admissible sets in our constructed CPAF.

Lemma 8. Let F = (A,R,V,val,P) be a VAF, S ⊆ A, and p ∈ P. Then S is admissible in
the AVAF Fp = (A,R,V,val,�p) iff S∪{p} ∈ adm1cp(Tr(F)).

3As for regular AFs, we say that an argument x is credulously (resp. skeptically) preferred in a CPAF w.r.t.
Reduction i iff x ∈ S for some (resp. for all) S ∈ prf i

cp(F).
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Note that all audience-arguments in Tr(F) attack each other, i.e., an admissible set in
Tr(F) contains at most one audience-argument. In fact, each audience-argument defends
itself, and thus every preferred extension in Tr(F) must contain exactly one audience-
argument p∈P if we appeal to the prf 1cp-semantics. Therefore, the direct correspondence
between admissible sets observed in Lemma 8 carries over to preferred extensions.

Theorem 9. Given a VAF F = (A,R,V,val,P), x ∈ A is subjectively (resp. objectively)
accepted in F iff x is credulously (resp. skeptically) preferred in Tr(F) w.r.t. Reduction 1.

Our translation highlights the versatility of our formalism. On the one hand, con-
ditional preferences can be tied to dedicated arguments (in this case the audience-
arguments). On the other hand, these dedicated arguments themselves may be part of the
argumentation process. Note that we used CPAFs with Reduction 1 since preferences in
VAFs are usually handled by deleting attacks. However, our approach also allows for the
use of other preference-reductions in VAF-settings.

5.2. Relationship to Extended Argumentation Frameworks

EAFs allow arguments to express preferences between other arguments by permitting
attacks themselves to be attacked. While EAFs are related to our CPAFs conceptually,
we will see that there are crucial differences in how exactly preferences are handled.

Formally, an EAF is a triple (A,R,D) such that (A,R) is an AF, D ⊆ A×R, and if
(a,(b,c)),(a′,(c,b)) ∈ D then (a,a′),(a′,a) ∈ R. The definition of admissibility in EAFs
is quite involved and requires so-called reinstatement sets. Essentially, a set of arguments
S is admissible in an EAF if all arguments x ∈ S are defended from other arguments
y∈ A\S, and if all attacks (z,y) used for defending x are in turn defended from attacks on
attacks (w,(z,y)) and thus reinstated. It is possible that a chain of such reinstatements is
required which is formalized with the aforementioned reinstatement sets. Formally defin-
ing these concepts is not necessary for our purposes, but the corresponding definitions
can be found in [12]. Observe that the notion of attacks on attacks in EAFs is similar to
Reduction 1 in the sense that attacks between arguments can be unsuccessful, but they
are never reversed. Therefore, we will compare EAFs to CPAFs with Reduction 1.

Recall our Sherlock Holmes example from the introduction (Example 1) that we
modeled as a CPAF (Example 3). Let us first consider a slimmed-down variation without
an argument stating that Person 1 has an alibi. We can model this as an EAF with three
arguments c1 (Person 1 is the culprit), c2 (Person 2 is the culprit), and m1 (Person 1 has a
motive) in which m1 attacks the attack from c2 to c1. The corresponding EAF is depicted
in Figure 4b. Compare this to the formalization via a CPAF in Figure 4a. Note that {c1}
is admissible in the EAF but {c2} is not since (c2,c1) is used to defend against (c1,c2)
but not reinstated against (m1,(c2,c1)). In the CPAF, {c2} is admissible (but not stable).

This simple example highlights a fundamental difference in how preferences are
viewed in the two formalisms. In CPAFs, preferences are relevant exactly if the argument
that expresses them (e.g. m1) are part of the set under inspection. In EAFs, preference
are relevant even if the argument that expresses them is not accepted. Modgil [12] states
that admissibility for EAFs was defined in this way because it was deemed important
to satisfy Dung’s Fundamental Lemma [15], which says that if S is admissible and x is
acceptable w.r.t. S then S∪{x} is admissible. This Fundamental Lemma is not satisfied in
our CPAFs. However, in our opinion, this is no drawback but rather a necessary property
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a1

(c) Conflicting preferences

c1 c2

m1

a1

m1,a1

(d) Combining preferences

Figure 4. The Sherlock Holmes example modeled via EAFs and a simple CPAF.

of formalisms that can deal with conditional preferences in a flexible way. For example,
in Figure 4a it is clear that {c2} should be admissible since, when considering only
admissibility, we are not forced to include the unattacked m1, i.e., we do not have to
accept that Person 1 has a motive. The inclusion of unattacked arguments in CPAFs is
handled via more restrictive approaches such as stable or preferred semantics, as usual.

Another difference between CPAFs and EAFs becomes clear when considering the
entire Sherlock Holmes example. Recall our formalization for CPAFs (cf. Figure 2). In
order to express our preference in case Person 1 has an alibi we extend our EAF from
Figure 4b by adding an attack from a1 to the attack (c1,c2), as shown in Figure 4c. Note
that a1 and m1 must attack each other in this EAF by definition since they express con-
flicting preferences. But this formalization is unsatisfactory since it should be possible
for Person 1 to have both a motive and an alibi. The fact that the preference of one ar-
gument may change in view of another argument must be modeled indirectly in EAFs.
For example, we can introduce an additional argument to express that Person 1 has both
a motive and an alibi. This is depicted in Figure 4d. Thus, we can see that CPAFs allow
for more flexibility when combining preferences associated with several arguments.

To summarize, CPAFs are designed to express conditional preferences in abstract ar-
gumentation, whereas preferences in EAFs are unconditional in the sense that they may
always influence the argumentation process, even if the argument associated with the
preference is not accepted. Moreover, since our CPAFs can make use of all four prefer-
ence reductions, they allow for more flexibility in how preferences are handled compared
to EAFs, in which unsuccessful attacks are always deleted. However, the two formalisms
are similar in that arguments are capable of reasoning about the argumentation process
itself, i.e., they constitute a form of metalevel argumentation [17].

6. Conclusion

In this paper, we introduce Conditional Preference-based AFs (CPAFs) which generalize
PAFs and allow to flexibly handle conditional preferences in abstract argumentation. We
show that the satisfaction of I-maximality can depend on how maximization is dealt with
(in case of preferred semantics) and on which preference-reduction is chosen (in case
of stable semantics). We conduct a principle-based analysis for CPAFs and show that
complete and stable semantics satisfy the same principles as on PAFs in most cases while
grounded semantics no longer satisfy the majority of principles. Moreover, we compare
CPAFs to related formalisms: on the one hand we show that CPAFs can be used to capture
VAFs via a straightforward translation; on the other hand, we demonstrate that CPAFs
exhibit significant differences to EAFs in terms of how preferences are handled.
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For future work, we plan to introduce an alternative grounded semantics which en-
forces unique extensions, examine the computational complexity of CPAFs, and consider
restricted (e.g. transitive or linear) preference orderings. Moreover, we intend to investi-
gate the relationship between CPAFs and existing approaches in structured argumenta-
tion [8] in detail. Related to this last point, it may also be interesting to see whether con-
ditional preferences can be adapted to other formalisms such as bipolar argumentation
frameworks [18], in which both attack and support relations are present. As for prefer-
ence representation, it could be investigated how existing formalisms designed to handle
conditional preferences such as CP-nets [19] can be used in the context of CPAFs.
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A Ranking Semantics for Abstract
Argumentation ased on Serialisability

Lydia BLÜMEL and Matthias THIMM
Artificial Intelligence Group, University of Hagen, Germany

Abstract. We revisit the foundations of ranking semantics for abstract argumenta-
tion frameworks by observing that most existing approaches are incompatible with
classical extension-based semantics. In particular, most ranking semantics violate
the principle of admissibility, meaning that admissible arguments are not neces-
sarily better ranked than inadmissible arguments. We propose new postulates for
capturing said compatibility with classical extension-based semantics and present a
new ranking semantics that complies with these postulates. This ranking semantics
is based on the recently proposed notion of serialisability that allows to rank argu-
ments according to the number of conflicts needed to be solved in order to include
that argument in an admissible set.

Keywords. abstract argumentation, ranking semantics, serialisability

1. Introduction

Abstract argumentation frameworks [1] represent argumentative scenarios via directed
graphs, where vertices represent arguments and a directed edge from an argument a to
an argument b denotes an “attack” from a to b. This simple representation formalism is
already powerful enough to analyse and discuss many facets of argumentative reasoning
such as argumentation-based dialogue [2], strategic argumentation [3], and dynamics of
belief [4], see also [5,6]. Abstract argumentation frameworks are interpreted through for-
mal semantics that assess which arguments can be deemed “acceptable”. The classical
approach to formal semantics is by means of extensions [1,7], i. e., sets of arguments
that form a plausible point of view on the outcome of the argumentation modelled by
an abstract argumentation framework. Concrete extension-based semantics specify ad-
ditional constraints that should be satisfied by their extensions, which capture, e. g., as-
pects such as conflict-freeness (no argument in an extension should attack another ar-
gument in the extension) or admissibility (arguments should be defended by the exten-
sion against attacks from outside). Another formal framework for the interpretation of
abstract argumentation frameworks is given by ranking-based [8,9,10,11] or graded se-
mantics [12,13,14,15,16,17]. There, argument strength is assessed by either qualitative
(for ranking-based semantics) or quantitative (for graded semantics) rankings of argu-
ments. For reasons of simplicity, we will use the term ranking semantics to capture both
technical frameworks in the following.

Most ranking semantics such as [12,13,8,15] assess argument strength by weighing
numbers of attackers and defenders and lengths of paths in the argumentation frame-
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work, in some form or the other. As it has already been observed by Bonzon and col-
leagues [10], there are some fundamental differences in the way ranking semantics as-
sess the acceptability (or better: strength) of arguments, compared to the way this is done
by extension-based semantics. As a result, they proposed some hybrid approaches that
combine both views by pairing a concrete extension-based semantics with a concrete
ranking semantics. In this paper, we pursue another direction, namely the development
of a family of ranking semantics that is compatible with extension-based semantics in
the sense that they refine the acceptability assessment of extension-based semantics. As
a motivation for this endeavour we start from the general principle of admissibility, a no-
tion that is central to almost all extension-based semantics—with exceptions, of course
[18,19]—and demands that acceptable arguments should be defended by acceptable ar-
guments. This core principle is violated by most of the existing ranking semantics in
the sense that admissible arguments are not necessarily ranked higher than inadmissi-
ble arguments (see Section 3 for details). We consequently propose novel postulates for
ranking semantics that capture the intuition behind our aim of developing ranking se-
mantics that are compatible with classical extension-based semantics. We then present
and analyse a new ranking semantics that complies with this interpretation. This ranking
semantics is based on the notion of serialisability [20], which is a principle satisfied by
all semantics from [1] and allows the step-wise construction of extensions via iterative
selection of non-empty minimal admissible sets—also called initial sets [21]—and con-
sideration of the resulting reducts [19]. We will use the minimal number of steps required
to include an argument in such a construction as an assessment of the acceptability of
an argument. This basically amounts to the number of conflicts between arguments that
have to be resolved in order to accept an argument.

To summarise, the contributions of this paper are as follows.

1. We revisit and re-assess the foundations of ranking semantics by introducing and
analysing postulates aiming at compatibility with extension-based semantics (Sec-
tion 3).

2. We discuss a novel ranking semantics based on serialisability (Section 4).

Section 2 presents the background on abstract argumentation and Section 5 concludes
this paper. Proofs of technical results can be found in an online appendix.1

2. Preliminaries

We present basic background on abstract argumentation and extension-based semantics
in Section 2.1 and ranking semantics in Section 2.2.

2.1. Abstract Argumentation

Let A denote a universal set of arguments. An abstract argumentation framework AF is a
tuple AF= (A,R) where A⊆A is a finite set of arguments and R is a relation R⊆ A×A
[1]. Let AF denote the set of all abstract argumentation frameworks. For two arguments
a,b ∈A the relation aRbmeans that argument a attacks argument b. For AF= (A,R) and

1http://mthimm.de/misc/lbmt_rankser_proofs.pdf
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AF′ = (A′,R′) we write AF′ � AF iff A′ ⊆ A and R′ = R∩ (A′ ×A′). For a set X ⊆ A, we
denote by AF|X = (X ,R∩ (X ×X)) the projection of AF on X . For a set S ⊆ A we define

S+ = {a ∈ A | ∃b ∈ S : bRa} S− = {a ∈ A | ∃b ∈ S : aRb}
If S is a singleton set, we omit brackets for readability, i. e., we write a− (a+) instead of
{a}− ({a}+). For two sets S and S′ we write SRS′ iff S′ ∩S+ �= /0.

Two abstract argumentation frameworks AF = (A,R) and AF′ = (A′,R′) are iso-
morphic, written AF ≡ AF′, if there is a bijective function γ : A→ A′ such that aRb iff
γ(a)R′γ(b) for all a,b ∈ A (γ is then called an isomorphism).

A set S ⊆ A is conflict-free if S∩S+ = /0. S is a naive (na) extension if it is maximal
wrt. set inclusion among the conflict-free sets of AF. A set S defends an argument b∈A if
b− ⊆ S+. A conflict-free set S is called admissible if S defends all a∈ S. Let adm(AF) de-
note the set of admissible sets of AF. Different extension-based semantics can be phrased
by imposing constraints on admissible sets [7]. In particular, an admissible set E

• is a complete (co) extension iff for all a ∈ A, if E defends a then a ∈ E,
• is a grounded (gr) extension iff E is complete and minimal,
• is a stable (st) extension iff E ∪E+ = A,
• is a preferred (pr) extension iff E is maximal.

All statements on minimality/maximality are meant to be with respect to set inclusion.
For σ ∈ {co,gr,st,pr} let σ(AF) denote the set of σ -extensions of AF. The acceptance
of an argument a wrt. a given semantics σ distinguishes three levels:

• a is skeptically accepted wrt. σ iff a ∈ E for all E ∈ σ(AF),
• a is credulously accepted wrt. σ iff there is E ∈ σ(AF) with a ∈ E,
• a is rejected wrt. σ iff a /∈ E for all E ∈ σ(AF).

2.2. Ranking Semantics

Directly comparing individual arguments with each other yields another class of argu-
mentation semantics. Ranking semantics evaluate the acceptability (or better: strength)
of single arguments instead of sets of arguments, their output is a (partial) preorder on
the arguments of a given AF.

Definition 1. A ranking semantics is a mapping τ : AF→ 2A×A which assigns to each
AF= (A,R) ∈ AF a partial preorder �τ(AF) on A, i. e., �τ(AF) is transitive and reflexive.

If the AF we refer to is clear from the context, the shorthand �τ is used instead. The
stronger an argument, the greater its rank among the other arguments, i. e., a is at least as
strong as b is represented by a �τ b. We use the standard shorthands a τ b to say that a
is strictly stronger than b (a �τ b ∧ b �τ a) and a �τ b when both arguments are equally
strong (a �τ b ∧ b �τ a). An example of a ranking semantics is the categoriser [22,15].

Definition 2. Let AF = (A,R) be an AF. The categoriser semantics cat assigns to AF
the ranking �cat defined by a �cat(AF) b iff cat(AF)(a)≥ cat(AF)(b) where

cat(AF)(a) =

⎧
⎨

⎩

1 if a− = /0
1

1+ ∑
b∈a−

cat(AF)(b) otherwise
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0.477

Figure 1. Example with Categoriser values

The above definition yields a system of equations, which can be uniquely solved
[15] to obtain the ranks of the individual arguments.

Example 1. The arguments in the AF from Figure 1 are ranked a �cat b cat c �cat d
according to the resp. values of the categoriser function (depicted next to the arguments).
Since a and b only attack each other, their rank is the same i.e. higher than c and d which
are both additionally attacked by c (resulting in the same values for this pair, too).

Following the tradition of the principle-based analysis for extension-based seman-
tics, desirable properties for ranking semantics have been formulated to compare these
different approaches. The principles considered in this paper are a selection from [9,17].
Before stating them, we need further notation. A path P of length lP = n between two
arguments a,b is a sequence of arguments P(a,b) = (a,a1, ...,an−1,b) with aiRai+1 ∀i
(with a = a0,b = an). cc(AF) is the set of all connected components of AF, i. e. all max-
imal subgraphs AF′ = (A′,R′) such that for every two arguments a,b ∈ A′ an undirected
path Pu(a,b) = (a = a0,a1, ...,an = b)⊆ AF′ with aiRai+1 or ai+1Rai ∀i exists.

Definition 3. A ranking semantics τ satisfies the respective principle iff for any AF =
(A,R) ∈ AF and any a,b ∈ A:

Abstraction If for any AF′ = (A′,R′)with AF≡AF′ and for every isomorphism γ :A→
A′: a �τ(AF) b iff γ(a)�τ(AF′) γ(b). (The ranking on arguments should be defined
only on the basis of the attacks between them.)

Independence If for every AF′ = (A′,R′) ∈ cc(AF) and for all a,b ∈ A′: a �τ(AF′) b iff
a �τ(AF) b. (The ranking between two arguments a and b should be independent of
any argument that is neither connected to a nor to b.)

Void precedence If a− = /0 and b− �= /0 then a τ(AF) b. (A non-attacked argument
should be ranked strictly higher than any attacked argument.)

Self-contradiction If not aRa but bRb then a τ(AF) b. (A self-attacking argument
should be ranked strictly lower than any non self-attacking argument.)

Cardinality precedence If |a−| < |b−| then a τ(AF) b. (The greater the number of di-
rect attackers for an argument, the weaker the level of acceptability of this argu-
ment.)

Quality precedence If there is c∈ b− such that for all d ∈ a−, c�τ(AF) d but not d �τ(AF)
c, then a τ(AF) b. (The greater the acceptability of one direct attacker for an
argument, the weaker the level of acceptability of this argument.)

Counter-Transitivity If some injective f : a− → b− exists such that f (x)�τ x ∀x ∈ a−
then a�τ(AF) b. (If the direct attackers of b are at least as numerous and acceptable
as those of a, then a is at least as acceptable as b.)
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car first

holiday first

work first

flat first

credit first

Figure 2. Two simple choice problems

Strict Counter-Transitivity If some injective f : a− → b− exists such that f (x) �τ
x ∀x ∈ a− and either |a−| < |b−| or there exists some x ∈ a− with f (x) τ (x)
then a τ b. (If the direct attackers of b are strictly more numerous or acceptable
than those of a, then a is strictly more acceptable than b.)

Defense precedence If |a−|= |b−| and (a−)− �= /0 but (b−)− = /0 then a τ(AF) b. (For
two arguments with the same number of direct attackers, a defended argument is
ranked higher than a non-defended argument.)

Distributed Defense precedence If |a−| = |b−| and |(a−)−| = |(b−)−|, and if the de-
fense of a is simple—every direct defender of a directly attacks exactly one direct
attacker of a—and distributed—every direct attacker of a is attacked by at most
one argument—and the defense of b is simple but not distributed, then a τ(AF) b.
(The best defense is when each defender attacks a distinct attacker (distributed
defense).)

Total If a �τ(AF) b or b �τ(AF) a. (All pairs of arguments can be compared.)
Non-attacked Equivalence If a− = /0 and b− = /0 then a �τ(AF) b and b �τ(AF) a. (All

the non-attacked arguments have the same rank.)
Attack vs Full Defense If AF is acyclic and every path P(u,a) in AF from an

unattacked u to a has lp = 0mod 2 and there exists u ∈ b− unattacked then a τ b.
(An argument without any unattacked indirect attackers should be ranked higher
than an argument only attacked by one unattacked argument.)

3. Rankings, Admissibility, and Reinstatement

Let us start with the motivation for our work in form of a practical example.

Example 2. The argumentation framework depicted in Figure 2 illustrates two everyday
choice problems. While the average employee might have to choose between a new car or
an overseas holiday, those who have hit rock bottom often find themselves in unsolvable
dilemmas. Suppose a homeless person with no money decided to change her life and
look for work. Any company would need her address to handle taxes. So she first has to
find herself a place to live. But she cannot pay the deposit for renting a flat. So she needs
a credit. However any credit institute would require her to have a job in the first place.

When we apply the categoriser semantics to the argumentation framework from the
example, all five arguments receive the same value of approximately 0.618. But rank-
ing the impossible choices of the second case just as high as the two options of the
first, which can actually materialize, seems inaccurate. The same issue is present in Ex-
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ample 1, where the self-attacker c and the credulously acceptable d end up having the
same value. In practice we would have to execute caution when interpreting this ranking.
For example, one known strategy of conspiracy theories is to convince with the sheer
amount of arguments in favor of their hypothesis. Under existing ranking semantics, a
classically acceptable argument with lots of attackers could end up with a lower rank
than, e. g., one of its attackers which is in turn attacked by an unattacked argument like a
fact (objective measurement etc.). This potentially leads to a nonsensical argument being
ranked higher than a scientifically supported position. We therefore suggest the accept-
ability of an argument should be represented in its rank somehow. Strictly speaking, if
an argument has no chance of being classically accepted, we should expect it to rank
lower than any argument which is actually acceptable. Since existing ranking semantics
do not conform to this, a need to investigate new options for ranking semantics emerges.
That is not to say acceptance has been completely ignored in ranking semantics so far. A
few existing principles already incorporate some aspects of classic defense, e. g., defense
precedence demands that a ranking-semantics prefers an argument with defenders over
one with only attackers provided they have the same number of attackers. The principle
we introduce here is a more general approach to integrate extension-based acceptability
into ranking semantics. In this paper we limit our investigations to its implications under
classic admissible semantics, though.

Definition 4. Let σ be an extension-based semantics. A ranking semantics τ satisfies
σ -compatibility iff for any AF = (A,R) and any a,b ∈ A, if a is credulously accepted
under σ and b is rejected then a τ(AF) b.

σ -compatibility ensures no non-acceptable argument can rank as high or higher
than any of the acceptable arguments under σ . A special case of σ -compatibility is na-
compatibility which results in self-attackers ranking strictly lower than the rest. This is
actually equivalent to the existing principle of self-contradiction.

Proposition 1. A ranking semantics τ satisfies self-contradiction iff it satisfies na-
compatibility.

Let us turn our attention to adm-compatibility. The classic admissible, complete
and preferred semantics credulously accept the same arguments, so adm-compatibility
covers all three. adm-compatibility is incompatible with a number of known principles
for ranking semantics, notably with strict counter-transitivity. This also generalizes some
observations from [11].

Proposition 2. Let τ be a ranking semantics satisfying adm-compatibility. Then τ
does not satisfy any of the following four principles: strict counter-transitivity, counter-
transitivity, cardinality precedence, and quality precedence.

We briefly demonstrate the contradiction with strict counter-transitivity using Ex-
ample 2. The credulously accepted arguments under classic admissibility are car first
and holiday first. Suppose some ranking semantics τ satisfies adm-compatibility, then
both car first τ(AF) credit first and holiday first τ(AF) flat first hold. But under strict
counter-transitivity car firstτ(AF) credit first implies flat firstτ(AF) holiday first, so τ
can at most satisfy one of the two principles. Many existing ranking semantics such as the
categoriser semantics from above, but also the burden- and discussion-based semantics
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Figure 3. Weak and strong σ -support

[8] and the social abstract argumentation semantics [14] satisfy strict counter-transitivity
[9]. Therefore none of them satisfies adm-compatibility.

For our next new properties we investigate the innate relational structure of ex-
tensions or, more precisely, the relations between acceptable arguments under a given
extension-based semantics. A longstanding defense-related principle for extension-based
semantics is reinstatement, the inclusion of defended arguments in an extension [23].
Now, an argument depending on other arguments to become defended should not be
ranked higher than its defenders and strictly lower, if its defenders are acceptable inde-
pendently from it. A way to express this is as follows.

Definition 5. Let AF= (A,R), a,b ∈ A, and σ some extension-based semantics.

• a weakly σ -supports b if b is credulously accepted wrt. σ and for all E ∈ σ(AF),
if b ∈ E then a ∈ E.

• a strongly σ -supports b if b is credulously accepted wrt. σ and for all E ∈ σ(AF),
if b ∈ E then there is E ′ ∈ σ(AF) with E ′ ⊆ E, a ∈ E ′, and b /∈ E ′.

Informally, an argument a weakly σ -supports an argument b, if a is a part of any σ -
extension containing b which intuitively amounts to a being an unavoidable side-effect
of accepting b. Moreover, a strongly σ -supports b, if the presence of b in an extension
(which necessarily also includes a) implies the existence of a smaller extension with a
but without b. In that case a becomes a prerequisite for accepting b while b can be said
to be irrelevant for accepting a. It is clear that strong σ -support implies weak σ -support.

Example 3. Let σ = adm, then in the AF depicted in Figure 3 the arguments a and c
weakly σ -support each other, since they take care of each others attackers in the 4-cycle.
Neither of them can be accepted on its own, so a does not strongly σ -support c nor vice
versa. Both of them strongly σ -support f because c is the only attacker of e and cannot
be accepted without a. Note that although a and c strongly σ -support f , this does not
imply they are sufficient for accepting f , g strongly σ -supports f as well. Take also note
of d weakly σ -supporting b1 but not the other way around. Since no admissible subset
of b1,d containing only d exists, d does not strongly σ -support b1, though.

Using these two notions of σ -support, we can define the according principles for
ranking semantics as follows.

Definition 6. Let τ be a ranking semantics.

• τ satisfies weak σ -support iff for every AF = (A,R), a,b ∈ A, if a weakly σ -
supports b then a �τ(AF) b.
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• τ satisfies strong σ -support iff for every AF = (A,R), a,b ∈ A, if a strongly σ -
supports b then a τ(AF) b.

The two principles are independent from each other, unlike the argument relations
they are based upon.

Proposition 3. Strong σ -support does not imply weak σ -support and weak σ -support
does not imply strong σ -support.

Reflecting on these two principles for ranking semantics leads again to some inter-
esting observations. Weak σ -support firmly links the rank of an argument with the situa-
tions (extensions) in which it is accepted. If two arguments are always accepted together
they are of equal rank.

Remark 1. Let τ be a ranking semantics satisfying weak σ -support, AF= (A,R) an AF
and a,b ∈ A. If a weakly σ -supports b and b weakly σ -supports a then a �τ(AF) b.

In case of a single-status semantics (or semantics providing a single extension for
some framework) the above observation results in all accepted arguments sharing the
same rank.

Corollary 1. Let τ be a ranking semantics satisfying weak σ -support, AF = (A,R) an
AF. If |σ(AF)|= 1 then for all credulously accepted a,b ∈ A, a �τ(AF) b.

For the same reason weak σ -support enforces the same rank on all skeptically ac-
cepted arguments wrt. any semantics.

Corollary 2. Let τ be a ranking semantics satisfying weak σ -support, AF = (A,R) an
AF. For all skeptically accepted a,b ∈ A, a �τ(AF) b.

While weak σ -support only blocks arguments from ranking better than those they
depend on, strong σ -support discriminates between arguments in order to express one-
sided dependencies as asymmetric rank differences. It has a kind of chain effect, an
argument is not only ranked lower than the arguments it depends on but also lower than
the arguments those arguments depend on in turn. When applied to classic admissibility,
this property leads to a preference of short defense routes. Let us now investigate the
relationships of weak/strong adm-support.

Proposition 4. Let τ be a ranking semantics satisfying strong adm-support. Then τ
does not satisfy any of the following four principles: strict counter-transitivity, counter-
transitivity, cardinality precedence and quality precedence.

Proposition 5. Let τ be a ranking semantics satisfying weak adm-support. Then τ does
not satisfy strict counter-transitivity or cardinality precedence.

As expected, the two forms of adm-support do not go well with attacker-focused
properties like strict counter-transitivity for which we already demonstrated their con-
tradiction with adm-compatibility. Since, e. g., the categoriser semantics, burden- and
discussion-based semantics, and social abstract argumentation semantics all satisfy strict
counter-transitivity [9], none of them satisfies weak/strong adm-support.
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4. A Ranking Semantics Based on Serialisability

In this section we will introduce a ranking semantics capable of expressing both the ac-
ceptability differences and the dependencies between arguments under the classic admis-
sible semantics formalized in the previous section as adm-compatibility and weak/strong
adm-support. In order to do this, we take the admissible extensions apart and analyze
them for the relevant dependencies. The smallest units within an admissible set, which
still maintain admissibility are the so-called initial sets introduced in [21].

Definition 7. For AF = (A,R), a set S ⊆ A with S �= /0 is called an initial set if S is
admissible and there is no admissible S′ � S with S′ �= /0. Let IS(AF) denote the set of
initial sets of AF.

Example 4. The initial sets of the AF depicted in Figure 3 are {g},{a,c},{b1,d} and
{b2,d}.

Note that not all credulously accepted arguments wrt. admissibility are members of
initial sets, e. g., f in Figure 3 is part of the admissible set {a,c, f ,g} but not contained
in any initial set. Arguments like f are exactly those which depend on others for their de-
fense while not being necessary for the defense of their defenders. In [20], a construction
method for admissible sets is presented, which implements a form of step-by-step addi-
tion for including such arguments. This approach relies on the reduct [19] of an argument
set in an argumentation framework.

Definition 8. For AF= (A,R) and S ⊆ A, the reduct of S wrt. AF is AFS = AF|A\(S∪S+).

Using the reduct, the central idea of [20] can be formalised with the following notion
of a serialisation sequence.

Definition 9. A serialisation sequence for AF = (A,R) is a sequence S = (S1, ...,Sn)
with S1 ∈ IS(AF) and for each 2≤ i ≤ n we have Si ∈ IS(AFS1∪...∪Si−1).

It has been shown that admissible sets can be characterized by serialisation [20]:

Proposition 6. Let AF= (A,R) be an AF and E ⊆ A. E ∈ adm(AF) if and only if there
is a serialisation sequence (S1, ...,Sn) with E = S1∪ . . .∪Sn.

Let us demonstrate this for some of the admissible sets of our previous example.

Example 5. Consider the admissible sets S1 = {b1,d}, S2 = {b1,b2,d,g}, and S3 =
{a,c,g, f} and corresponding serialisation sequences:

S1 = ({b1,d}) (for S1)

S2 = ({b1,d},{b2},{g}) (for S2)

S3 = ({a,c},{g},{ f}) (for S3)

Serialisation sequences are not necessarily unique, but certain arguments can only
be selected after they appear in some initial set. For example, { f} only becomes an initial
set after g (and {a,c}) are already part of the sequence. This dependency between sets
in a serialisation sequence is similar to the strong adm-support introduced in Section 3.
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Now that we have a tool for representing the structure of admissible sets, we can use it
for defining a new argument ranking that is based on the length of shortest serialisation
sequences.

Definition 10. For AF= (A,R) and a ∈ A define the serialisation index serAF(a) via

serAF(a) =min{n | (S1, . . . ,Sn) is a serialisation sequence and a ∈ Sn}
with min /0= ∞.

Intuitively, the value of serAF(a) represents the minimal number of conflicts, which
have to be solved before an argument a can be accepted. In this context, serAF(a) = 1
means a can solve all relevant conflicts by “itself” or—to be correct—by being a member
of an initial set itself. The serialisation-index serAF(a) = ∞ for non-acceptable arguments
can be read as no serialisation sequence of any length will be sufficient for this argument.
From the choice of a trivial value for all non-acceptable arguments, it already becomes
clear that our ranking will only represent differences between acceptable arguments. To
foster our understanding of these values let us compute the serialisation indices for our
running example.

Example 6. For the arguments of the AF from Figure 3 we get serAF(x) = 1 for
x ∈ {a,c,b1,b2,d,g} a member of an initial set, serAF(e) = 2, since the two smallest
admissible sets containing e are {b1,d,e} and {b2,d,e} which both can be serialised in
k = 2 steps, serAF( f ) = 3 because two initial sets, {g} and {a,c} are needed for the de-
fense of f and have to be included first before { f} becomes an initial set in AF{a,c}∪{g}

and serAF(h) = ∞ for the non-acceptable argument h.

The ranking semantics naturally arising from the serialisation index is as follows.

Definition 11. For AF = (A,R) and a,b ∈ A, we say that a is at least as preferred as b
(wrt. serialisability), written a �ser b iff serAF(a)≤ serAF(b).

The lower the serialisation index, the higher the rank of an argument with the mem-
bers of initial sets all being ranked equally at the top. Applying this ranking semantics
to our running example yields a �ser b1 �ser b2 �ser c �ser d �ser g ser e ser f ser h.
We will now prove that this ranking semantics indeed has the desired properties defined
in Section 3 and begin by demonstrating that �ser produces the intended results for our
motivating example.

Example 7. The options for the decision problems represented in Figure 2 are assigned
the serialisation indices serAF(holiday first) = serAF(car first) = 1 and serAF(flat first) =
serAF(work first) = serAF(credit first) = ∞ respectively, resulting in a higher ranking for
the viable options of the average employee.

Indeed, the serialisation ranking satisfies adm-compatbility per definition, since the
serialisation index for non-acceptable arguments of ∞ cannot be reached by acceptable
arguments. The conformity to weak and strong adm-support is not that trivial, but can
also be shown.

Theorem 1. �ser satisfies adm-compatibility and both strong and weak adm-support.
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The similarities of our new ranking semantics to classical extension-based seman-
tics do not stop with the above result. Another important property of admissibility se-
mantics is directionality, i. e., the admissible sets of an unattacked subset of an AF are
also admissible in the AF as a whole [23]. The intuition behind this principle is that an
argument a which has no directed path to an argument b should not have any impact on
the acceptability of b. This idea makes sense for ranking semantics as well and an ac-
cording principle for graded semantics was formulated in [24]. Here we generalize this
directionality principle for ranking semantics.

Definition 12. A ranking-based semantics τ satisfies directionality iff for any AF =
(A,R) and any a,b,x,y ∈ A such that (a,b) /∈ R and no directed path from b to neither x
nor y exists, then x τ(AF) y if and only if x τ((A,R∪{(a,b)})) y.

Proposition 7. �ser satisfies directionality.

Regarding the principles from Definition 3, �ser satisfies the general ones such as
abstraction and independence. Most of the other principles are not satisfied, in particular
because of the incompatibilities we already showed in Propositions 2, 4, and 5. Further
principles are not satisfied because they demand rank differences under certain structural
conditions, like distributed defense precedence. Since all non-acceptable arguments have
the same rank under �ser, those principles are violated if their conditions can apply to
pairs of non-acceptable arguments. For example, defense precedence is only uphold in
case the stronger argument is acceptable. The following proposition summarizes our
findings.

Proposition 8. �ser satisfies abstraction, independence, totality, non-attacked equiva-
lence, and attack vs full defense. All other principles from Def. 3 are not satisfied.

5. Summary and Conclusion

We revisited the foundation of ranking semantics for abstract argumentation and pro-
posed a new interpretation of ranking semantics as refinements of classical extension-
based semantics. For that aim, we presented the new postulates σ -compatibility as well
as weak and strong σ -support and showed that these are generally incompatible with
existing postulates for ranking semantics. We proposed a new ranking semantics based
on the concept of serialisibility and showed that this new semantics behaves well wrt.
these postulates.

Our contributions should be regarded as an additional aspect of interpreting ranking
semantics and not as disregarding previous approaches. The central aspect of existing
ranking semantics is that they aim at assessing strength of arguments, which is—as we
have seen in this paper — not necessarily the same as acceptability. Here, we aimed
at comparing acceptability (wrt. admissibility) of arguments. An interesting avenue for
future work is also to investigate more general foundations for acceptability such as weak
admissibility [19,23] or to exploit different notions of defense [25] for our formalisation
of weak and strong σ -support.
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Abstract. Recent developments on solvers for abstract argumentation frameworks
(AFs) made them capable to compute extensions for many semantics efficiently.
However, for many input instances these solution spaces can become very large and
incomprehensible. So far, for the further exploration and investigation of the AF
solution space the user needs to use post-processing methods or handcrafted tools.
To compare and explore the solution spaces of two selected semantics, we propose
an approach that visually supports the user, via a combination of dimensionality
reduction of argumentation extensions and a projection of extensions to sets of
accepted or rejected arguments. We introduce the novel web-based visualization
tool NEXAS that allows for an interactive exploration of the solution space together
with a statistical analysis of the acceptance of individual arguments for the selected
semantics, as well as provides an interactive correlation matrix for the acceptance
of arguments. We validate the tool with a walk-through along three use cases.

Keywords. abstract argumentation, visualization, solution space exploration

1. Introduction

Abstract argumentation is a very active research field within argumentation theory. Be-
sides the theoretical analysis and formal approaches [1] the development of efficient
solvers has gained much attention [2], as also witnessed by the International Competi-
tion on Computational Models of Argumentation (ICCMA) [3]. This led to a number of
solvers that can enumerate all extensions of most of the prominent argumentation seman-
tics. However, the solution space for many semantics can become very large, in particular
if many cycles of even length are contained in the given argumentation framework (AF).
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Figure 1. NEXAS interface showing a) the Argument View: bar chart with the relative frequencies of the argu-
ments by semantics, b) the Extension View: scatterplot with the dimensionality reduced solution space, c) the
Correlation View: correlation matrix of accepted arguments wrt. two semantics separated by the diagonal, and
d) a sidebar with the color legend, settings and inspection options.

While theoretical results on AFs already provide a rather clear picture of the rela-
tions between the argumentation semantics, for example in terms of subset-relations or
the existence of solutions for specific classes of AFs, there is no practical support to ex-
plore the solution space of AFs. Standard AF solvers are mainly targeted to i) compute
extensions or decide for credulous and skeptical acceptance of arguments efficiently, or
ii) to support the construction of arguments and AFs visually [4]. Up to now, the only
combination of computational argumentation and visualization is by tools that use a
solver in the backend for the computation of solutions or acceptance of arguments, and
the visualization of the AF as a directed graph. The outcome of the computation is then
visualized by highlighting arguments that are credulously or skeptically accepted, or one
extension after another is highlighted in the graph for a selected semantics1 [5]. With
the current tool support the user does not get the full picture on the acceptance of in-
dividual arguments, or sets of arguments. When comparing two semantics, handcrafted
tools are still needed to post-process all extensions and find out where they coincide or
differ. Getting an overview on the whole solution space for specific semantics, to be able
to zoom-in or -out into particular sub-spaces that contain similar extensions, is not at all
supported by current tools.

To overcome these limitations, we embarked on an interdisciplinary endeavour
proposing to utilize advanced visualization to interactively explore the solution space
of AFs. As a result, we introduce the NEXAS tool for Navigating and Exploring
Argumentation Solutions. In this work we combine the well known Answer Set Pro-
gramming (ASP) based AF solver aspartix [6], and the recently developed approach
for answer set navigation [7] to, on one side enumerate extensions, and on the other side
navigate towards “interesting” sub-spaces of arguments.

Our main contributions are: (1) An approach that seamlessly integrates visualization
techniques and systems for enumerating extensions for abstract argumentation frame-
works. (2) Our novel web-based tool NEXAS, an interactive solution that visually real-
izes the aforementioned approach [7] through three major coordinated views fostering
navigation, exploration and understanding of the AF (See Figure 1). (3) Walk-through

1 Web interface of ConArg (https://conarg.dmi.unipg.it/web_interface.php)
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Figure 2. a) (left) An arrow from semantics σ to semantics τ encodes that each σ-extension is also a
τ -extension. b) (right) Example AF with highlighted preferred extension {a, c, e}.

validation of the tool NEXAS on the basis of three use cases. A demo of the tool, video
walk-through and test data can be found at https://imld.de/nexas.

2. Background and Related Work

2.1. Abstract Argumentation Frameworks

We recall the basic definitions for abstract argumentation frameworks. For more details
we refer to the standard literature [8,9].

Definition 1 An abstract argumentation framework (AF ) is a pair denoted as F =
(A,R) where A is a finite set of arguments and R ⊆ A×A is the attack relation.

Given a pair (a, b) ∈ R, we say a attacks b. An argument a ∈ A is defended by a
set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that
(c, b) ∈ R. Additionally, the range of S (w.r.t. R) is defined as S+

R = S ∪ {x | ∃y ∈
S such that (y, x) ∈ R}.
Definition 2 Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), if there are
no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of F .
For a conflict-free set S ∈ cf (F ), it holds that

• S is an admissible set of F , i.e., S ∈ adm(F ), if each a ∈ S is defended by S;
• S is a stable extension of F , i.e., S ∈ stb(F ), if S+

R = A;
• S is a complete extension of F , i.e., S ∈ compl(F ), if S = {s ∈ A | Sdefendss};
• S is a preferred extension of F , i.e., S ∈ prf (F ), if S ∈ compl(F ) and there is

no T ∈ compl(F ) with T ⊃ S;
• S is a stage extension of F , i.e., S ∈ stg(F ), if there is no T ∈ cf (F ), such that
S+
R ⊂ T+

R ;
• S is a maximal conflict-free or naive set of F , i.e., S ∈ naive(F ), if S ∈ cf (F )

and for each T ∈ cf (F ), S �⊂ T ;
• S is a semi-stable extension of F , i.e., S ∈ semis(F ), if and only if S ∈ compl(F )

and there is no T ∈ compl(F ), such that S+
R ⊂ T+

R .

Our tool also supports the SCC-recursive semantics cf2. For more details we refer to
the following article [9]. Figure 2a) shows the relation between the introduced semantics
in terms of subset-relations. Figure 2b) shows an example AF represented as a directed
graph where the preferred extension {a, c, e} is highlighted.

We denote the set of arguments of an AF F that are credulously accepted under
semantics σ by credσ(F ) :=

⋃
σ(F ), and the set of arguments that are skeptically

accepted under semantics σ by skepσ(F ) :=
⋂
σ(F ).
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2.2. Related Work

Visualization in Abstract Argumentation Frameworks. Although there are many ar-
gumentation systems [2], approaches that concentrate on the visualization of solution
spaces for AFs have not yet been investigated in detail. The only work we are aware of
is the Neva tool, a preliminary version of the NEXAS tool presented in [10].

The standard way to visualize extensions wrt. a semantics of an AF is by highlight-
ing the accepted arguments in a directed graph, as shown in Figure 2b). In the follow-
ing we discuss also related work on visualization for related domains, such as ASP. For
example, ARVis [11] visualizes answer sets and their relations using a directed graph
structure. Besides, the toolkit Possible Worlds Explorer (PWE) [12] is able to
visualize individual answer sets and their structures. Additionally, PWE builds a distance
matrix based on the similarity measure and applies hierarchically clustering on it to dis-
cover further substructures. On the other side, Betz et al. [13] implemented a tool based
on argumentation theory that can structure and visualize multi-dimensional opinions by
mapping them into two-dimensional space. Each opinion is a feature of the structured
AF. They also cluster the opinion vectors (argumentation extensions) and calculate the
coherence of opinion vectors. However, it is only suitable for very small data sets and
focuses on the data relations.

Dimensionality Reduction. Dozens of dimensionality reduction techniques (also known
as projections) are currently available and most are summarized in the surveys by Es-
padoto et al. [14] and Nonato et al. [15]. They are mainly used for exploration of mul-
tidimensional data, notably in AI applications and information visualization (InfoVis).
For example, to explore gene expression patterns and correlate the results with classi-
cally defined neuroanatomy, Ji [16] projects hybridization gene expression data into a
two-dimensional space using t-SNE and PCA algorithms and visualizes it using scatter-
plots. Among these techniques, the variants of MCA (Multiple Correspondence Anal-
ysis) [17,18] are among the few techniques capable to encoding categorical data to a
visual space such that closeness reflects similarities [15].

Visualization of Highly Dimensional Data. From InfoVis, there are techniques tailored
to highly dimensional data [19,20], like Parallel Coordinates, Prosection Views, Shape
Coding, Recursive Pattern, etc. However, displaying a large amount of data objects with
many features remains an open challenge where, usually, no single technique suffices.
For this problem, tailoring multiple linked views has been proven to be effective [20],
while also enabling the design of interactions and interplay between the views towards
specific tasks. These design possibilities have recently been used to deal with specific
use cases in various AI and formal methods domains (e.g., [21,22]). Furthermore, the
visual complexity of the visualization plays an important role for explainability in AI, as
expressed in the user needs of the What-If-Tool [23]. In fact, this tool successfully em-
ploys scatterplots, bar charts and line charts to provide insights about the model, data and
features involved, when as stated before, one could opt for more intricate visualization
techniques to deal with the complexity of the data.

Set Visualization. For the specific case of set-typed data, visualization techniques have
also been studied well [24]. For example, based on Euler diagrams, EULERFORCE [25]
uses a force-directed layout to optimize space usage, and SPEULER [26] includes seman-
tic information in a two step layout method for highly overlapping sets. ONSET [27] uses
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a pixel-oriented technique to show which elements are included in the sets represented
with juxtaposed grids, in contrast to the SET´O´GRAM approach [28], which uses super-
imposed bar charts to obtain insights. Other approaches use multiple coordinated views,
like POWERSET [29], which uses bar charts and treemaps to show set intersections. Sim-
ilar open challenges about the amount of data that can be visualized at once also apply
to set visualization techniques, specially when many sets and their contents need to be
compared. Thus, we chose familiar and effective representations that ease the cognitive
load for users at different levels of expertise, as most of the existing work is best (or only)
suited for small datasets.

3. NEXAS: Navigating and Exploring Argumentation Solution Spaces

So far, there is no tool that supports the solution space exploration for AFs. This means
that in case there are hundreds or thousands of solutions, there is no way to see where
for example two semantics coincide, or which arguments are accepted often or rarely.

Use Cases. In the following we describe typical Use Cases (UC) where the existing
tool support is not enough. As a user for such scenarios we consider either i) a researcher
that works in the field of abstract argumentation who uses argumentation systems to in-
vestigate certain aspects of argumentation semantics, or ii) a student in abstract argumen-
tation who attends a course on argumentation theory and wants to learn more about the
behavior of argumentation semantics. Thus, the tool is aimed to support the user visually
in the analysis of the outcome on the computation of the argumentation semantics. The
following use cases will help us to identify the goals on the visualization tool.

UC-1: The user wants to explore the AF solution space (the set of extensions) for spe-
cific argumentation semantics of a given AF. The main goal is to compare the semantics
and to find out about similarities and differences. a) The individual acceptance rate of
each argument should be given. The user wants to see the relative frequency of accep-
tance wrt. the semantics for each argument, and for the intersection of the extensions
of both semantics. b) She wants to be able to select arguments and see in which exten-
sions they are accepted. It is also desirable to be able to select several arguments and get
the union of solutions highlighted where they are accepted. c) Each individual extension
should be observable, and a representation that visualizes the complete solution space of
two selected semantics is needed, which allows to identify which extensions share many
arguments, and which have less in common.

UC-2: The solution space for one or both semantics might just be too big to be com-
puted. On one side due to the time and space needed for the computation and on the other
side because the information which needs to be processed is too big to be comprehen-
sible. In most applications the user might just want to compute a particular subspace of
the whole solution space, where some arguments are either contained in all or in none of
the extensions.

UC-3: Besides highlighting the extensions where particular arguments are accepted
(see UC-1), the user wants to “navigate” towards desired solution sub-spaces, by choos-
ing which arguments should be accepted or rejected. To this end, the tool needs to show
for which arguments such a selection is even possible. Those are arguments that are cred-
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ulously but not skeptically accepted. Note that choosing skeptically accepted arguments
would not change the solution space.

Design Goals. Within interdisciplinary brainstorming and feedback sessions involving
experts in Abstract Argumentation as well as Interactive Visualization, we iteratively de-
signed our NEXAS tool. Within these conversations, we considered needs of the argu-
mentation community which resulted in developing a set of design goals (DG) that our
tool must fulfill.

DG-1: Intuitive and Familiar Representations. We aim to foster intuitive under-
standing of the views by using traditional representations of the AF components
while also encoding relevant information that the users can obtain insights from.

DG-2: Highlight Component Relations. A major challenge is to understand how
components affect others. Thus, we aim to make these relations visible through
linked interactions to foster understanding of the underlying framework.

DG-3: Maintainable and Customizable. The system design must be flexible and
allow incorporation of further components in future iterations.

DG-4: Support Several Tasks and Workflows. We aim to support tasks with dis-
joint purposes and thus the available interactions must reflect such purposes.

DG-5: Ready-to-use. We aim to minimize setup complexity of the tool to account
for various user environments.

4. Technical Design and Implementation

Figure 3 provides a simplified version of steps the data goes through in our system, also
indicating the relationships between views.

Preprocessing Extensions. The backend uses the python library pandas 2 to perform
operations on datasets during preprocessing. After computing the semantics using the
ASP solver, we use a one-hot-encoding in order to construct two binary datasets D
andDs from the obtained extensions (answer sets).D simply encodes extensions as rows
where columns correspond to arguments that belong to at least one extension (credu-
lously accepted arguments) whose respective values v ∈ {0, 1} indicate whether they
are contained (v = 1) in the respective extensions, or not (v = 0). The other dataset Ds

additionally contains flags for whether an extension is contained in one semantics, the
other semantics or in both (the intersection) of them.

Dimensionality Reduction. Out of the presented reduction methods, t-SNE and MCA
seem to be best suited for our application. Due to performance reasons we decided to use
MCA in our tool. The two-dimensional reduction by MCA (Multiple Correspondence
Analysis) using the python package prince3 is performed on D and Ds, respectively.
Ultimately the two-dimensional reduction provides the coordinates for the scatterplot
that visualizes extensions. For D the dimensionality reduction is based on which argu-
ments an extension contains, hence, the reduction reflects the similarity of extensions.
For Ds the reduction in addition takes into account to which semantics an extension
belongs. Performing a reduction on the latter data set may thus cause more distinctive
clusters of data points in the scatterplot.

2 https://pandas.pydata.org/ 3 https://github.com/MaxHalford/prince
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Figure 3. System diagram, describing our data management to build the visualizations.

Correlation. We compute correlation coefficients of arguments using the pandas li-
brary on dataset D, which simply reflects the containment of arguments among exten-
sions. Datasets containing correlation coefficients are computed for each semantics, re-
spectively, providing the frontend with data that can be used to visualize correlations in
each of the semantics separately.

Navigating Extensions. We use the recently proposed ASP navigation framework [7]
for navigating extensions of AFs. The main idea is to understand arguments that are
credulously, but not skeptically accepted, as so called facets of the respective semantics
of an AF, which can be included or excluded from the solution space in order to land
in a sub-space of extensions. So called navigation steps are performed by inclusion or
exclusion of facets. The inclusion of a facet prunes each extension that does not contain
the corresponding argument, and accordingly, the exclusion of a facet prunes each exten-
sion that contains the corresponding argument. Navigation steps are achieved by adding
corresponding integrity constraints to the respective answer set program that encodes the
AF. By recursively enforcing that arguments are included in or excluded from extensions
(answer sets), we can zoom into or out of the solution space, which ultimately provides
us with functionality to navigate extensions. For more details on weighted faceted answer
set navigation, interested readers are referred to [7].

Faceted navigation is realized visually in the frontend, using the one-hot-encoded
data from the backend to perform navigation steps and display the resulting sub-spaces
(addressing design goal DG-2). Furthermore, users can provide a list of facets to activate
at startup (UC-2), to directly land in the resulting sub-space, which may be useful for
very large solution space, as users can prune certain extensions right in the beginning.

Implementation Challenges. Several steps within the tool are computationally very ex-
pensive. This starts with the enumeration of extensions for the argumentation semantics,
and continues with the processing of the data with dimensionality reduction and the vi-
sualization. Therefore, we preferred methods that are 1) efficient, 2) robust, 3) easy to
adapt and 4) to combine (DG-3). To this end, we decided to use the aspartix [6] ap-
proach for the enumeration of extensions. Within the aspartix system suite, there are
ASP encodings for most of the prominent semantics, and these encodings can be easily
extended or modified independently from our tool NEXAS. As the aspartix approach
relies on ASP technology, we can adapt the answer set navigation approach from [7] to
allow a more interactive and informative exploration of the AF solution space. On the vi-
sualization front, to simplify access to the tool considering the work environments of our
target users (DG-5), we provide NEXAS as a web application which—since it is limited
by the resources of the browser tab—needs to avoid expensive operations and update the
website components efficiently.
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Data Generation. To generate the answer sets and miscellaneous data, we use a python
script that calls the ASP solver clingo [30] together with the ASP encodings of
aspartix [6] and the ASP solution space navigation approach [7]. For the computa-
tion of the semantics pairs we can often make use of the theoretical knowledge about
the subset-relation between the semantics (see Figure 2). This means that for the pairs of
semantics stable ⊆ σ for σ ∈ {semi-stable, stage, preferred, cf2}, we only compute the
extensions of the super-set, and identify within the answer sets obtained, which of the
solutions are also an extension of the other semantics. The answer sets are finally stored
in .json files for the frontend to use.

Web Application. NEXAS has a server implemented with express.js4. The HTML
content is built using the templating engine sprightly5 to facilitate component-based
UI that can be easily maintained (DG-3). On the client side, the look and feel is achieved
by adapting Materialize6 components. The visualizations are built using D37, since
it is flexible enough to support non-standard visual encodings.

5. Visualization Design

The NEXAS tool consists of 3 major views to explore and navigate the solution space
of an abstract argumentation framework. All views can be seen on Figure 1 and their
influence on each other is encoded with arrows in Figure 3. The semantics are color
encoded in all views (DG-2) using contrast to distinguish between them easily.

Argument View. This view encodes the set of arguments (Figure 1 a)). A double vertical
bar chart is used to compare, for each argument, the relative frequency with which it is
accepted in each of the two semantics (A, B). With a central axis used to distinguish
between the semantics, we show A in the bars to the left and B in the bars to the right.
The intersection of the semantics (i.e., the frequency with which an argument is accepted
in both A and B) is shown as a hatching pattern on both sides of the bar chart. The
width of the intersection hatching can cover 100% of both sides of the chart, to indicate
whether the intersection subsumes the solutions for either semantics. With this, we show
at a glance how the semantics compare (DG-1). This bar chart can be used to filter and
highlight content in the other views.

Extensions View. The solution space (i.e., set of extensions) is displayed in a scatterplot
(Figure 1 b)). The extensions that belong either to A or B are encoded with the same
colors as in the bar chart, and those that belong to both A and B are also encoded with a
third color that visually blends the colors used for the two semantics. The MCA dimen-
sionality reduction provides a spatial clustering based on the similarity of the contents of
each solution, which also enables users to immediately get a feeling of how the exten-
sions are distributed by semantics (DG-1). To show when several solutions are stacked
on top of each other, we lowered the opacity of each point in the scatterplot. Furthermore,
it is possible to include the semantics in the dimensionality reduction from the settings
sidebar, emphasizing the grouping by semantics from the MCA. Users can also inspect
the arguments contained in each solution by selecting them, which triggers highlights in
the Argument View. This effect can be seen in Figure 4 b).

4 https://expressjs.com/ 5 https://www.npmjs.com/package/sprightly
6 https://materializecss.com/ 7 https://d3js.org/
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Figure 4. NEXAS interface showing a) the selection of a20 and 36 together with the extensions highlighted
in the scatterplot in which they are accepted, b) the selection of one extension in the scatterplot together with
the arguments highlighted in the argument bar char that are contained in it.

Correlation View. Figure 1 c) displays the correlation matrix split across the diagonal
to compare the values in both semantics: A on the upper triangular matrix and B on the
lower one. The semantics are shown in the color coding of the perimeter of both triangles
(DG-2). Since the correlation matrix of a single semantics is symmetric, no information
is lost. Additionally, hovering over any cell on the matrix highlights the same argument
pair on the other side of diagonal, so that users can compare the correlations values (from
−1 to 1) on demand. The vertical axis of the matrix of this view and bar chart of the
Argument View correspond, such that hovering over an argument in the bar chart adds a
visual guide over the row and column of the highlighted argument in the matrix.

Cross-view Interactions. We provide multiple ways of creating a selection of either ar-
guments or extensions. We distinguish these as Argument Inspector and Extension In-
spector, of which only one may be active at a time (DG-4). The user selection can be
exported at any time depending on the active inspector. While the Argument Inspector is
on, users may select arguments on the bar chart to highlight the extensions on the scat-
terplot that contain the selection (Figure 4 a)). For the Extension Inspector, the selection
is done on the scatterplot and the result is reflected on the bar chart (Figure 4 b)).

On the other hand, the Faceted Navigation described in Section 3 can be enabled
from the settings sidebar and alters the behavior of both the Argument and Extension
Inspectors (to support UC-3). When active, the arguments which are not facets of the
remaining extension set (i.e., the arguments are either contained in all solutions or none)
are disabled. The Argument Inspector then allows users to include facets (click) or ex-
clude them (ctrl + click), which updates the solution space by filtering the extensions
accordingly. Multiple simultaneous selections are disallowed in Faceted Navigation, as
after including or excluding a facet, the remaining arguments may not be facets of the
resulting solution space. However, users can choose multiple facets sequentially, as the
available facets update after each selection. Likewise, the Extension Inspector only al-
lows one selected solution at a time while Faceted Navigation is active. For visual refer-
ence, see Figure 5.
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Figure 5. Faceted Navigation with a) the pre-selection of a54 as Preset Facet, and included facets a52, a21
and a76, b) after also including facet a94, and c) inspecting one extension using the Extension Inspector.

6. Validating NEXAS

Here we demonstrate the feasibility of our approach by means of a walk-through inspired
by the use cases from Section 3. Initially the user provides the input AF 8. All figures of
the NEXAS interface use this input file. The upper bound9 for the number of extensions to
be computed for each of the semantics, respectively, is set to 10, 000. Further, semantics
stage and cf2 are selected for the comparison.

After the data generation, the user sees the views as shown in Figure 1. As requested
in UC-1 a) the argument view reveals that the semantics have no extension in common,
as for none of the arguments there appears an overlay of stripes. When hovering over
argument a54, a box appears and provides the information that it is accepted in 33.2%
of the stage extensions and in 25.92% of the cf2 extensions. Further, one can observe
that for instance argument a32 is solely accepted in 50% of the stage extensions, and not
for cf2 semantics. Following UC-1 b) the user clicks on a20 and observes in the scat-
terplot that only the stage extensions, that contain a20, are displayed in color, all other
points are grayed out. By further clicking on a36, additionally several cf2 extensions
are again displayed in color, thus showing all extensions where a20 or a36 is accepted.
After clearing the selection, the user switches to the Extension Inspector and clicks on
one extension in the scatterplot. This made all arguments, that are not contained in that
particular extension, grayed out in the argument bar chart, and thus all arguments that are
still colored are accepted in that extension (UC-1 c)). Selecting another extension nearby
the previous one reveals, as mentioned in UC-1 c), that extensions that are placed near to
each other in the scatterplot share many arguments.

Considering UC-2, the user is interested in exploring the sub-space of solutions
where argument a54 is always accepted. She has two options, either to use faceted in-
spection, which then only considers the sub-space restricted to a maximum of 10, 000
for each of the semantics, or to restart the tool with a modified configuration where a54
is activated as an inclusive facet so that all computed extensions contain a54. Using the
second option, leads to sub-spaces that have 432 extensions in common. The argument
a32, which previously was accepted in 50% of the stage extensions, is now accepted in
45.68%. The user selects a52, a21 and a76 in Faceted Navigation (UC-3), leading to
the state visible in Figure 5 a). By further including facet a94, the number of extensions
is reduced again as shown in Figure 5 b). Note that Faceted Navigation zooms in the
solution space, thus all extensions that don’t contain a52, a21, a76 and a94 are not
displayed any longer, in contrast to the default behavior of the Argument Inspector that
would gray out the other extensions. Next, the user observes one particular extension
by switching to the Extension Inspector (while still having Faceted Navigation on), and
clicking on an extension in the scatterplot. Then, in the argument bar chart on the left, all
arguments are highlighted in color which are accepted in that extension (Figure 5 c)).

8 massachusetts_srta_2014-11-13.gml.50.apx from the instances of ICCMA 2017 [31].
9 Setting an upper bound for extensions could result in only a part of the solution space being considered.
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7. Conclusion and Future Work

With our visual analysis tool NEXAS we propose a novel way of exploring the argumen-
tation solution space, that offers a tight integration of state of the art solvers for AFs
and interactive visualization design. Our validation shows that a user can easily observe
information that, without the tool, would be very hard to comprehend, such as the rela-
tive frequency of acceptance of arguments, or which extensions belong to both seman-
tics under consideration. The linked interactions within the three seamlessly integrated
visualization views allow for multiple and advanced ways of solution space exploration.

For future work we will further refine and expand NEXAS, by integrating weights
for facets, as described in [7]. Moreover, we will investigate how to represent the input
AF in NEXAS, and how to integrate it in the views of the tool. User studies shall help us
to integrate feedback from experts in the field of abstract argumentation. We believe that
NEXAS opens up new ways to easily explore solution spaces, which will pave the way to
also lift concepts from NEXAS to more general settings like ASP solution spaces.
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Abstract. In this paper, we give an overview of several recent proposals for non-
admissible non-naive semantics for abstract argumentation frameworks. We high-
light the similarities and differences between weak admissibility-based approaches
and undecidedness-blocking approaches using examples and principles as well as
a study of their computational complexity. We introduce a kind of strengthened
undecidedness-blocking semantics combining some of the distinctive behaviours of
weak admissibility-based semantics with the lower complexity of undecidedness-
blocking approaches. We call it loop semantics, because in our new semantics, an
argument can only be undecided if it is part of a loop of undecided arguments. Our
paper shows how a principle-based approach and a complexity-based approach can
be used in tandem to further develop the foundations of formal argumentation.

Keywords. abstract argumentation, semantics, complexity, weak admissibility

1. Introduction

Dung’s admissibility-based (AB) semantics have been challenged in various ways, lead-
ing to a variety of new semantics [8,9,11,5]. These have been compared and classified
on the basis of general principles as well as their computational complexity, such that
the best semantics can be chosen for an application. Two desirable properties stand out.
First, directionality together with SCC recursion lead to a kind of causal interpretation of
attack [6] and allow for compositional computation [4]. Second, low computational com-
plexity is not only advantageous for automated reasoning by artificial agents, but from
the perspective of cognitive science, it also increases explainability by and for humans.

The best known non-admissible semantics are naive-based (NB) semantics. Under
an NB semantics, each extension is a maximal conflict-free set of arguments. The most
prominent example of an NB semantics is the CF2 semantics [3]. To illustrate the core
idea, consider the framework (a) from Figure 1. In AB semantics, the only extension
is the empty set, whereas under the CF2 semantics, b is accepted. To get the desirable
properties of directionality and SCC-recursiveness, CF2 is defined in terms of a local
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Figure 1. Five argumentation frameworks.

function that computes the maximal conflict-free subsets for each strongly connected
component (or SCC) of a framework.

More recently, two new types of non-admissible semantics were introduced. They
were motivated by the behaviour of AB semantics in examples such as framework (b)
in Figure 1. Here, the set {b} is not admissible since it does not defend itself from its
attacker a3. Nevertheless, one can argue that b is acceptable since a3, being part of an
odd-length cycle of arguments that are never accepted, does not pose an actual threat.
Capturing this intuition thus requires a different notion of admissibility. The first type
takes a reduction-based approach and is called weak admissibility (WA) [5]. The second
type takes a labelling-based approach to define weaker acceptance criteria, called “un-
decidedness blocking” (UB) [11], which is analogous to “ambiguity blocking” and dis-
cussed in defeasible logics [15]. In contrast to the AB labelling approach, an undecided
argument in UB may attack arguments that are labelled in. Further semantics that belong
to the UB approach are the qualified and semi-qualified semantics [8]. These are defined
by adapting the SCC recursive algorithm but keeping the base function admissible. The
WA, UB and (semi-)qualified semantics all come in a grounded, complete and preferred
flavour. These developments raise two questions: (1) How do these approaches compare
in terms of examples, principles, and computational complexity? And (2) Which new
kinds of semantics can be explored based on this overview?

Concerning the first question, the semantics of WA and UB approaches are remark-
ably similar for most benchmark examples. For example, they give the same results for
the frameworks (b) and (c) from Figure 1. Moreover, both WA and UB preferred seman-
tics are SCC-recursive and directional. The main distinction is in their computational
complexity. As we show in this paper, the UB approach has a significantly lower compu-
tational complexity than the WA approach, for which we show PSPACE-completeness
also for recently introduced variants (thus complementing the results in [14]).

The second question is how our analysis can be used to define new semantics. In
particular, we are interested in approaches that combine the behaviour of WA semantics
with the lower complexity of UB approaches. We define a new kind of semantics called
loop semantics that extends UB with a new condition that ensures that arguments can
only be undecided if they are part of a loop of undecided arguments. In this sense, the role
of undecided arguments is to detect loops. We also define a notion of UB-admissibility,
a concept that was missing thus far in the definition of UB semantics.

In this paper, we only consider non-admissible and non-naive based semantics. We
do not consider the SCF2 semantics introduced by Cramer and van der Torre [7]. We
focus our complexity analysis on complete and preferred variants of various semantics.
Due to space limitations, we do not repeat all the variants of WA semantics described by
Dauphin et al. [9], but we do include their semantics in the complexity analysis. For the
same reason, for some of the proofs, we are only able to include proof sketches.
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The layout of this paper is as follows. We first provide a brief overview of semantics
based on weakly admissible and undecidedness blocking in Sections 2 and 3. We then
present our new loop semantics in Section 4. All these semantics are illustrated using ex-
amples and principles. In Section 6 we provide a complexity overview of fifteen different
kinds of non-admissible, non-naive semantics. We conclude in Section 7.

2. Weakly Admissible Semantics

An argumentation framework (abbreviated as AF) is a pair F = (A,→) where A is a set
of arguments and→⊆ A×A the attack relation. We assume in this paper that A is finite.
A set E ⊆ A is conflict-free if there are no x,y ∈ E such that x → y. A set E ⊆ A defends
an argument x ∈ A if for all y ∈ A such that y → x, there is a z ∈ E such that z → y [12].

We focus in this paper on new variants of the admissible, complete and preferred
semantics. The classical variants, denoted respectively by ad, co and pr, are defined as
follows [12]. Let F = (A,→) be an AF. An ad extension of F is a set E ⊆ A that is
conflict-free and defends all its members. A co extension is an admissible extension that
contains all arguments it defends. A pr extension is a maximal admissible extensions. In
what follows we use, given a semantics σ , σ(F) to denote the set of σ extensions of F .

Baumann, Brewka and Ulbricht [5] definedweak admissibility based on the principle
that, given an AF F = (A,→) and set E ⊆ A, an argument needs to be defended by E only
from arguments that are ‘serious’ in the sense that they appear in a weakly admissible set
of the E-reduct of F . The E-reduct of F is denoted by FE and defined by FE = (E∗,→
∩(E∗×E∗)) where E∗ = A\ (E ∪E+) and E+ = {y ∈ A|∃x ∈ E,x → y}. Let F = (A,→)
be an AF. A set E ⊆ A is weakly admissible (i.e., E ∈ adw(F)) if and only if E is conflict
free and for every attacker y of E we have y 	∈ ∪adw(FE). To define weakly complete
and preferred semantics we first define weak defence.

Definition 1 [5] Let F = (A,→) be an AF. A set E ⊆ A weakly defends a set X ⊆ A
whenever, for every attacker y of X, either E attacks y, or it is the case that y 	∈ ∪adw(FE),
y 	∈ E, and X ⊆ X ′ ∈ adw(F).

Definition 2 [5] Let F = (A,→) be an AF and E ⊆ A. The weakly complete and weakly
preferred semantics cow and prw are defined as follows: E ∈ cow(F) iff E ∈ adw(F) and
for every X such that E ⊆ X that is w-defended by E, we have X ⊆ E; and E ∈ prw(F)
iff E is ⊆-maximal in adw(F).

Dauphin et al. [9] defined several variants of the weak admissibility based semantics.
We omit the definitions due to space constraints but we include the complete variants
denoted cow∀, co∃ and co∀ in Table 1 as well as our complexity analysis in Section 6.

We conclude this section by pointing out a notable difference between the weakly
complete and preferred semantics with respect to the directionality principle [2]. Given
an AF F = (A,→) and a set U ⊆ A, we use F↓U to denote the AF (U,→∩U ×U) and,
given a set X ⊆ 2A, we use X↓U to denote the set {E∩U |E ∈ X}. A semantics σ is direc-
tional if, for every AF F = (A,→) and every unattacked set U of F (i.e., any set U ⊆ A
such that x ∈ U and y → x implies that y ∈ U) we have that E ∈ σ(F)↓U = σ(F↓U ).
The preferred and complete semantics both satisfy directionality [2]. However, while the
weakly preferred semantics also satisfies directionality [5], the weakly complete seman-
tics does not [8].
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Table 1. Various semantics applied to the AFs from Figure 1.

Semantics (a) (b) (c) (d) (e)

co [12] /0 /0 /0 /0, {b,d} /0, {a,d}, {b,d}
pr [12] /0 /0 /0 {b,d} {a,d}, {b,d}
adw [5] /0,{b} /0, {b} /0, {a1}, {b} /0, {d}, {b}, {b,d} /0, {a}, {b}, {a,d}, {b,d}, {d}
cow [5] {b} {b} {a1}, {b} {b,d} {a,d}, {b,d}, {d}
prw [5] {b} {b} {a1}, {b} {b,d} {a,d}, {b,d}
cow∀ [9] {b} {b} /0,{a1},{b} {b,d} {a,d}, {b,d}, {d}
co∃ [9] {b} {b} {a1},{b} {b,d} {a,d}, {b,d}, {d}
co∀ [9] {b} {b} /0,{a1},{b} {b,d} {a,d}, {b,d}, {d}

q-co {b} {b} /0 /0, {b,d} {a,d}, {b,d}, {c}
q-pr {b} {b} /0 {b,d} {a,d}, {b,d}
sq-co {b} {b} /0 /0, {b,d} /0, {a,d}, {b,d}
sq-pr {b} {b} /0 {b,d} {a,d}, {b,d}
ub-co /0,{c},{b} /0, {b} /0, {a1},{b} /0, {b,d}, {c} /0, {a,d}, {b,d}, {c}, {d}
ub-pr {c},{b} {b} {a1},{b} {b,d}, {c} {a,d}, {b,d}, {c}
ub2-co {b} {b} /0, {a1},{b} /0, {b,d}, {c} {a,d}, {b,d}, {c}
ub2-pr {b} {b} {a1},{b} {b,d}, {c} {a,d}, {b,d}
ub*-co {b} {b} /0, {a1},{b} /0, {b,d} {a,d}, {b,d}, {c}
ub*-pr {b} {b} {a1},{b} {b,d} {a,d}, {b,d}, {c}
ub2*-co {b} {b} /0, {a1},{b} /0, {b,d} {a,d}, {b,d}, {c}
ub2*-pr {b} {b} {a1},{b} {b,d} {a,d}, {b,d}

3. Existing Semantics Based On Undecidedness Blocking

We now review a number of recently proposed semantics that are based, like weak ad-
missibility, on weaker acceptance criteria. They are defined in terms of labellings. A la-
belling L of an AF F is a function that maps each argument of F to a label I (in, or
accepted), O (out, or rejected) or U (undecided). We use L(F) to denote the set of all
labellings of F . A labelling-based semantics σ maps each AF F to a setLσ (F)⊆L(F).
A labelling L corresponds to the extension containing all arguments labelled I by L.

The semantics we review in this section are based on an “undecidedness blocking”
mechanism. While in an admissible labelling, an argument is labelled I only if all its
attackers are labelled O, these semantics allow I-labelled arguments to be attacked by U-
labelled arguments. The semantics we discuss differ in the conditions under which this is
allowed. As we will see, these semantics are, for most benchmark examples, remarkably
similar to the weak admissibility based semantics from the previous section. We start
with the qualified and semi-qualified schemes due to Dauphin et al. [8]. Both schemes
rely on the decomposition of an AF into its SCCs (strongly connected components). We
denote the set of the SCCs of F by SCCS(F). Given an AF F = (A,→), an outparent of
an SCC S of F is an argument x ∈ A \ S such that x → y for some y ∈ S. We denote by
OPF(S) the set of the outparents of S. Given a labelling L ∈L(F), we denote by L↓S the
restriction of L to S and, given a set X ⊆ L(F), denote by X↓S the set {L↓S | L ∈ X}.
Qualified Semantics The qualified scheme is based on the SCC decomposability prin-
ciple, which states that the set of the labellings of an AF F is decomposable into the
product of the labellings of each SCC S as a function of the labels of the outparents of S.
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Definition 3 An AF with input is a tuple (F,Ain,→in,Lin) where: F = (A,→) is an AF,
Ain is a set of input arguments such that A∩Ain = /0, →in⊆ Ain ×A is an input attack
relation, and Lin ∈ L(Ain) is an input labelling. A local function f assigns to every AF
with the input (F,Ain,→in,Lin) a set f (F,Ain,→in,Lin)⊆L(F). We say that f represents
the semantics σ if for every AF F, L ∈ Lσ (F) if and only if ∀S ∈ SCCS(F), L↓S ∈
f (F↓S,OPF(S),→∩OPF(S)×S,L↓OPF (S)). A semantics σ is SCC decomposable if it is
represented by some local function.

Examples of SCC decomposable semantics are the complete and preferred seman-
tics. We denote by fco and fpr the local functions representing these semantics. Their
definitions can be found in [1]. The qualified variant of an SCC decomposable seman-
tics σ (denoted as q-σ ) is based on applying the local function representing σ with one
change: when determining the labellings of an SCC S, the label U for an outparent x of S
is treated like the label O. Thus, if x is attacked by an U-labelled argument y, and x and y
belong to different SCCs, then the undecidedness of x does not propagate to y.

Definition 4 [8] Let σ be an SCC-decomposable semantics represented by the local
function fσ . We define the qualified σ (q-σ ) semantics as the semantics represented by
the local function fq-σ defined by fq-σ ((A,→),Ain,→in,Lin) = fσ ((A,→),Ain,→in,L′

in),
where L′

in is defined by L′
in(x) = I if Lin(x) = I, and L′

in(x) = O if Lin(x) = O or Lin(x) = U.

Table 1 shows the q-co and q-pr extensions of the AFs from Figure 1. Here, we see
that the q-pr extensions coincide with the weakly preferred extensions of AFs (a), (d) and
(e), and that the q-co extensions coincide with the weakly complete extensions of AF (a).
AF (e) demonstrates a crucial difference compared to weak admissibility. Here, {c} is
not weakly admissible because this set does not defend itself from a and b, both of which
appear in weakly admissible sets of the {c}-reduct. However, under q-co semantics, the
undecidedness of a and b does not propagate to c, as witnessed by the q-co labelling
(a = U,b = U,c = I,d = O) with corresponding extension {c}.
Semi-qualified Semantics In the semi-qualified scheme, the label U of an outparent is
treated like the label O, but only if there is no other labelling in which that outparent is
labelled I. This is formalised using the notion of weak SCC decomposability.

Definition 5 An AF with total input is a tuple (F,Ain,→in,Lin,Sin) where F,Ain,→in and
Lin are defined as in Definition 3, Sin ⊆ L(Ain), and Lin ∈ Sin. We call Sin the total input
labellings and Lin ∈ Sin the actual input labelling. Aweak local function g assigns to every
AF with total input (F,Ain,→in,Lin,Sin) a set g(F,Ain,→in,Lin,Sin) ⊆ L(F). A weak
local function g represents a semantics σ whenever, for every AF F, L ∈ Lσ (F) if and
only if ∀S∈ SCCS(F), L↓S ∈ g(F↓S,OPF(S),→∩OPF(S)×S,L↓OPF (S),Lσ (F)↓OPF (S)).
A semantics σ is weakly SCC-decomposable if some weak local function represents σ .

Definition 6 [8] Let σ be an SCC-decomposable semantics. Let fσ denote the local
function that represents σ . We define the semi-qualified σ (or sq-σ ) semantics as the
semantics represented by the weak local function gsq-σ defined by gsq-σ ((A,→),Ain,→in
,Lin,Sin) = gσ ((A,→),Ain,→in,L′

in), where L′
inis defined by: L′

in(x) = I if Lin(x) = I;
L′

in(x)= O if Lin(x)= O; L′
in(x)= O if Lin(x)= U and there is no L∈ Sin such that L(x)= I;

and L′
in(x) = U if Lin(x) = U and there is some L ∈ Sin such that L(x) = I.
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Table 1 shows the sq-co and sq-pr extensions of the AFs shown in Figure 1. Note
that the AF (e) no longer has a sq-co labelling where c is accepted. The sq-co and
sq-pr semantics are different from the weak admissibility-based semantics in that the AF
(c) only has an empty sq-co and sq-pr extension. This is because the (semi-)qualified
scheme applies its base semantics unchanged to single-SCC AFs. The UB semantics that
we present next addresses this problem. Before moving on we note that all variants of
the (semi-)qualified semantics considered here satisfy directionality [8].

UB and UB2 Semantics Dondio and Longo [11] proposed a semantics based on the
following definition. Note that this definition equals that of a standard complete labelling
if we add as a third condition that an argument is labelled I only if all its attackers are
labelled O. This semantics can thus be understood as a variant of the complete semantics
where I-labelled arguments may also be attacked by U-labelled arguments. We refer to
this semantics as UB semantics and define a complete and preferred variant.

Definition 7 Let F = (A,→) be an AF. A ub-co labelling of F is a labelling L such that
(1) L(x) = O iff for some y ∈ A s.t. y → x, L(y) = I, and (2) if L(x) = U then for some
y ∈ A s.t. y → x, L(y) = U. A ub-pr labelling is a ub-co labelling that is maximal with
respect to I-labelled arguments.

Looking at Table 1, we see that the weakly preferred and ub-pr extensions of the
single-SCC AF (c) coincide. One way in which UB semantics diverges from weak ad-
missibility is demonstrated by AF (a). Here, we have not only extension {b} but also {c}
and /0. This behaviour is due to the fact that, under UB semantics, the undecidedness of
a may be blocked not only by b, but also by c or not at all. To avoid this behaviour, and
to enforce the rule that undecidedness is blocked as early as possible, Dondio and Lungo
propose to combine UB semantics with the SCC-recursive scheme [3]. These semantics,
which we refer to as UB2, are directional by virtue of being SCC-recursive.

Definition 8 Let F = (A,→) be an AF. The ub2-co semantics is defined by L ∈
Lub2-co(F) iff the following conditions hold: If |SCCS(F)| = 1, then L ∈ Lub-co(F); If
|SCCS(F)|> 1, then for all S ∈ SCCS(F): (1) L↓(S\DF (S,L)) ∈Lub2-co(F↓(S\DF (S,L))), and
(2) ∀x ∈ DF(S,L),L(x) = O, where DF(S,L) = {x ∈ S|∃y ∈ A \ S,y → x,L(y) = I} de-
notes the set of arguments in S that are attacked by an accepted argument not in S. The
ub2-pr is defined similarly by replacing co with pr in this definition.

Indeed, looking again at Table 1, the ub2-pr semantics coincides with the weakly
preferred semantics in all of the examples we consider except for AF (d), where we see
similar behaviour to that under ub-pr semantics: the undecidedness of amay be blocked
not only by b, but also by c or not at all. The reason is that AF (d) consists of a single
SCC, which leads to the same extensions under UB and UB2 semantics.

4. A New Semantics Based on Undecidedness Blocking

We now propose a new variant of UB semantics called UB*. Our aim is to ensure that
only arguments that are part of a loop can be undecided. While UB semantics requires
that undecided arguments are attacked by an undecided argument, UB* semantics require
that they also attack an undecided argument.
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Definition 9 Let F = (A,→) be an AF. A ub*-co labelling of F is a ub-co labelling of
F such that, for all x ∈ A, if L(x) = U, then L(y) = U for some y ∈ A s.t. x → y. A ub*-pr
labelling is a ub*-co labelling that is maximal with respect to I-labelled arguments.

Looking again at Table 1, we see that ub*-co and ub*-pr semantics of the AF (d)
no longer include {c} as an extension. Unfortunately, this scheme is not yet sufficient
to ensure that only arguments that are part of a loop can be undecided. It also allows
arguments to be labelled U if they lie on a directed path between two cycles. For instance,
the AF ({a,b,c},{(a,a),(a,b),(b,c),(c,c)}) has a ub-co labelling where b is labelled U.
Another problem is that the ub*-pr semantics is not directional. To see why, let F be the
AF (e) from Figure 1. This AF has a ub*-pr labelling where a and b are U, while F↓{a,b}
does not have a ub*-pr labelling where a and b are U. To ensure that an argument is unde-
cided only if it is part of a cycle, we combine the UB* semantics with the SCC-recursive
scheme. We refer to them as loop semantics. The complete and preferred loop semantics,
denoted ub2*-co and ub2*-pr, are defined as in Definition 8 but replacing Lub-co(F)
andLub-pr(F) in condition 1 withLub*-co(F) andLub*-co(F). By virtue of being SCC-
recursive, both of these semantics are directional. Furthermore, arguments are labelled U
only if they are part of a loop. For example, the AF ({a,b,c},{(a,a),(a,b),(b,c),(c,c)})
does not posses a ub*-co labelling in which b is labelled U.

5. UB-Admissibility

While Dondio et al. [11] define complete and preferred variants of the UB semantics, as
well as a grounded variant (defined as an U-maximal ub-co labelling) they do not define
the concept UB admissibility. Note that the notion of “weak admissibility” defined in [10]
is in fact a kind of UB completeness, and was renamed as such in [11]. Here we propose
a notion of admissibility corresponding to the UB semantics. Having such a notion is
useful because, as in Dung’s semantics, admissibility leads to local explanations as to
why an argument is acceptable in AB semantics. That is, to check whether an argument
belongs to a complete extension, we do not have to compute complete extension in their
entirety: all we need to do is to find an admissible set containing the argument.

Standard admissibility is defined in terms of conflict-freeness and defence. In WA
semantics, however, it is the other way around, in the sense that WA defence is defined
in terms of weak admissibility. In both AB and WA approaches, complete extensions are
defined in terms of (regular or weak) admissibility. In the definition of UB admissibility
we introduce here, it is the other way around. We define UB admissibility in terms of
complete UB extensions. The following definition defines UB-admissibility in terms of
the UB-preferred semantics. Note that the same definition can also be applied in combi-
nation with the other semantics we have defined.

Definition 10 Let F = (A,→) be an AF. An UB-admissible set of F is a set E ⊆ A such
that for some UB-preferred set E ′ of F we have that (1) E ⊆ E ′; and (2) for all x ∈ A
such that x → E and E ′ → x, we have E → x.

To illustrate, consider the AF (e) from Figure 1, which has the UB-admissible exten-
sions /0, {a}, {b}, {a,d}, {b,d} and {c}, where only the latter three are UB-preferred.
We leave a more detailed study of this notion of admissibility for future work.
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Table 2. Complexity of weak-admissible based semantics compared to classical semantics (“c” is used as a
shorthand for “complete”)

σ Credσ Sceptσ Verσ

co NP-c P-c in P

pr NP-c ΠP
2 -c coNP-c

adw PSPACE-c trivial PSPACE-c

cow PSPACE-c PSPACE-c PSPACE-c

prw PSPACE-c PSPACE-c PSPACE-c

cow∀ PSPACE-c PSPACE-c PSPACE-c

co∃ PSPACE-c PSPACE-c PSPACE-c

co∀ PSPACE-c PSPACE-c PSPACE-c

q-co NP-c P-c in P

q-pr NP-c ΠP
2 -c coNP-c

σ Credσ Sceptσ Verσ

sq-co ΔP
2 -c inΔP

2 inΔP
2

sq-pr ΔP
2 -c ΠP

2 -c inΔP
2

ub-co in P in P in P

ub-pr in P coNP-c in P

ub2-co NP-c in P in P

ub2-pr NP-c coNP-c in P

ub*-co NP-c in P in P

ub*-pr NP-c in ΠP
2 in coNP

ub2*-co NP-c in P in P

ub2*-pr NP-c in ΠP
2 in coNP

6. Complexity Results

We start by briefly recalling some complexity classes. We assume that the reader is fa-
miliar with the basic concepts of computational complexity theory (see e.g. [13]) as
well as the standard classes P, NP and coNP. In addition, we will consider the classes:
ΔP
2 = PNP of problems that can be solved in deterministic polynomial time when the

algorithm has access to an NP oracle; ΠP
2 = coNPNP of problems that can be solved in

non-deterministic polynomial time when the algorithm has access to an NP oracle; and
PSPACE of problems that can be solved using only the polynomial space of memory and
exponential time. We have P ⊆ NP/coNP ⊆ΔP

2 ⊆ ΠP
2 ⊆ PSPACE. The standard deci-

sion problems studied for an AF F and a semantics σ are: (1) Credulous/sceptical accep-
tance Credσ/Sceptσ (does a given argument appear in at least one extension?); and (2)
Verification Verσ : (does a given extension appear in σ(F)?) In what follows we study the
complexity of these problems with regards to the semantics we consider (see Table 2).

Completeness notions based on BBU weak admissibility. To the best of our knowl-
edge, the only existing complexity results for the semantics under consideration are
those of [14] which show that the semantics of Baumann, Brewka and Ulbricht [5] are
PSPACE-complete. By carefully inspecting the reductions in [14], we obtain that the dif-
ferent notions of weakly complete semantics of Dauphin et al. [9] are also PSPACE-hard,
which is not surprising since these semantics are defined on top of weak admissibility.
Moreover, it is easy to verify that the different notions of defence in the semantics of
Dauphin et al. can be tested within PSPACE and thus PSPACE-completeness follows.

Qualified Semantics. We now turn to the complexity of qualified semantics, which are
similar to the original semantics and thus it is not surprising that the complexity is un-
changed. That is, we can verify a q-co labelling in polynomial time by processing the
SCCs in topological order and, for each argument, check whether its label is valid w.r.t.
its neighbours (differentiating between outparents and non-outparents). To verify a q-pr

labelling, we also verify maximality, which can be done in coNP by the standard al-
gorithm. The upper bounds for the reasoning problems are then arrived at by standard
guessing and checking algorithms, taking into account that the unique minimal q-co can
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be computed via fixed-point iteration. The hardness results are obtained due to (a) the
hardness results for co and pr semantics hold for strongly connected graphs and (b) on
strongly connected graphs, qualified semantics coincide with the base semantics.1

Proposition 1 The complexity results for q-co and q-pr semantics in Table 2 hold.

Semi-qualified semantics. For semi-qualified semantics, verifying a labelling gets
harder. In order to test whether a labelling is sq-co, it is not sufficient to validate the labels
of the arguments with respect to the labels of the other arguments in the same labelling
scheme, but we have to consider also the other labellings. However, once we know which
of the arguments in the earlier SCCs are credulously accepted (and thus which are also
labelled O at least once), we can verify the label of an argument in polynomial time.

That is, for all reasoning tasks, we first process the SCCs in a topological ordering,
and for each SCC, we decide which of the arguments are credulously accepted. That is,
for each argument a, we nondeterministically guess a labelling that labels a as I and la-
bels all the arguments that are not in S or preceding SCCs as U. Such a labelling can then
be verified in polynomial time, given that we already know which of the arguments in
the preceding SCCs are credulously accepted. As we have to do this for each of the argu-
ments, this part takes a linear number of NP oracle calls, i.e. we have aΔP

2 algorithm for
credulous acceptance. Given that we have computed all credulously accepted arguments,
for sq-co, we can then run a polynomial time algorithm to verify a given labelling, while
for sq-pr, we have to perform an additional maximality check which just requires an
additional NP-oracle call. In total, this gives aΔP

2 algorithm for the verification problem.
The standard guessing and checking algorithm for sceptical acceptance now provides
an ΠP

2 algorithm for sq-pr while for sq-co, we can run a polynomial time fixed-point
iteration to compute the unique minimal labelling, which results in a ΔP

2 algorithm.
The hardness of Sceptsq-pr holds because the hardness results for pr semantics hold

even for single-SCC AFs. Next, consider theΔP
2 -hardness of Credsq-pr = Credsq-co. This

is by a reduction from theΔP
2 -complete problem of deciding whether for a propositional

formula in CNF ϕ given by a set of clauses C over atoms x1, . . . ,xn, the lexicographical
maximum satisfying assignment of φ sets xn to true. The reduction builds n SCCs, each
corresponding to an adaptation of the standard translation from SAT to AFs, but which
are in a linear order. The AF Gϕ = (A,R) is constructed as follows: A = {x j

i | 1≤ i ≤ j ≤
n}∪{x̄ j

i | 1≤ i, j ≤ n, i 	= j} ∪{c j | 1≤ j ≤ n,c ∈C}∪{t j,b j | 1≤ j ≤ n}; and

R ={(x j
i , x̄

j
i ),(x̄

j
i ,x

j
i ) | x j

i ∈ A}∪{(x j
i ,c

j) | x j
i ∈ A,xi ∈ c ∈C} ∪

{(x̄ j
i ,c

j) | x̄ j
i ∈ A,¬xi ∈ c ∈C} ∪{(c j, t j),(t j,b j),(b j,b j) | 1≤ j ≤ n}∪

{(b j,x j
i ) | x j

i ∈ A}∪{(b j, x̄ j
i ) | x̄ j

i ∈ A}∪
{(xi

i,c
j) | xi ∈ c ∈C,1≤ i ≤ j ≤ n)}∪{(xi

i, x̄
j
i ) | 1≤ i < j ≤ n}.

Notice that the upper index of the arguments denote the SCC they belong to, and only
the last line in the definition of the attack relation introduces attacks between SCCs.

1Note that these hardness proofs construct AFs with an empty grounded extension. Then, one can add a self-
attacking argument g that symmetrically attacks all other arguments, without changing the complete extensions.

W. Dvořák et al. / Non-Admissibility in Abstract Argumentation136



t1

c11 c12

b1

y11 y12 ȳ12 y13 ȳ13

t2

c21 c22

b2

ȳ21 y22 y23 ȳ23

t3

c31 c32

b3

ȳ31 ȳ32 y33

Figure 2. Illustration of the reduction Gϕ for the formula ϕ with clauses {{y1,¬y2,y3},{¬y1,y2,¬y3)}. At-
tacks between different SCCs are highlighted as dashed lines

The intuition is as follows. In the first SCC, we test whether some assignment sets
x1 to true. If so, we fix this assignment by adding x11 to the extension, which then attacks
all arguments x̄ j

1. If not, all arguments in the first SCC are labelled U, and we have to
pick x̄ j

1 (we may assume thatC contains clauses (xi,¬xi) in the latter SCCs), we proceed
like that, and in the j-th SCC, we check whether some assignment sets x j to true given
the already fixed assignment on earlier variables. One can show that xn is true in the
lexicographic-maximum-satisfying assignment of ϕ iff xn

n is credulously accepted in Gϕ .

Proposition 2 The complexity results for sq-co and sq-pr semantics in Table 2 hold.

UB Semantics. While ub-semantics requires that defended arguments are labelled I,
they do not require that all I-labelled arguments are defended. It turns out that this lack
of admissibility reduces the complexity significantly. First, notice that by definition in
UB-complete labellings: (a) if an argument a is labelled I, then all arguments attacked
by a must be labelled O; and (b) if all attackers of an argument a are labelled O, then a
must be labelled I. We can compute UB-complete labellings by starting with a set S of I-
labelled arguments, and then use the two rules from above to propagate labels until either
we obtain that an argument must be both labelled I and O or a fixed point is reached.
In the former cases, we have that there is no UB-complete labelling that labels all the
arguments in S as I. In the latter case, we label the remaining arguments U to obtain UB-
complete labelling. By that, we have that the grounded labelling is the unique minimal
ub-co labelling, and thus sceptical acceptance is P-complete. To decide on credulous
acceptance w.r.t. ub-co (and ub-pr), one can fix the label of the query argument as I
and apply the characteristic function until a fixed point is reached. If the result is conflict
free, the argument is credulously accepted, otherwise it is not accepted. The conditions
for a ub-co labelling can be easily checked in polynomial time, When verifying ub-pr

labellings, we have to also check the maximality condition. Let S be the set of I-labelled
arguments. We can now test for each U-labelled argument a whether S∪{a} is contained
in some UB-complete labelling. This can be done simply by the above-mentioned fixed-
point iteration and is thus in polynomial time. Given that verification is in P, we can
solve Sceptub-pr with the standard guessing and checking approach in coNP. We next
show that Sceptub-pr is also coNP-hard. To this end, consider the following adaptation
of standard reduction (cf. Figure 2). Given a propositional formula ϕ in CNF given by
a set of clauses C over atoms Y , we define ϕ as Fϕ = (A,R) (cf. Figure 2 ), where
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A = {ϕ, ϕ̄1, ϕ̄2} ∪C ∪Y ∪ Ȳ and R = {(c, ϕ̄1) | c ∈ C} ∪ {(l,c),(c,c) | l ∈ c, c ∈C}∪
{(x, x̄),(x̄,x) | x ∈Y}∪{(ϕ̄1,ϕ),(ϕ, ϕ̄2),(ϕ̄2, ϕ̄1)}. If all clause arguments ci are labelled
O, none of the arguments in the cycle can be accepted. Otherwise, if at least one ci remains
U, we can accept ϕ set ϕ̄2 as O and ϕ̄1 as U. We thus have that the argument ϕ is sceptically
accepted iff formula ϕ is unsatisfiable.

Proposition 3 The complexity results for ub-co and ub-pr semantics in Table 2 hold.

UB2 semantics. We now turn to the SCC-recursive variants of the ub-semantics,
ub2-semantics. In order to verify a labelling, we can follow the SCC-recursive schema
and apply the verification of the base semantics in the base case. Since verification of
ub-semantics is in polynomial time, we obtain that ub2-semantics can also be verified
in polynomial time. The NP/coNP-membership of credulous/sceptical reasoning is then
verified by the standard guessing and checking algorithms, and the matching hardness
results are verified by standard reductions for credulous and sceptical acceptance.

Proposition 4 The complexity results for ub2-co and ub2-pr semantics in Table 2 hold.

UB* and UB*2 semantics. Similarly, for the UB-complete semantics, we can verify
UB*-complete and UB*2-complete extensions in polynomial time, and thus the remain-
ing upper bounds are obtained by standard procedures.

Now, consider the verification of an UB*-preferred extension. The additional con-
dition that an U-labelled argument has to attack an U-labelled argument allows for a sim-
ilar behaviour to that of standard Dung complete and preferred semantics. Consider an
argument a that is labelled I and an argument b that attacks only argument a. We have
that b cannot be labelled U or I and thus has to be labelled O. That is, we have to find
an argument c that can be labelled I and defends a against b. With this observation, one
can easily adapt the standard translations such that the NP/coNP hardness results for the
reasoning tasks of complete and preferred semantics also transfer to UB* complete and
UB* preferred semantics (even for strongly connected graphs).

Proposition 5 The complexity results for ub*-co, ub*-pr ub2*-co and ub2*-pr seman-
tics in Table 2 hold.

7. Conclusion

We reviewed several recent proposals for non-admissible non-naive semantics for ab-
stract argumentation and studied their complexity. We focused in particular on seman-
tics that behave similar to the weakly complete and preferred semantics, but are based
on undecidedness blocking mechanisms. Our complexity results (Table 2) show that this
approach has significantly lower complexity than the weak admissibility based approach.
We also defined a variant called loop semantics, that (1) assigns the label U only to ar-
guments that are part of a loop, and (2) allows arguments labelled I to be attacked by
U-labelled arguments. Unlike the weakly complete semantics, the complete variant of
this semantics satisfies directionality. We plan to investigate the properties of this new
semantics, as well as the derived notion of UB-admissibility, in future work.
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W. Dvořák et al. / Non-Admissibility in Abstract Argumentation 139



Treewidth for Argumentation Frameworks
with Collective Attacks
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Abstract. Abstract Argumentation is a key formalism to resolve conflicts in in-
complete or inconsistent knowledge bases. Argumentation Frameworks (AFs) and
extended versions thereof turned out to be a fruitful approach to reason in a flex-
ible and intuitive setting. The addition of collective attacks, we refer to this class
of frameworks as SETAFs, enriches the expressiveness and allows for compacter
instantiations from knowledge bases, while maintaining the computational com-
plexity of standard argumentation frameworks. This means, however, that standard
reasoning tasks are intractable and worst-case runtimes for known standard algo-
rithms can be exponential. In order to still obtain manageable runtimes, we exploit
graph properties of these frameworks. In this paper, we initiate a parameterized
complexity analysis of SETAFs in terms of the popular graph parameter treewidth.
While treewidth is well studied in the context of AFs with their graph structure,
it cannot be directly applied to the (directed) hypergraphs representing SETAFs.
We thus introduce two generalizations of treewidth based on different graphs that
can be associated with SETAFs, i.e., the primal graph and the incidence graph. We
show that while some of these notions allow for parameterized tractability results,
reasoning remains intractable for other notions, even if we fix the parameter to a
small constant.

Keywords. Abstract Argumentation, Collective Attacks, SETAF, Treewidth

1. Introduction

Argumentation is a key area in Artificial Intelligence. Abstract Argumentation as intro-
duced by Dung [1] serves as a unifying framework to capture argumentation processes
in a formal yet intuitive setting. In standard argumentation frameworks (AFs), discus-
sions are formalized as a directed graph where the nodes represent abstract arguments
(independent of their internal structure), and the edges represent the attack relation. It
turned out that the binary attack relation of AFs occasionally limits the expressiveness of
frameworks, in particular if one is not willing to introduce artificial arguments to model
technicalities. To avoid this issue, Nielsen and Parsons proposed a relaxation of this re-
striction: collective attacks [2]. If a set S collectively attacks an argument, said argument
is only effectively defeated by S if all arguments in S are accepted by an agent. The
resulting class of frameworks is referred to as SETAFs. It was shown that SETAFs are
indeed more expressive than AFs [3].

Due to SETAFs being highly expressive yet intuitive, there is now an increased in-
terest in this formalism within the research community. While in the general case the
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same (mostly intractable) complexity upper bounds hold [4], tractable graph classes have
only recently been investigated [5,6]. We add to this by starting the analysis of compu-
tational properties of SETAFs in the context of parameterized complexity. A problem is
fixed-parameter tractable (FPT), if we can find a numerical parameter p describing the
instances such that for constant values of p the runtime is polynomial in the instance size
(and the degree of the polynomial is independent of p). Implementations of these param-
eterized algorithms often work well in practice, if instances are not randomly generated
but admit an exploitable structure. One prominent such parameter is treewidth. A low
treewidth indicates a certain “tree-likeness” of a graph, and as problems often become
easy on trees, adapted versions of these easy algorithms can often be applied to instancees
with low treewidth. In AFs, it has been shown that reasoning is indeed fixed-parameter
tractable w.r.t. treewidth [7]. We investigate how this notion of treewidth is applicable to
the directed hypergraph-structure of SETAFs and show that certain generalizations ad-
mit FPT algorithms, while other reasonable attempts do not. In particular, our contribu-
tions can be summarized as follows. After recalling the necessary formal background in
Section 2, we discuss the challenges of defining treewidth for SETAFs in Section 3 and
present two different notions of treewidth: primal-treewidth and incidence-treewidth. In
Section 4 we present negative results regarding primal-treewidth, namely that reasoning
remains intractable even for small parameter values. Section 5 establishes FPT results
for incidence-treewidth via a generic argument utilizing Monadic Second Order logic;
this theoretical result gets refined and improved in Section 6 where we discuss a dynamic
programming algorithm tailored to SETAFs. Finally, in Section 7 we conclude and give
pointers to possibly interesting directions for future research.

2. Background

We start with the definition of an Argumentation Framework with Collective Attacks
(SETAF) [2] as a generalization of (standard) Argumentation Frameworks (AFs) [1].

Definition 1. A SETAF is a pair SF = (A,R) where A is a finite set of arguments, and
R ⊆ (2A \{ /0})×A is the attack relation. For an attack (T,h) ∈ R we call T the tail and
h the head of the attack. SETAFs (A,R), where for all (T,h) ∈ R it holds that |T | = 1,
amount to (standard Dung) AFs. In that case, we usually write (t,h) to denote the set-
attack ({t},h). We write S �→R a if there is a set T ⊆ S with (T,a)∈ R. Moreover, we write
S′ �→R S if S′ �→R a for some a ∈ S. We drop subscript R in �→R if there is no ambiguity.
For S ⊆ A, we use S+R to denote the set {a | S �→R a} and define the range of S (w.r.t. R),
denoted S⊕R , as the set S∪S+R .

The well-known notions of conflict and defense from classical Dung-style-AFs nat-
urally generalize to SETAFs.

Definition 2. Let SF = (A,R) be a SETAF. A set S ⊆ A is conflicting in SF if S �→R a for
some a ∈ S. S ⊆ A is conflict-free in SF, if S is not conflicting in SF, i.e. if T ∪{h} 	⊆ S
for each (T,h) ∈ R. cf(SF) denotes the set of all conflict-free sets in SF.

Definition 3. Let SF = (A,R) be a SETAF. An argument a ∈ A is defended (in SF) by a
set S ⊆ A if for each B ⊆ A, such that B �→R a, also S �→R B. A set T ⊆ A is defended (in
SF) by S if each a ∈ T is defended by S (in SF).
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Table 1. Complexity for AFs and SETAFs (C-c denotes completeness for C).

grd adm com pref stb

Credσ P-c NP-c NP-c NP-c NP-c

Skeptσ P-c trivial P-c ΠP
2 -c coNP-c

The semantics we study in this work are the grounded, admissible, complete, pre-
ferred, and stable, semantics, which we will abbreviate by grd, adm, com, pref, and stb,
respectively [2,4,8]. Acceptable sets of arguments w.r.t. a semantics are called extensions.

Definition 4. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF). Then,
• S ∈ adm(SF), if S defends itself in SF,
• S ∈ com(SF), if S ∈ adm(SF) and a ∈ S for all a ∈ A defended by S,
• S ∈ grd(SF), if S =

⋂
T∈com(SF) T ,

• S ∈ pref(SF), if S ∈ adm(SF) and there is no T ∈ adm(SF) s.t. T ⊃ S,
• S ∈ stb(SF), if S �→ a for all a ∈ A\S,

The relationship between the semantics has been clarified in [2,4,8] and matches
with the relations between the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF)⊆ pref(SF)⊆ com(SF)⊆ adm(SF)⊆ cf(SF)

Complexity. We assume the reader to have basic knowledge in computational complex-
ity theory1, in particular we make use of the complexity classes P (polynomial time), NP
(non-deterministic polynomial time), coNP, and ΠP

2 . For a SETAF SF = (A,R) and an
argument a ∈ A, we consider the standard reasoning problems (under semantics σ ):

• Credulous acceptance Credσ : Is a contained in at least one σ extension of SF?
• Skeptical acceptance Skeptσ : Is a contained in all σ extensions of SF?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted
in Table 1. As SETAFs generalize Dung AFs the hardness results for Dung AFs [9] carry
over to SETAFs, also the same upper bounds hold for SETAFs [4].

For a more fine-grained complexity analysis we also make use of the complexity
class FPT (fixed-parameter tractability): a problem is fixed-parameter tractable w.r.t. a
parameter if there is an algorithm with runtime O( f (p) · nk), where n is the size of the
input, k is an integer constant, p is an integer describing the instance called the param-
eter value, and f (·) is an arbitrary computable function independent of n (typically at
least exponential in p). For fixed (i.e., constant) parameter values p, FPT-runtime is
polynomial (and the degree of the polynomial does not depend on p).

3. Graph Notions and Tree Decompositions of SETAFs

In this section we discuss approaches to apply the notion of treewidth [10] to SETAFs.

Definition 5 (Treewidth). Let G = (V,E) be an undirected graph. A tree decomposition
(TD) of G is a pair (T ,X ), where T = (VT ,ET ) is a tree and X = (Xn)n∈VT

is a set
of bags (a bag is a subset of V ) such that

1For a gentle introduction to complexity theory in the context of formal argumentation, see [9].
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1.
⋃

n∈VT
Xn =V ;

2. for each v ∈V , the subgraph induced by v in T is connected; and
3. for each {v,w} ∈ E, {v,w} ⊆ Xn for some n ∈VT .

The width of a TD is max{|Xn| | n ∈ VT }− 1, the treewidth of G is the minimum width
of all TDs for G.

For fixed k it can be decided in linear time whether a graph has treewidth at most
k; moreover an according tree decomposition can be computed in linear time [11]. For
practical applications there are heuristic approaches available that will return decompo-
sitions of reasonable width very efficiently [12]. However, as the underlying structure of
SETAFs is a directed hypergraph, this notion is not directly applicable in our context. We
can use “standard” directed graphs to describe SETAFs, and apply treewidth by simply
ignoring the direction of the involved arcs. For SETAFs there is the primal graph [5] and
the incidence graph [6] as such notions, each of which leads to its own treewidth notion
for SETAFs. First, we utilize the primal graph to define primal-treewidth.

Definition 6 (Primal Graph). Let SF = (A,R) be a SETAF. The primal graph of SF is
defined as Primal(SF) = (A,R′), where R′ = {(t,h) | (T,h) ∈ R, t ∈ T}. The primal-
treewidth ptw(SF) is defined as the treewidth of Primal(SF).

It is easy to see that several SETAFs can map to the same primal graph. However,
restrictions on the primal graph are often useful to obtain computational speedups for
otherwise hard problems [5,6]. In contrast, the incidence graph uniquely describes a
SETAF, as attacks are explicitly modeled in this notion. Again, we utilize the incidence
graph to define incidence-treewidth.

Definition 7 (Incidence Graph). Let SF = (A,R) be a SETAF and let tails(SF) = {T |
(T,h) ∈ R}. We define the bipartite incidence graph of SF as Inc(SF) = (V,E) with
V = A∪ tails(SF) and E = {(t,T ),(T,h) | (T,h) ∈ R, t ∈ T}. The incidence-treewidth
itw(SF) is defined as the treewidth of Inc(SF).

We want to highlight that (a) both of these notions properly generalize the classi-
cal notion of treewidth commonly applied to Dung-style AFs, and (b) these measures
coincide on AFs. Formally:

Proposition 8. The “standard” treewidth of AFs F coincides with ptw(F) and itw(F).

Proof. The case of primal-treewidth is immediate. For incidence-treewidth note that we
can construct Inc(F) from F by substituting each edge r=(a,b) ∈ R by a fresh vertex r
and two edges (a,r), (r,b). It is well known that this operation preserves treewidth.

We will first show that reasoning on SETAFs with fixed primal-treewidth remains
hard (Section 4). Incidence-treewidth on the other hand admits FPT algorithms—we will
initially establish this by characterizing the SETAF semantics via Monadic Second Order
logic (MSO) [13,14] (Section 5). We utilize this characterization to obtain the desired
upper bounds, as in this context we can apply a meta-theorem due to Courcelle [15,16].
In a nutshell, it states that every graph property that can be characterized in MSO can be
checked in polynomial time. However, this generic method typically produces infeasible
constants in practice, which is why in Section 6 we will refine these results and provide
a prototypical algorithm with feasible constants for stable semantics (cf. [7]).
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x1

x̄1
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x2 x̄2
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x̄3
2: ϕ,x2, x̄2

1: ϕ,x1, x̄1

3: ϕ,x3, x̄3

(a) (b) (c)

Figure 1. (a) The framework SFϕ from the proof of Theorem 9 for ϕ = (x1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2)∧ (x2 ∨ x3),
(b) Primal(SFϕ ), and (c) a tree-decomposition of Primal(SFϕ ) of width 2.

4. Decomposing the Primal Graph

We start with an investigation of the treewidth of the primal graph. It has been shown that
various restrictions on the primal graph can lead to computational ease [5,6]. However,
we will see that reasoning remains hard for SETAFs with constant primal-treewidth (in
contrast to the AF-case, where we observe FPT results). We establish this via reductions
from (QBF-)SAT, illustrated in Figures 1 and 2. Intuitively, the attacks between the dual
literals x and x̄ represent the choice between assigning x to true or false. The collective
attack ({x, x̄},ϕ) ensures that we take at least one of x and x̄ into any extension in order to
defend ϕ , making sure we only construct proper truth assignments. Finally, the remaining
attacks towards ϕ correspond to the clauses and make sure that we cannot defend ϕ if for
any clause we set all duals of its literals true—as this means the clause is not satisfied.

Theorem 9. The problems Credσ for σ ∈ {adm,com,stb,pref} are NP-complete, and
Skeptstb is coNP-complete for SETAFs SF with ptw(SF)≥ 2.

Proof. The membership coincides with the general case. For the respective hardness re-
sults, consider the following reduction from SAT (see Figure 1). Let X be the set of atoms
and C be the set of clauses of a boolean formula ϕ (given in CNF). We denote a clause
c ∈C as the set of literals in the clause, e.g. the clause x1∨ x̄2∨ x̄3 correspond to the set
of literals (arguments, resp.) {x1, x̄2, x̄3}. By xd we denote the dual of a literal (e.g. xd = x̄
and x̄d = x). Let SFϕ = (A,R), where A = {x, x̄ | x ∈ X}∪{ϕ}, and

R = {({xd | x ∈ c},ϕ) | c ∈C}∪{({x, x̄},ϕ),(x, x̄),(x̄,x) | x ∈ X}

Now it holds that ϕ is in at least one σ extension for σ ∈ {adm,com,stb,pref} if and
only if ϕ is satisfiable.

(⇒) An admissible set E containing ϕ contains exactly one of each pair x, x̄, as
otherwise ϕ would not be defended against the attack ({x, x̄},ϕ). Moreover, as c̄ 	⊆ E for
each attack (c̄,ϕ)—c̄ consists of the duals of the literals in c—this means at least one
argument corresponding to a literal of each clause c ∈ C is in E. Hence, E corresponds
to a satisfying assignment of ϕ .

(⇐) Every satisfying assignment of ϕ corresponds to a stable extension of SFϕ : let I
be the interpretation satisfying ϕ , the corresponding set E = {ϕ}∪{x | I(x) = true}∪{x̄ |
I(x) = false} is then stable (admissible, complete, preferred): As I satisfies ϕ , for each
attack corresponding to a clause not all tail-arguments are in E, and hence ϕ is defended.
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2: ϕ, ϕ̄,z2, z̄2

1: ϕ, ϕ̄,y1, ȳ1

3: ϕ, ϕ̄,z3, z̄3

(a) (b)

Figure 2. (a) SFΦ from the proof of Theorem 10 for Φ = ∀{y1}∃{z2,z3}(y1 ∨ z̄2 ∨ z̄3)∧ (ȳ1 ∨ z2)∧ (z2 ∨ z3),
and (b) a tree-decomposition of Primal(SFΦ) of width 3.

For the coNP completeness result, we add an argument ϕ̄ and an attack (ϕ, ϕ̄). If
ϕ is unsatisfiable, ϕ will be attacked and ϕ̄ will be contained in every stable extension.
Finally note that stable extensions are admissible, complete, and preferred. The constant
primal-treewidth is immediate, as illustrated in the example of Figure 1(c).

Also for preferred semantics reasoning remains intractable for SETAFs with fixed
primal-treewidth. For this result, we extend the construction from Theorem 9 by an ad-
ditional argument ϕ̄ that attacks the existentially quantified variables (see Figure 2).

Theorem 10. Skeptpref is ΠP
2 -complete for SETAFs SF with ptw(SF)≥ 3.

Proof. We show this by a reduction from the ΠP
2 -complete QBF2∀ problem. Let Φ =

∀Y∃Zϕ be a QBF2∀-formula with ϕ in CNF. We construct the SETAF SFΦ by extending
Fϕ from Theorem 9 in the following way (for an example see Figure 2): First, we set X =
Y ∪Z and add all arguments and attacks according to the construction of Fϕ . Moreover we
add an argument ϕ̄ and attacks (ϕ̄, ϕ̄),(ϕ, ϕ̄). The last step is to add attacks (ϕ̄,z),(ϕ̄, z̄)
for each z ∈ Z. Now ϕ is in every preferred extension of SFΦ if and only ifΦ is valid. We
start with some general observations: ϕ̄ cannot be in any admissible set, and ϕ can only
be in an admissible set S if for each x ∈Y ∪Z exactly one of x and x̄ is in S. Moreover, in
order to have S∩ (Z ∪ Z̄) 	= /0, the argument ϕ̄ has to be attacked by S, and consequently
ϕ ∈ S. This means for every admissible set S that S∩ (Y ∪ Ȳ ∪Z ∪ Z̄) corresponds to a
satisfying assignment of the formula ϕ . In summary, every assignment on the variables
Y corresponds to an admissible set, and every other admissible set in SFΦ contains ϕ and
represents a satisfying assignment for ϕ .

(⇒) Assume ϕ is in every preferred extension. Since every set S ⊆ 2Y is admissible
and in order to accept ϕ for each x ∈ Y ∪Z either x or x̄ have to be accepted, we know
that for every assignment of Y variables there is an assignment satisfying ϕ .

(⇐) Now assume Φ is valid, i.e. for each assignment IY on the variables Y , there is
an assignment IZ on Z such that IY ∪ IZ satisfies ϕ . From this and our observations above
it follows that ϕ is in every preferred extensions.

It is easy to see that the primal-treewidth of FΦ is bounded by 3 (see Figure 2(b)).

Hence, under standard complexity-theoretical assumptions, these problems do not
become tractable when parameterized by the primal-treewidth.
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5. Parameterized Tractability via Incidence-Treewidth

In this section, we establish tractability for reasoning in SETAFs with constant incidence
treewidth by utilizing a meta-theorem due to Courcelle [15,16]. In particular, we use the
tools of Monadic Second Order logic (MSO) to characterize the semantics of SETAFs
(similarly, this has been done for AFs [13,14]). MSO generalizes first-order logic in the
sense that it is also allowed to quantify over sets. Domain elements in our settings are
vertices of an (incidence)-graph, i.e., arguments or attacks. Hence, MSO in our context
consists of variables corresponding to domain elements (indicated by lower case letters),
and set-variables corresponding to sets of domain elements (indicated by uppercase let-
ters). Moreover, we use the standard logical connectives ¬,∧,∨,→,↔, as well as quanti-
fiers ∃,∀ for both types of variables. We use the unary predicates A(·) and R(·) to indicate
an element being an argument or an attack of our SETAF, respectively. Moreover, we use
the binary predicate E(x,y) to indicate an edge in the incidence graph between incidence-
vertices x and y. Alternatively, we write a ∈ A, r ∈ R, (x,y) ∈ E for A(a),R(r),E(x,y),
respectively. Based on these basic definitions, we define notational shortcuts to conve-
niently characterize SETAF-properties. Let SF=(A,R) be a SETAF and Inc(SF)=(V,E)
its incidence graph. We define the following notion for T ⊆V and h ∈V : let (T,h)∈ R be
short-hand notation for ∃r (r ∈ R∧ (r,h) ∈ E ∧∀t(t ∈ T ↔ (t,r) ∈ E)). This notion con-
sists of four parts: (1) vertex r corresponds to an attack, (2) h is the head of the attack r,
(3) the arguments in T constitute the tail of r. We utilize this to avoid dealing with the
attack-vertices of the incidence graph in our semantics characterizations. We borrow the
following “building blocks” from [14] (slightly adapted for our setting).

X ⊆ Y = ∀x (x ∈ X → x ∈ Y ) X 	⊂ Y = ¬(X ⊂ Y )
X ⊂ Y = X ⊆ Y ∧¬(Y ⊆ X) x /∈ X = ¬(x ∈ X)
X 	⊆ Y = ¬(X ⊆ Y ) x ∈ X⊕

R = x ∈ X ∨∃Y (Y ⊆ X ∧ (Y,x) ∈ R)

We can express (subset-)maximality: maxA,P(.),⊆(X)=P(X)∧¬∃Y (Y ⊆A∧P(Y )∧X⊂
Y ), and analogously (subset-)minimality: minA,P(.),⊆(X) = maxA,P(.),⊇(X) [14] for any
expressible property P(·). Having these tools at hand, we can characterize the SETAF
semantics in an intuitive way. It is easy to verify that these exactly correspond to the
respective notions from Definition 4. Utilizing these building blocks, we can encode the
semantics cf,adm,com,grd,stb,pref exactly as in AFs [13,14].

Definition 11. Let SF = (A,R) be a SETAF and let Inc(SF) = (V,E) be its incidence
graph. For a set X ⊆V where ∀x ∈ X(x ∈ A):

cf(X) = ∀T,h((T,h) ∈ R → (T 	⊆ X ∨h /∈ X))
adm(X) = cf(X)∧∀T,h(((T,h) ∈ R∧h ∈ X)→∃S, t(S ⊆ X ∧ t ∈ T ∧ (S, t) ∈ R))
com(X) = adm(X)∧∀x((x ∈ A∧ x /∈ X)→

∃S((S,x) ∈ R∧¬∃T (T ⊆ X ∧ (X ,s) ∈ R∧ s ∈ S)))
grd(X) = minA,com(·),⊆(X)
stb(X) = cf(X)∧∀x(x ∈ A → x ∈ X⊕

R )
pref(X) = maxA,adm(·),⊆(X)

We can immediately apply Courcelle’s theorem [15,16] to obtain the desired result.

Theorem 12. Let SF be a SETAF. For the semantics under our consideration, reasoning
is fixed-parameter tractable w.r.t. itw(SF).
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Figure 3. Running example for Section 6: (a) SETAF SF ; (b) Inc(SF); (c) tree decomposition of Inc(SF).
The edge labels indicate how (c) can be transformed into a nice tree decomposition.

6. Dynamic Programming on SETAFs

In the following, we specify a dynamic programming algorithm utilizing incidence-
treewidth to reason in stable semantics. Ultimately, we will show that this algorithm
allows us to reason efficiently in SETAFs with fixed incidence-treewidth.
Node Types. To illustrate the idea of this algorithm, we restrict the tree-decompositions
of the incidence graph to nice tree-decompositions: a tree-decomposition (T ,X ) is
called nice if T = (VT ,ET ) is a rooted tree with an empty bag in the root node, and if
each node t ∈ T (shorthand notion for n ∈VT ) is of one of the following types:

1. Leaf : n has no children in T ,
2. Forget: n has one child n′, and Xn = Xn′ \ {v} for some v ∈ Xn′ ,
3. Insert: n has one child n′, and Xn = Xn′ ∪ {v} for some v 	∈ Xn′ ,
4. Join: n has two children n′, n′′, with Xn = Xn′ = Xn′′ .

Any tree-decomposition can be transformed into a nice tree decomposition with the same
width in linear time [17]. Let SF = (A,R) be a SETAF and Inc(SF) = (V,E). For sets
U ⊆V , byUA,UR we identify the sets (U ∩A), (U ∩R), respectively. By X≥n we denote
the union of all bags Xm where m ∈VT appears in the subtree of T rooted in n.
Colorings. We use colors to keep track of the arguments and attacks that appear in the
bag Xn of node n ∈ VT . These colorings characterize extension candidates that are con-
sistent with the framework rooted in the node in question. For an argument a in relation
to an extension E, we use the color ina to indicate a ∈ E. The color outa indicates there
is an attack r = (T,a) with a /∈ T,T ⊆ E, and r ∈ XR≥n, i.e., a is attacked by E and a “re-
sponsible” attack appears in the subtree of T rooted in n. Finally, the color pouta (provi-
sionally out) indicates there is an attack r = (T,a) with a /∈ T,T ⊆ E, and r /∈ XR≥n, i.e., a
is attacked by E but the “responsible” attack appears “above” the node n inT . Similarly,
for attacks (T,h) we use the color inr to indicate T ⊆ E. The color outr means that there
is an argument a ∈ T (i.e., in the tail) that is attacked by E, and the “responsible” attack
appears in the subtree of T rooted in n. Finally, poutr means that an argument a ∈ T is
attacked by E, but the “responsible” attack appears “above” the node n in T . Formally,
a coloring for a node n ∈VT is a functionC : Xn →{ina,outa,pouta, inr,outr,poutr}. By
[C] we denote the set {a | C(a) = ina}. Colorings in a node t ∈ T characterize exten-
sion candidates—partial evaluations of the framework rooted in t. Colorings are gener-
ated in the leaves, and unsuitable extension candidates are successively eliminated when
traversing the tree in a bottom-up manner. For an example see Figure 3.
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poutr inr
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Figure 4. Example for valid colorings for (a) the leaf node 4 from Figure 3 and (c) the preceding forget node
for argument a. Subfigure (b) illustrates the subgraph of the incidence graph that corresponds to the leaf node
together with the coloring that is discarded by the forget node.

Leaf Nodes. Intuitively, in leaf nodes we guess one of two possibilities: in or out/pout
for each argument and each attack, and keep every “consistent” coloring. Whether an
argument/attack is colored out or pout depends only on whether the attack in this coloring
is already present in the current leaf node. Formally, a valid coloring for a leaf n is each
coloring that satisfies the conditions in the box below. The valid colorings for leaf node 4
of our running example (Figure 3) are depicted in Figure 4(a).

For each argument a ∈ XA
n :

C(a) = ina ⇒∀r=(T,a) ∈ XR
n :C(r) ∈ {poutr,outr}

C(a) = outa ⇔∃r=(T,a) ∈ XR
n :C(r) = inr

For every attack r = (T,h) ∈ XR
n :

C(r) = inr ⇒C(h) 	= ina ∧∀t ∈ T ∩XA
n :C(t) = ina

C(r) = outr ⇔∃t ∈ T ∩XA
n :C(t) ∈ {pouta,outa}

Forget Nodes. We examine forget-argument nodes and forget-attack nodes separately.
Let n be a forget-argument nodewith child n′ such that XA

n =XA
n′ \{a}. We have to discard

all coloringsC whereC(a) = pouta, as in these colorings a is supposed to be attacked by
[C]. As we forget a in the current node and by the definition of a tree-decomposition, this
cannot happen: consider again the running example from Figure 3. a is forgotten between
bag 4 and 3; i.e., in the “upper” part of the tree decomposition, no attacks towards a
can be added. Hence, there cannot be an attack colored inr towards a that confirms a
being attacked, and the provisional color pouta cannot be updated to outa. Formally, if
C is a valid coloring for n′ and C(a) 	= pouta, then C−a is a valid coloring for n, where
(C−a)(b) =C(b) for each b ∈ Xn. We handle forget-attack nodes in the same way: if n
is a forget node with child n′ such that XR

n = XR
n′ \ {r}, and if C(r) 	= poutr, then (C− r)

is a valid coloring for n, where (C− r)(b) =C(b) for each b ∈ Xn.
Insert Nodes. We distinguish the two cases where we insert an argument and insert
an attack. Whenever we insert an argument a, we have to consider up to two different
scenarios: (C + a): the added argument is attacked by the extension. In this case the
added argument is colored pouta or outa, depending on whether the “responsible” attack
is already in the current bag. In case a is in the tail of an attack, we can color this attack
outr. (C+̇a): the added argument is in the extension. In both cases we have to check
whether the result will be consistent with the existing colors, i.e., for (C+ a) the added
argument must not be in the tail of an attack that is colored inr, and for (C+̇a) there
must not be an attack colored inr towards the added argument. Assume we would color
the inserted argument b as outa/pouta while b is in the tail of attack r, which we already
colored inr in a previous step. Of course, this is not consistent with our intended meaning
of the attack color inr (see (Figure 5(b)). On the other hand, assume we color b as ina
while it is attacked by r which we already colored inr in a previous step. This would
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Figure 5. “Insert b” node between node 4 and 3 (in the running example from Figure 3 after “Forget a” from
Figure 4). Subfigures (b) and (c) show inconsistent colorings, (d) shows the resulting valid colorings.

introduce a conflict in the constructed extension (see (Figure 5(c)). The operationsC+a
and C� a are defined the box below. Formally: Let n be an insert-argument node with
child n′ s.t. XA

n = XA
n′ ∪ {a}. IfC is a valid coloring for n′,

• if �r=(T,h) ∈ XR
n : (C(r) = inr ∧a ∈ T ), thenC+a is a valid coloring for n;

• if �r=(T,a) ∈ XR
n : (C(r) = inr), thenC+̇a is a valid coloring for n.

(C+a)(b) =

⎧
⎪⎪⎨

⎪⎪⎩

outa if b = a∧∃r = (T,a) ∈ XR
n : (C(r) = inr ∧a /∈ T )

pouta if b = a∧�r = (T,a) ∈ XR
n : (C(r) = inr ∧a /∈ T )

outr if b = (T,h)∧a ∈ T ∧C(b) = poutr
C(b) otherwise

(C+̇a)(b) =
{

ina if b = a
C(b) otherwise

For insert-attack nodes, we also have to consider two cases for an attack r = (T,h):
(C + r): the extension attacks T , either in the current bag (in which case we color the
attack outr), or possibly in the “upper” parts ofT , then we color the attack poutr. (C+̇r):
this case indicates T ⊆ E for the extension E. In this case the head of the attack can be set
to outa. Again, we can only apply this coloring if it is consistent with the previous colors.
We will use the operations C + r and C+̇r as defined below. Let n be an insert-attack
node with child n′ such that XR

n = XR
n′ ∪ {r = (T,h)}. IfC is a valid coloring for n′,

• thenC+ r is a valid coloring for n;
• if (h /∈XA

n ∨C(h)	=ina)∧∀t∈T ∩XA
t :C(t)= ina, thenC+̇r is a valid coloring for n.

(C+ r)(b) =

⎧
⎨

⎩

outr if b = r∧∃t ∈ T ∩XA
n :C(t) ∈ {pouta,outa}

poutr if b = r∧�t ∈ T ∩XA
n :C(t) ∈ {pouta,outa}

C(b) otherwise

(C+̇r)(b) =

⎧
⎨

⎩

inr if b = r
outa if r = (T,h)∧b = h
C(b) otherwise

Join Nodes. In these nodes we combine the colorings of immediate child nodes. Let n be
a join node with children n′,n′′. IfC is a valid coloring for n′ and D is a valid coloring for
n′′ with [C] = [D] and {r |C(r)= inr} = {r | D(r)= inr}, then C � D is a valid coloring
for n (see the box below).

(C � D)(b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ina ifC(b) = D(b) = ina
outa ifC(b) = outa ∨D(b) = outa
pouta otherwise (if b ∈ XA)
inr ifC(b) = D(b) = inr
outr ifC(b) = outr ∨D(b) = outr
poutr otherwise (if b ∈ XR)
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Theorem 13. With the presented algorithm, Credstb, Skeptstb as well as counting the
number of stable extensions can be done in time O(5k · k · (|A|+ |R|)). Moreover, we can
enumerate all stable extensions with linear delay.

Proof. We can assume the number of nodes to be bounded by O(|A|+ |R|). For each
node, the number of (valid) colorings (i.e., rows in our tables of colorings) is bounded
by 3k and that we can find and access rows in linear time w.r.t. k. In leaf nodes, we can
check the colorings in time O(k2) for each of the O(3k) possible colorings, resulting in
O(3k ·k2). In forget nodes, we can check the conditions and compute eventually resulting
colorings in time O(k) for each of the O(3k) colorings of the child node, resulting in
O(3k · k). In insert nodes, we can check the conditions and compute eventually resulting
colorings in time O(k2) for each of the O(3k) colorings of the child node, resulting in
O(3k · k2). Finally, for join nodes we have to consider 3k · 3k = 9k pairs. However, we
only need to consider 5k pairs if we assume the data structure to be properly sorted, e.g.
lexicographically by treating the colors ina/inr as 0 and pouta/outa/poutr/outr as 1. As
each table has O(3k) rows, sorting is in O(3k · k). Let C be a coloring such that m ≤ k
arguments/attacks are colored as ina/inr. There exist at most 2k−m distinct colorings C′

with ∀x : (C(x) ∈ {ina, inr} ⇔ C′(x) ∈ {ina, inr}). There are
(k

m

)
possibilities resulting

from the choice of m, resulting in ∑k
m=0

(k
m

) · 2k−m · 2k−m = 5k join pairs. We can then
compute C � D in O(k), resulting in O(5k · k) for join nodes, dominating the runtime of
the other node types. The resulting runtime for the algorithm is O(5k · k · (|A|+ |R|)).

We can decide Credstb/Skeptstb for a ∈ A by flagging colorings that contain/do not
contain a. In each node we update the flag accordingly; the flag in the root node indicates
credulous/skeptical acceptance. We can keep the count of extensions w.r.t. each coloring,
and to enumerate the extensions once the dynamic programming algorithm is done we
can traverse the tree top-down and output the extensions with linear delay (cf. [7]).

Other Semantics. The core concepts to characterize stable extensions carry over to other
admissibility-based semantics, where also undecidedness can occur. This can be handled
in a similar manner as the poutr/outr colors, where one indicates “confirmed undecid-
edness” and another color indicates “provisional undecidedness”. The latter color can be
“updated” to the former if a suitable witness is present (either in an insert- or join node).
Again, colorings containing provisional colors have to be removed in forget nodes.

7. Discussion

In this paper, we investigated the treewidth parameter for reasoning tasks in SETAFs.
We showed that reasoning with constant primal-treewidth remains hard (contrasting the
results for the special case of AFs), while constant incidence-treewidth allows us to rea-
son and count in polynomial time. Finally, we improved these generically obtained re-
sults by providing a dynamic programming algorithm tailored for SETAFs, highlighting
interesting differences to the AF-case that arise from the generalization step. The under-
lying structure of SETAFs is a directed hypergraph. While there are measures available
for general hypergraphs, the directed case is not as well explored—this work contributes
to this, as we provide an alternative treewidth measure in this context. Moreover, while
there are several systems available to compute the treewidth of undirected simple graphs
efficiently—be it exactly or heuristically—the situation for implementations of hyper-
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treewidth is less advanced. Finally, reasoning in frameworks with fixed directed graph
parameters (e.g., cycle rank, directed path-width, etc.) already turned out to be intractable
for AFs [7]; which carries over to SETAFs. Hence, we decided to focus on the treewidth-
based measures, so that we can implement the presented algorithms in the future.

The results of this paper may serve as a starting point for further parameterized anal-
ysis of computational properties of SETAFs. Considering SETAFs in recent additions to
the treewidth literature in the context of argumentation constitutes interesting topics for
future research, see e.g. [18]. For example, recently treewidth has been investigated in
conjunction with backdoors in [19], effectively decreasing the relevant parameter value.
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[5] Dvořák W, König M, Woltran S. Graph-Classes of Argumentation Frameworks with Collective Attacks.
In: Proceedings of JELIA 2021. vol. 12678 of LNCS. Springer; 2021. p. 3-17.
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Rule-PSAT: Relaxing Rule Constraints in
Probabilistic Assumption- ased

Argumentation
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Abstract. Probabilistic rules are at the core of probabilistic structured ar-
gumentation. With a language L, probabilistic rules describe conditional
probabilities Pr(σ0|σ1, . . . , σk) of deducing some sentences σ0 ∈ L from
others σ1, . . . , σk ∈ L by means of prescribing rules σ0 ← σ1, . . . , σk

with head σ0 and body σ1, . . . , σk. In Probabilistic Assumption-based
Argumentation (PABA), a few constraints are imposed on the form of
probabilistic rules. Namely, (1) probabilistic rules in a PABA frame-
work must be acyclic, and (2) if two rules have the same head, then
the body of one rule must be the subset of the other. In this work, we
show that both constraints can be relaxed by introducing the concept
of Rule Probabilistic Satisfiability (Rule-PSAT) and solving the under-
lying joint probability distribution on all sentences in L. A linear pro-
gramming approach is presented for solving Rule-PSAT and computing
sentence probabilities from joint probability distributions.

Keywords. Probabilistic Argumentation, Probabilistic Satisfiability

1. Introduction

Probabilistic Assumption-based Argumentation (PABA) [1] provides a probabilis-
tic extension to the Assumption-based Argumentation (ABA) framework [2] by
allowing probabilistic rules in argument construction. As a form of probabilistic
structured argumentation (along with p-ASPIC [3] and probabilistic argumenta-
tion with logic [4,5]) PABA was shown to admit as instances several other proba-
bilistic argumentation approaches and with an implementation engine developed
[6], and complexity results studied in [7].

A few design choices have been made in PABA to ensure its semantics and
inference approaches sound. Namely:

1. if there are two rules with the same head having different probabilities, then
the body of one rule must be the subset of the other (Definition 2.1, [1]);

2. there is no infinite path starting from a probabilistic parameter in its de-
pendency graph in a PABA framework (Lemma 2.1, [1]).

B
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Constraint 1 specifies that a probability sentence can only be deduced from at
most one set of antecedents; whereas Constraint 2 specifies that paths leading to
probability sentences must be acyclic. In this work, we show that both constraints
can be relaxed by considering Probabilistic Satisfiability [8]. We see that the two
constraints given by [1] are design choices to ensure probabilistic satisfiability.
However, as we illustrate in this work, without these two constraints, there are
cases where probabilistic satisfiability can still hold with well-understood inference
processes available. In other words, we show that there is no intrinsic reason to
disallow multiple rules with the same heads and cyclic graphs when constructing
probabilistic extensions to ABA. Thus, this work provides a generalisation to the
probabilistic rules given in PABA with a sound inference method for sentence
probability calculation.

The rest of this paper is organised as the follows. Section 2 reviews two con-
cepts introduced in the literature that are needed in this work. Section 3 intro-
duces of Rule-PSAT that describe probabilistic consistency. Section 4 presents an
inference approach for reasoning Rule-PSAT. Section 5 compares our work with
Nilsson’s probabilistic logic / satisfiability in detail. We conclude in Section 6.

2. Background

In this work, we need two notions, deduction for a sentence, and complete con-
junction set of a language introduced in the literature as follows.

Given a language L, and a set of rules R built with sentences in L, a deduction
[2] for σ ∈ L supported by S ⊆ L and R ⊆ R denoted S �R σ is a finite tree with

� nodes labelled by sentences in L or by a special symbol τ that is not in L,
� the root labelled by σ,
� leaves either labelled by τ or sentences in S,
� non-leaves labelled by σ′ with, as children, the elements of the body of some
rule in R with head σ′, and R the set of all such rules.

Deduction is a fundamental concept in rule-based systems. We will refer to it in
Section 3.

Given a language L with n sentences, the Complete Conjunction Set (CC
Set) [9] of L is the set of 2n conjunction of sentences such that each conjunction
contains n distinct sentences. For instance, for L = {σ0, σ1}, the CC set of L =
{¬σ0 ∧¬σ1,¬σ0 ∧ σ1, σ0 ∧¬σ1, σ0 ∧ σ1}. As we will discuss in the next section, a
CC set defines the universe of all possible worlds given by the language.

3. Rule-PSAT

We start by introducing the core representation of this work, namely the notion
of a probabilistic rule (p-rule), as follows.

Definition 1. Given a language L, a probabilistic rule (p-rule) is

σ0 ← σ1, . . . , σk : [θ]
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for k ≥ 0, σi ∈ L, 0 ≤ θ ≤ 1. σ0 is referred to as the head of the p-rule, σ1, . . . , σk

the body, and θ the probability.
Given a language L and a set of p-rules R, we say that R is defined over L

iff all sentences in p-rules in R are in L.

The rule in Definition 1 states that the probability of σ0, when σ1 . . . σk all
hold, is θ. In other words, this rule states that Pr(σ0|σ1, . . . , σk) = θ. Note that
this is the same interpretation of probabilistic rules introduced in [1].

To introduce Rule-PSAT, we need to consider the set of sentences that are
“deducible”. This is constructed with the notion of deduction as follows.1

Definition 2. Given a language L and a set of p-rules R defined over L, the
deducible set L0 = {σ ∈ L|∅ �R σ, where R ⊆ R}.

The deducible rules R0 = {σ0 ← σ1, . . . , σk : [·] ∈ R|σi ∈ L0, i = 0 . . . k}.

We illustrate deducible set and rules in Example 1.

Example 1. Let L = {σ0, σ1, σ2, σ3}, R = {σ0 ← σ1 : [α];σ1 ←: [β];σ2 ← σ3 :
[γ]}. We have L0 = {σ0, σ1} and R0 = {σ0 ← σ1 : [α];σ1 ←: [β]}.

Definition 3. Given a language L and a set of p-rules R, let Ω be the CC set of
L0. A function π : Ω → [0, 1] is a consistent probability distribution with respect
to R on L for Ω iff:2

1. For all ωi ∈ Ω,

0 ≤ π(ωi) ≤ 1. (1)

2. It holds that:

∑

ωi∈Ω

π(ωi) = 1. (2)

3. For each p-rule σ0 ←: [θ] ∈ R0, it holds that:

∑

ωi∈Ω,ωi|=σ0

π(ωi) = θ. (3)

4. For each p-rule σ0 ← σ1, . . . , σk : [θ] ∈ R0, (k > 0), it holds that:

∑
ωi∈Ω,ωi|=σ0∧...∧σk

π(ωi)
∑

ωi∈Ω,ωi|=σ1∧...∧σk
π(ωi)

= θ. (4)

1We use the notion of “deduction” with the symbol “�R” introduced in Section 2 without
modification by treating p-rules as non-probabilistic rules in this context.

2In this work, symbols ¬, ∧, and |= take their standard meaning as in classical logic.

X. Fan / Relaxing Rule Constraints in Probabilistic Assumption-Based Argumentation154



Our notion of consistency as given in Definition 3 consists of two parts. Equa-
tions 1 and 2 assert π being a probability distribution over the CC set of L0;
whereas equations 3 and 4 assert that each p-rule should be viewed as defining
conditional probabilities for which the probability of the head of the p-rule condi-
tioned on the body is the probability. In particular, Equation 3 can be viewed as
a special case of 4 as when the body is empty, the head is conditioned on the uni-
verse. In other words, for p-rule σ0 ←: [θ], we assert Pr(σ0) = θ with Equation 3;
for σ0 ← σ1, . . . , σk : [θ], we assert Pr(σ0|σ1, . . . , σk) = θ with Equation 4.

Example 2. (Example 1 continued.) Ω = {¬σ0 ∧¬σ1, σ0 ∧¬σ1,¬σ0 ∧σ1, σ0 ∧σ1}.
From σ0 ← σ1 : [α], we have

π(σ0 ∧ σ1)

π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1)
= α. (5)

From σ1 ←: [β], we have

π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = β. (6)

π is a consistent probability distribution iff Equations 5 and 6 hold, as well as

π(¬σ0 ∧ ¬σ1) + π(σ0 ∧ ¬σ1) + π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = 1, (7)

and

0 ≤ π(¬σ0 ∧ ¬σ1), π(σ0 ∧ ¬σ1), π(¬σ0 ∧ σ1), π(σ0 ∧ σ1) ≤ 1. (8)

With consistency defined, we are ready to define Rule-PSAT as follows.

Definition 4. The Rule Probabilistic Satisfiability (Rule-PSAT) problem is to de-
termine for a set of p-rules R on a language L, whether there exists a consistent
probability distribution for the CC set of L0 with respect to R.

Example 3. (Example 2 continued.) To test whether R is Rule-PSAT on L, we
need to solve Equations 5-8 for π as R is Rule-PSAT iff a solution exists. It is
easy to see that this is the case as:

π(σ0 ∧ σ1) = αβ

π(¬σ0 ∧ σ1) = β − αβ

π(σ0 ∧ ¬σ1) + π(¬σ0 ∧ ¬σ1) = 1− β

Since 0 ≤ α, β ≤ 1, we have 0 ≤ π(σ0 ∧ σ1), π(¬σ0 ∧ σ1) ≤ 1. We can let
π(σ0 ∧ ¬σ1) = 0, π(¬σ0 ∧ ¬σ1) = 1 − β and obtain one solution for π. As the
system is under-specified, we have infinitely many solutions to π(σ0 ∧ ¬σ1) and
π(¬σ0 ∧ ¬σ1) in the range of [0, 1− β].

The next example gives a p-rule set that is not Rule-PSAT.
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Example 4. Let R contain three p-rules: σ0 ← σ1 : [0.9], σ0 ←: [0.8], σ1 ←: [0.9].
From σ0 ← σ1 : [0.9] and Equation 4, we have

π(σ0 ∧ σ1)

π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1)
= 0.9. (9)

From σ1 ←: [0.9], we have

π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1) = 0.9. (10)

Substitute (10) in (9), we have π(σ0 ∧ σ1) = 0.81.
From σ0 ←: [0.8], we have

π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) = 0.8.

Thus, π(σ0 ∧ ¬σ1) = −0.01, which does not satisfy 0 ≤ π(ωi) ≤ 1.

From a Rule-PSAT solution, which characterises a probability distribution
over the CC set, one can compute sentence probabilities by marginalising over sen-
tences. In other words, we can compute the probability of sentences by summing
up π(ωi).

Given a language L and a set of p-rules R, if there is a consistent probability
distribution π for Ω, the CC set of L0, with respect to R, then for any σ ∈ L0,
its probability Pr(σ) is:

Pr(σ) =
∑

ωi∈Ω,ωi|=σ

π(ωi). (11)

Clearly, from Definition 3, we see that 0 ≤ Pr(σ) ≤ 1 and Pr(σ) + Pr(¬σ) = 1.
(Note that although Equation 11 is similiar to 3, 11 refers to all sentences σ ∈ L0,
whereas 3 refers to sentences that are heads of rules with an empty body.)

Example 5. (Example 3 continued.) Taking π shown in Example 3, (with π(σ0 ∧
¬σ1) = 0) the probabilities of σ0 and σ1 can be computed as follows.

Pr(σ0) = π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) = αβ

Pr(σ1) = π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = β

If a set of p-rules R is satisfiable, then the range of the probability of any
sentence in L0 can be found with mathematical optimisation. The upper and the
lower bounds of the probability of a sentence σ ∈ L0 can be found by maximising
and minimising the RHS of Equation 11 subject to Equations 1-4, respectively.

Example 6. (Example 5 continued.) To compute the upper and lower bounds of
Pr(σ0), we maximise and minimise Pr(σ0) = π(σ0∧σ1)+π(σ0∧¬σ1), respectively.
We see that Pr(σ0) is at its max when π(σ0∧¬σ1) is. Since 0 ≤ π(σ0∧¬σ1) ≤ 1−β,
we have the upper bound of Pr(σ0) taking its value αβ +1− β. Similarly, Pr(σ0)
takes its min value when π(σ0∧¬σ1) = 0. Thus, the lower bound of Pr(σ0) is αβ.
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Note that there is no restriction imposed on the form of p-rules other than

the ones given in Definition 1, as illustrated in the next two examples (Examples 7

and 8) - a set of p-rules can be consistent even if there are rules in this set forming

cycles or having two rules with the same head.

Example 7. Consider a set of p-rules R = {σ0 ← σ1 : [0.7], σ1 ← σ0 : [0.6],

σ1 ←: [0.5]}. We can see that there are infinitely many different (finite) deductions

for both σ0 and σ1 due to the cycle formed by deduce σ0 from σ1 and deduce σ1

from σ0. However, we can still compute a (unique) solution for π over the CC set

of {σ0, σ1}. Using Equations 2 to 4, we have:

0.7 = π(σ0 ∧ σ1)/(π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1)),

0.6 = π(σ0 ∧ σ1)/(π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1)),

0.5 = π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1),

1 = π(¬σ0 ∧ ¬σ1) + π(¬σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) + π(σ0 ∧ σ1).

Solutions found are: π(¬σ0∧¬σ1) = 0.27, π(σ0∧¬σ1) = 0.23, π(¬σ0∧σ1) = 0.15,

π(σ0 ∧ σ1) = 0.35.

Example 8. Consider a set of p-rules R = {σ0 ← σ1 : [0.6], σ0 ← σ2 : [0.5], σ1 ←:

[0.7], σ2 ←: [0.6]}, There are two p-rules with head σ0. They have different bodies

and probabilities. We set up equations as follows.3

0.6 = (π(111) + π(110))/(π(010) + π(011) + π(110) + π(111)),

0.5 = (π(101) + π(111))/(π(001) + π(011) + π(101) + π(111)),

0.7 = π(010) + π(011) + π(110) + π(111),

0.6 = π(001) + π(011) + π(101) + π(111),

1 = π(000) + π(001) + π(010) + π(011) + π(100) + π(101) + π(110) + π(111).

Solve these, a solution maximising Pr(σ0) is follows: (Pr(σ0) = 0.7)

π(000) = 0, π(001) = 0.02, π(010) = 0, π(011) = 0.28,
π(100) = 0.15, π(101) = 0.13, π(110) = 0.25, π(111) = 0.17.

A solution minimising Pr(σ0) is: (Pr(σ0) = 0.42)

π(000) = 0.14, π(001) = 0.16, π(010) = 0.14, π(011) = 0.14,
π(100) = 0, π(101) = 0, π(110) = 0.12, π(111) = 0.3.

3To simplify the presentation, Boolean values are used as shorthand for the sentences. E.g.,
111, 011, and 001 denote σ0 ∧ σ1 ∧ σ2, ¬σ0 ∧ σ1 ∧ σ2, and ¬σ0 ∧ ¬σ1 ∧ σ2, respectively.
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4. Solve Rule-PSAT

Given a set of p-rules R = {ρ1, . . . , ρm} constructed on some language L such
that L0 contains n sentences, to test whether R is Rule-PSAT, we set up a linear
system

AΠ = B, (12)

where A is an (m+ 1)× 2n matrix, Π = [π(ω1), . . . , π(ω2n)]
T , B an (m+ 1)× 1

matrix.4 We construct A and B in a way such that R is Rule-PSAT iff Π has a
solution in [0, 1]2

n

, as follows.
For each rule ρi ∈ R, if ρi = σ0 ←: [θ] has an empty body, then

A[i, j] =

{
1, if ωj |= σ0;

0, otherwise;
(13)

and

B[i] = θ. (14)

Otherwise, ρi = σ0 ← σ1, . . . , σk : [θ], then

A[i, j] =

⎧
⎪⎨

⎪⎩

θ − 1, if ωj |= σ0 ∧ σ1 ∧ . . . ∧ σk;

θ, if ωj |= ¬σ0 ∧ σ1 ∧ . . . ∧ σk;

0, otherwise;

(15)

and

B[i] = 0. (16)

Row m+ 1 in A and B are 1 . . . 1 and 1, respectively.

Example 9. (Example 6 continued.) Let ρ0 = σ0 ← σ1 : [α], ρ1 = σ1 ←: [β]. Here,
m = 2, n = 2. From Equations 12 to 16, we have

A =

⎡

⎣
1
0
0

1
1
α

1
0
0

1
1

α− 1
⎤

⎦ ,

Π = [π(¬σ0 ∧ ¬σ1), π(¬σ0 ∧ σ1), π(σ0 ∧ ¬σ1), π(σ0 ∧ σ1)]
T , and B = [0, β, 1]T . It

is easy to see that Π has solutions as shown in Example 3.

Theorem 1. Given a set of p-rules R on some language L, R is Rule-PSAT iff
Equation 12 has a solution for Π in [0, 1]2

n

.

4We let {ω1, . . . , ω2n} be the CC set of L0. We consider elements in this set being ordered
with their Boolean values. E.g., for L0 = {σ0, σ1}, the four elements in the CC set are ordered
such that {ω1 = ¬σ0 ∧ ¬σ1, ω2 = ¬σ0 ∧ σ1, ω3 = σ0 ∧ ¬σ1, ω4 = σ0 ∧ σ1}.
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Table 1.: Performance Demonstration for Solving Rule-PSAT with the Python
scipy linprog Library with an Interior-point Method.

Number of Sentences 6 7 8 9 10 11 12
Run Time (s) 0.014 0.022 0.041 0.11 0.55 3.32 22.38

Proof. (Sketch.) Equations 1 to 4 are satisfied by a Π solution in [0, 1]2
n

as follows.

1. If Π ∈ [0, 1]2
n

, then 0 ≤ π(ωi) ≤ 1 for all ωi.

2. Since Row m+ 1 in A and B are 1s, we have the sum of all π(ωi) being 1.

3. For each p-rule σ0 ←:[θ], Equations 13 and 14 ensure that Equation 3 is
satisfied.

4. For each p-rule σ0 ← σ1, . . . , σk:[θ], Equation 15 and 16 ensure that Equa-
tion 4 is satisfied with simple algebra.

Thus, we see that Equation 12, AΠ = B, is nothing but a linear system represen-
tation of Equations 1-4, which characterise probability distributions over the CC
set of L0 with conditionals.

Table 1 demonstrates the performance of a Python implementation of the
linear system approach for solving Rule-PSAT introduced in this section. The im-
plementation is built with the open source scipy linprog library5, using an interior-
point method. We observe that the average running time grows exponentially as
the number of sentences in a set of p-rules. This is expected as the size of the
CC set is 2n (n the number of sentences in L0); and interior-point method has
a super-linear complexity [10]. P-rules in this experiment are randomly gener-
ated with maximum length of rule body 4, the average time of 10 runs for each
configuration is reported.

5. Discussion

Many works have been published on probabilistic argumentation in recent years,
e.g. [11,12,13,14,15,16,17,4]. With very few exceptions, notably [4,5], existing
works are predominantly defined with abstract argumentation, having probabil-
ity distributions defined over argumentation graphs. In [4,5], arguments are con-
structed with probabilistic logic. As probabilistic rules are also used to construct
arguments, we compare our work with probabilistic logic.

Nilsson [8] introduces Probabilistic Satisfiability with probabilistic logic, con-
sidering knowledge bases in Conjunctive Normal Form. A modus ponens exam-
ple,6

If σ1, then σ0. σ1. Therefore, σ0.

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.

html
6This example is used in [8]. The figure on the left hand side of Table 2 is a reproduction of

Figure 2 in [8].
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Table 2.: Comparison of Consistent Probability Regions between Nilsson’s Prob-
abilistic Logic and Probabilistic Rules on an modus ponens instance.

Probabilistic Logic Probabilistic Rule

¬σ1 ∨ σ0 : [α], σ1 : [β], σ0 : [γ]. σ0 ← σ1 : [α], σ1 ←: [β], σ0 ←: [γ].

is shown in Table 2. The probabilities of the conditional claim is α, the antecedent
β and the consequent γ. With Nilsson’s probabilistic logic, this is interpreted as:

¬σ1 ∨ σ0 : [α], σ1 : [β], σ0 : [γ],

which gives rise to equations

π(¬σ1 ∧ σ0) + π(σ1 ∧ σ0) + π(¬σ1 ∧ ¬σ0) = α, (17)

π(σ1 ∧ σ0) + π(σ1 ∧ ¬σ0) = β, (18)

π(σ1 ∧ σ0) + π(¬σ1 ∧ σ0) = γ. (19)

With probabilistic rules discussed in this work, the interpretation to modus po-
nens is the three p-rules as follows.

σ0 ← σ1 : [α], σ1 ←: [β], σ0 ←: [γ],

which gives rise to equations 5, 18 and 19. The two shaded polyhedrons shown in
Table 2 illustrate probabilistic consistent regions for α, β and γ, with probabilistic
logic and probabilistic rule, respectively, as defined by their corresponding equa-
tions together with equations 1 and 2. The consistent region in the probabilistic
logic case is a tetrahedron, with vertices (0,0,1), (1,0,0), (1,1,0) and (1,1,1). The
consistent region in the probabilistic rule case is an octahedron, with vertices
(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0) and (1,1,1). It is argued in [18] that the
conditional probability interpretation to modus ponens is more reasonable than
the probabilistic logic interpretation in practical settings.
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The principal benefit of this analysis comes from observing that both methods
are nothing but imposing constraints on the feasible regions of the spaces defined
by clauses (in the case of probabilistic logic) or p-rules (in the case of probabilistic
rules). In this sense, reasoning on such probability and logic combined forms is
about identifying feasible regions determined by solutions to Π in AΠ = B.7

It is recognised that solving Π with large matrix A is difficult. The size of A is
exponential to the number of sentences in the language; and linear programming
methods are super-linear to the size of the CC set (as we illustrate in Section 4).
Nilsson suggests that partition could be considered on B so Π can be solved
with divide-and-conquer techniques. However, as [19] show that PSAT is NP-
complete in its general form, it becomes more plausible to consider important
and/or practically useful instances of the generic PSAT problem where reasoning
does not rely on exact solution to the probability distribution on the CC set.

A few such instances are considered in the literature. For example, Williamson
[20] discusses the case when sentences are disjoint. In such cases, for any two
sentences σ0, σ1 in a language, we have

Pr(σ0 ∧ σ1) = 0.

Henderson et.al [9,21,22] discuss the case when sentences are independent. In such
cases, for any two sentences σ0, σ1 in a language,

Pr(σ0 ∧ σ1) = Pr(σ0) Pr(σ1).

Both settings can greatly reduce the complexity of reasoning as one does not
need to explicitly consider joint probabilities amongst sentences and thus one can
work in the space defined by n sentences in the language, instead of considering
solutions in the 2n space formed by the CC set.

However, we believe neither of the two is suitable in probabilistic rule settings
such as the one discussed in this work, as they both trivialise conditional prob-
abilities. In other words, as Pr(σ0|σ1) = Pr(σ0 ∧ σ1)/Pr(σ1) by the definition of
conditional probability, assuming Pr(σ0 ∧ σ1) = 0 makes Pr(σ0|σ1) = 0; whereas
assuming Pr(σ0 ∧ σ1) = Pr(σ0) Pr(σ1) makes Pr(σ0|σ1) = Pr(σ0). Effectively,
these two assumptions make us commit to

σ ← : [0] and σ ← : [Pr(σ)]8

for all p-rules over all sentences σ, respectively. Since neither of the two seems
realistic in practical settings, we stay with solving the joint distribution on the
CC set for computing sentence probabilities.9

7Constructions of A differ between Nilsson’s probabilistic logic and this work. However, both
are designed for solving the full joint probability distribution over the CC set.

8Here, stands for an anonymous variable as in Prolog.
9On this note, PABA also forces independence between their probabilistic parameters by

having Pr(ω) =
∏

(Q,[a:x])∈GEω
x, where (Q, [a : x]) is a deduction for a and GEω is the set of

grounded extensions containing all possible worlds, in which a possible world ω is an element
in the CC set of all probabilistic parameters (Definition 2.1 and Lemma 2.1 in [1]). However, as
PABA also supports non-probabilistic rules and assumptions, the independence assumption is
not imposed on all sentences in a PABA framework as some of them are not probabilistic.
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6. Conclusion

In this work, we introduce a generalisation to probabilistic rules (p-rule) used
in Probabilistic Assumption-based Argumentation. We show that by introducing
Rule Probabilistic Satisfiability, we can accommodate probabilistic rules forming
cycles and allow multiple rules with the same head but different bodies in the
same p-rule set. A reasoning method using linear programming is introduced with
a software implementation developed. This work can be viewed as a building
block for probabilistic structured argumentation frameworks that use rules to
construct arguments. Future work will focus on (more) efficient reasoning and /
or approximation approaches.
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Abstract. Today AI systems are rarely made without Machine Learning (ML) and
this inspires us to explore what aptly called composite argumentation systems with
ML components. Concretely, against two theoretical backdrops of PABA (Prob-
abilistic Assumption-based Argumentation) and DST (Dempster-Shafer Theory),
we present a framework for such systems called c-PABA. It is argued that c-PABA
lends itself to a development tool as well and to demonstrate we show that DST-
based ML classifier combination and multi-source data fusion can be implemented
as simple c-PABA frameworks.

1. Introduction

Today AI systems are rarely made without Machine Learning (ML) though one may
criticize the overuse of ML especially in tasks demanding explainability. On the other
hand, Argumentation is widely viewed as an inherently explainable AI formalism, how-
ever practical argumentation systems are still hard to develop. This inspires us to ex-
plore a synthesis of ML and Argumentation that fosters AI systems with the elements of
both formalisms. Concretely, against two theoretical backdrops of PABA (Probabilistic
Assumption-based Argumentation [5]) and DST (Dempster-Shafer Theory), we present
a framework for composite argumentation systems with ML components called c-PABA.
It is argued that c-PABA lends itself to a development tool for these systems as well
and to demonstrate we show that DST-based ML classifier combination and multi-source
data fusion can be implemented as simple c-PABA frameworks. The rationale behind our
selection of two theoretical backdrops (DST and PABA) is as follows. DST, which alone
is often described as a generalisation of the probability theory, has long been proven
very suitable for representing knowledge under uncertainty and ignorance. Predictions
of ML models belong to knowledge of this kind, and hence ML models can be viewed
as sources generating DST data. Since a composite argumentation system in our view
can contain many components some of which may be ML models, DST lends itself to an
appropriate model for the information exchanged between these components. To model
the workings of these components as well as the whole composite argumentation system,
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we choose PABA rather than an abstract PA model such as [10] because of two reasons:
a) PABA deals the material out of which arguments are constructed, and hence allows us
to go down to the level of DST data exchanged between components; b) PABA reasoning
engines for precise results [7] as well as approximate any-time results [9] are recently
available. Such engines can run c-PABA frameworks (since as will be seen, c-PABA can
be translated back to PABA), and hence one can use c-PABA as a design as well as de-
velopment tool for the above described kind of composite argumentation systems. The
remaining of this paper is structured as follows. We recall DST and PABA in Section
2. Then we develop three complementary techniques respectively for: translating DST
data to PABA (Section 3), generating DST data from PABA, and fusing DST data with
existing PABA frameworks (Section 4). We then accumulate these techniques to present
the c-PABA framework (Section 5). Due to the lack of space, the proofs of theorems and
lemmas are moved to an on-line appendix2.

2. Background

2.1. Dempster Shafer Theory (DST [3,13])

Definition 1. A Demspter’s structure is a tuple D = (W,Pr,Γ,Θ) where Θ is an ex-
haustive set of mutually exclusive answers for some question (Frame of Discernment or
FoD for short); W is a finite set of possible worlds; Pr :W → [0,1] is a probability dis-
tribution; Γ :W → 2Θ is a multi-valued mapping from W into Θ. For X ⊆ Θ, the degree
of belief and the degree of plausibility in X are defined as follows.

BelD(X)� ∑
ω∈W: /0�=Γ(ω)⊆X

Pr(ω) and PlD(X)� ∑
ω∈W: /0�=Γ(ω)∩X

Pr(ω)

Intuitively Γ says that if ω is the actual world, then the answer is in Γ(ω). The in-
terval [BelD(X),PlD(X)] delineates the probability that the answer is in X . For example,
suppose that a sensor which is unreliable in 20% of the times, is installed to check a
valve’s status. If the sensor indicates “valve open”, the best conclusion one can make is
0.8≤ Prob(open)≤ 1 because if the sensor is unreliable, one has no information about
the valve’s status. Hence one does not want to represent the observation by a standard
probability distribution over space Θ = {open,closed} but by a Dempster’s structure de-
picted in Fig. 1 with: Θ = {open,closed}, Γ = {reliable �→ {open},unreliable �→ Θ},
and W = {reliable,unreliable} with two possible worlds having probabilities 0.8 and
0.2. Clearly [BelD({open}),PlD({open})] = [0.8,1].

Figure 1. A Dempster’s structure D = (W ,Pr,Γ,Θ)
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2http://ict.siit.tu.ac.th/~hung/comma22-proofs.pdf
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Definition 2. A mass function over FoD Θ is a function m : 2Θ → [0,1] such that
∑

X⊆Θ
m(X) = 1. For X ⊆ Θ, Belm(X)� ∑

Y⊆Θ: /0�=Y⊆X
m(Y ) and Plm(X)� ∑

Y⊆Θ: /0�=X∩Y
m(Y ).

And here are some more definitions. X ⊆ Θ is said to be a focal element of m :
2Θ → [0,1] iff m(X) �= 0. The set of all focal elements of m is denoted by f ocal(m). The
set {(Xi,μi)}| f ocal(m)|

i=1 where Xi ∈ f ocal(m) and μi = m(Xi) is called the focal specifica-

tion of m. For a Demspter’s structure D = (W,Pr,Γ,Θ), mD denotes the mass function:
mD(X) = ∑

ω∈Θ:Γ(ω)=X
Pr(ω). Clearly BelD(X) = BelmD (X) and PlD(X) = PlmD (X).

Example 1. Consider D = (W,Pr,Γ,Θ) where Θ = {θ1,θ2,θ3}; (W,Pr) is generated
from two independent events α1,α2 with Pr(α1) = 0.4 and Pr(α2) = 0.7; and Γ is shown
in the table below. The focal specification of mD is {( /0,0.28),({θ2},0.12),({θ2,θ3},0.6)}.

W Pr(ωi) Γ(ωi)
ω1 = {α1,α2} 0.4×0.7= 0.28 {}

ω2 = {α1,¬α2} 0.4×0.3= 0.12 {θ2}
ω3 = {¬α1,α2} 0.6×0.7= 0.42 {θ2,θ3}

ω4 = {¬α1,¬α2} 0.6×0.3= 0.18 {θ2,θ3}
In general mass functions can represent real-world data directly. Moreover those

over the same FoD can be combined using various combination rules. Due to the lack of
space, we focus on only the Smet’s rule.

Definition 3. Given two mass functions m1,m2 over the same FoD Θ, Smet’s rule returns
a combined mass function m1⊗m2(X)� ∑

B∩C=X
m1(B)m2(C), ∀X ⊆ Θ.

For a setM of mass functions over the same FoD (aka a DST evidence base), any
order of applying⊗ yields the same result, denoted⊗M. Hence the Smet’s rule derives
two functions BelM(X)� Bel⊗M(X) and PlM(X)� Pl⊗M(X), which together define
the Smet’s semantics forM.

2.2. Argumentation frameworks

An Abstract Argumentation (AA [4]) framework a pair (Arg,Att) of a set Arg of ar-
guments and an attack relationAtt ⊆Arg×Arg. An argument A∈Arg is acceptable wrt
to S ⊆Arg iff S attacks every argument attacking A. S is admissible iff S does not attack
itself (aka conflict-free) and each argument in S is acceptable wrt S; a preferred exten-
sion iff S is a maximal (wrt ⊆) admissible set. A ∈ Arg is credulously (resp. skeptically)
acceptable if it is acceptable wrt a preferred extension (resp. any preferred extension).

Assuming a logical language L, an Assumption-based Argumentation (ABA [1])
framework is a tuple F = (R,A, ) where: R is a set of inference rules of the form
l0 ← l1, . . . , ln (n ≥ 0, li ∈ L); A ⊆ L is a set of assumptions; : A → L maps each
assumption to its contrary. In this paper we restrict ourselves to flat ABA frameworks
where assumptions do not appear in the heads of inference rules. An argument (Q,π) for
π ∈L supported by a set of assumptionsQ ⊆A is a backward deduction from π toQ. An
argument (Q,π) attacks an argument (Q′,π ′) if π = a for some a ∈ Q′. A proposition π
is said to be credulously/skeptically acceptable, denoted F �cr π (resp. F �sk π) if in the
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AA framework consisting of above defined arguments and attacks, there is a credulously
(skeptically) acceptable argument (Q,π). For short we may specify an ABA framework
(R,A, ) by just a pair (R,A) and for each assumption a ∈ A, we write a in inference
rules of R as if a were a “legal” sentence (which of course refers to the one returned by
the omitted contrary function ). Inference rules of R with the same head are grouped
together by connecting their bodies with symbol | as demonstrated by the example below.
Example 2. A flat ABA framework describing Θ= {θ1,θ2,θ3} as a set of exhaustive and
mutually exclusive propositions is F =(A,R) with A= {θ1,θ2,θ3,{θ1,θ2},{θ1,θ3},{θ2,θ3},
{θ1,θ2,θ3}} saying that one can assume any proposition θi ∈Θ to be true. Consequently
one can also assume any disjunction of these propositions. Note that these disjunctions
are written in the set-based clausal form (e.g. {θ1,θ2} means θ1 ∨ θ2) so that in the
general case (as in Def. 6) we can simply write A= 2Θ \{ /0}. R consists of two groups
of rules:

• θ1 ←¬θ1 | θ2 | θ3. θ2 ← θ1 | ¬θ2 | θ3. θ3 ← θ1 | θ2 | ¬θ3. saying that each
assumption θi ∈ Θ can be disproved by either proving its classical negation ¬θi
or proving any mutually exclusive assumption θ j , j �= i.

• {θ1,θ2} ← θ1,θ2. {θ1,θ3} ← θ1,θ3. {θ2,θ3} ← θ2,θ3. {θ1,θ2,θ3} ←
θ1,θ2,θ3. saying that a disjunction of several assumptions is disproved by proving
each and every contraries of the assumptions.

Some arguments of F are ({θi},{θ1,θ2,θ3}) and ({θi},θi) with i ∈ {1,2,3}.
Clearly F �sk {θ1,θ2,θ3} (saying that some element of Θ holds certainly) and F �cr θi
but F ��sk θi (saying that it is probable but not certain that θi holds).

2.3. PABA

A PABA [5] framework can be seen as a probability distribution of ABA frameworks. In
this paper, we focus on a class of PABA frameworks, called Bayesian.

Definition 4. A (Bayesian) PABA framework is a triple P =(V,Pr,F) where F =(R,A)
is an ABA framework, and

1. V is a finite set of so-called probabilistic assumptions such that no elements of
V ∪¬V3 occurs in A or in the head of a rule in R.

2. Pr is a probability distribution over the set of all possible worlds, where a possi-
ble world is a maximal (wrt set inclusion) consistent4 subset of V ∪¬V .

Definition 5. Given P = (V,Pr,F), the acceptability probability of a proposition π
under semantics s is Prob(P �s π)� ∑

ω∈W:Fω�sπ
Pr(ω), where W is the set of all possible

worlds and Fω is the ABA framework obtained from F by adding facts {α ←| α ∈ ω}.

Note that the above definitions leave it open the representation of Pr (hence they
do not demand any probabilistic relationships between probabilistic assumptions). How-
ever for convenience we shall specify Pr by a Problog [6] program, using especially
probabilistic facts and annotated disjunctions as done in [9]. Note that a probabilistic

3¬V = {¬α | α ∈ V}
4No α and ¬α co-exist in the set.
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fact of Prolog is a sentence of the form “p :: x.” where p ∈ [0,1] and x is a propo-
sition saying that x holds with probability p. An annotated disjunction is of the form
“p1 :: x1; . . . ; pi :: xi; . . . ; pn :: xn.” saying that propositions x1, . . . ,xi, . . .xn are mutually
exclusive and hold with respective probabilities p1, . . . , pi, . . . pn whose sum must equal
1. Let’s have an example for illustration.

Example 3. Consider PABA framework P = (V,Pr,F) where V = {α1,α2}; Pr is
Problog program {0.4 :: α1. 0.7 :: α2.} with two probabilistic facts (saying that α1,α2
hold with probabilities 0.4 and 0.7 respectively); F is obtained from the ABA framework
in Example 2 by adding the following rules:

¬θ1 ← α1,α2. ¬θ1 ← α1,¬α2. ¬θ1 ←¬α1,α2.
¬θ2 ← α1,α2. ¬θ3 ← α1,¬α2. ¬θ1 ←¬α1,¬α2
¬θ3 ← α1,α2.

From the acceptabilities of θ2 in different possible worlds shown in the table below,
we have Prob(P �sk θ2) = 0.12 but Prob(P �cr θ2) = 0.12+0.42+0.18.

ω Fω �cr θ2? Fω �sk θ2? Pr(ω)
ω1 = {α1,α2} No No 0.28

ω2 = {α1,¬α2} Yes Yes 0.12
ω3 = {¬α1,α2} Yes No 0.42

ω4 = {¬α1,¬α2} Yes No 0.18

3. Translating DST data into PABA

In this section we show that any DST data, be it a Dempster’s structure, a DST mass
function or a DST evidence base, can always be translated into a PABA framework.
Let’s start by translating FoDs - the basic component of all forms of DST data, to ABA
frameworks. As suggested by Example 2, each possible answer θ of the given FoD Θ
is represented by an assumption the contrary of which can be proven by either proving
either the classical negation ¬θ , or by assuming an alternative answer θ ′ from Θ.

Definition 6. For a FoD Θ = {θ1, . . . ,θi, . . . ,θk}, the canonical ABA translation of Θ,
denoted FDΘ, is the ABA framework (AΘ,RΘ) where

1. AΘ = 2Θ −{ /0} saying that any non-empty subset of Θ may contain the actual
answer (For simplicity, a singleton set {θ} ∈ AΘ is written as θ 5).

2. RΘ is the minimal set such that

(a) For each θi ∈ Θ, RΘ contains θi ← θ1 | · · · | θi−1 | ¬θi | θi+1 | · · · | θk.
saying that θi can be disproved by proving its classical negation ¬θi or taking
an alternative assumption θ j , j �= i.

(b) For each subset X ∈ AΘ where |X | ≥ 2, RΘ contains a rule with head X
and body {θ | θ ∈ X} saying that the answer is not in X if every θ ∈ X is
disproved.

Example 4. For FoD Θ = {θ1,θ2,θ3}, FDΘ coincides with the ABA framework given
in Example 2.

5So Θ is a subset as well as an element ofAΘ.
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The following lemma asserts that FDΘ and FoD Θ are “semantically equivalent”

Lemma 1. Let Θ = {θ1, . . . ,θk} be a FoD. For any X ∈ 2Θ,

1. If X �= Θ, /0, then FDΘ �cr X but FDΘ ��sk X (representing that X possibly but
not surely contains the answer).

2. If X = Θ, then FDΘ �sk X (representing that Θ surely contains the answer); If
X = /0, then FDΘ ��s X for any semantics s.

Note that there are different ABA frameworks with the same semantics as FDΘ, for
example the one obtained from FDΘ by adding a rule ¬θi ← f alse. However FDΘ is
clearly the most obvious. Likewise, a Dempster’s structure D can be translated to PABA
in many ways but the PABA framework PABAD defined below is the most obvious.

Definition 7. Let D = (W,Pr,Γ,Θ) be a Demspter’s structure. The canonical PABA
translation of D is the PABA framework PABAD = (V,Pr,F) where

1. PABAD and D have the same set of possible worlds W and probability distribu-
tion Pr, and

2. F = (AΘ,RΘ ∪ RΓ) is the ABA framework obtained from ABA framework
FDΘ = (AΘ,RΘ) by adding a set of rules RΓ =

⋃

ω∈W
{¬θ ←ω | θ ∈Θ−Γ(ω)}.

HereRΓ represents the multi-valued function Γ :W → 2Θ. Recall that for a possible
world ω , Γ says that the answer must be in Γ(ω) or equivalently must not be some
θ ∈ Θ−Γ(ω). Hence ¬θ ← ω occurs as an inference rule inRΓ.

Example 5. For the Demspter’s structure D in Example 1, PABAD coincides with the
PABA framework in Example 3.

The theorem below asserts that Demspter’s structureD is semantically equivalent to
the PABA framework PABAD.

Theorem 1. Let D = (W,Pr,Γ,Θ) be a Demspter’s structure. Then for any X ∈ 2Θ,
PlD(X) = Prob(PABAD �cr X) and BelD(X) = Prob(PABAD �sk X).

Now let’s switch our attention to the remaining forms of DST data - mass functions
and evidence bases. Recall that any mass function, say m, can be specified by a set of
ordered pairs {(Xi,μi)}| f ocal(m)|

i=1 with Xi being a focal element and μi ∈ [0,1] being the
mass of Xi. Obviously m can be translated to PABA in many ways, and the so-called
canonical PABA translation PABAm defined below uses a set of probabilistic assumptions
{φ m

i | i ∈ {1, . . . , | f ocal(m)|}} where the probability of φ m
i is set to μi. To represent the

mutually exclusiveness of focal elements, PABAm uses a Problog annotated disjunction
“μ1 :: φ m

1 ;μ2 :: φ
m
2 ; . . . ;μ| f ocal(m)| :: φ m

| f ocal(m)|.”. Finally the content of each focal element
Xi is represented in PABAm by a set of rules {¬θ ← φ m

i | θ ∈ Θ−Xi}, where ¬θ ← φ m
i

says that if the ith focal element of m occurs then any θ ∈ Θ−Xi cannot be the answer.

Definition 8. Let m = {(Xi,μi)}| f ocal(m)|
i=1 be a mass function with FoD Θ. The canonical

PABA translation of m, denoted PABAm, is the PABA framework (Vm,Prm,Fm) where

1. Vm = {φ m
1 , . . . ,φ

m
| f ocal(m)|} and Prm is a Problog program consisting of only one

annotated disjunction: μ1 :: φ m
1 ;μ2 :: φ m

2 ; . . . ;μ| f ocal(m)| :: φ m
| f ocal(m)|.
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2. Fm is the ABA framework obtained from the canonical ABA translation FDΘ of
Θ by adding a set of rules

⋃

1≤i≤| f ocal(m)|
{¬θ ← φ m

i | θ ∈ Θ−Xi}.

The canonical PABA translation of a DST evidence base M (a set of mass functions
over the same FoD Θ) defined below is simply the set union of the canonical PABA
translations of individual mass functions.

Definition 9. The canonical PABA translation of a DST evidence base M is the PABA
framework PABAM = (VM,PrM,FM) where VM =

⋃

m∈M
Vm, PrM =

⋃

m∈M
Prm and

FM =
⋃

m∈M
Fm (where Vm, Prm and Fm are defined in Def. 8).

Theorem 2 asserts the semantic equivalence betweenm and the above defined canon-
ical PABA translation of m.

Theorem 2. Let m be a mass function over FoD Θ. Then for any X ⊆ Θ, Belm(X) =
Prob(PABAm �sk X) and Plm(X) = Prob(PABAm �cr X).

More generally, for a DST evidence base M, the Smet’s semantics of M and the
semantics of PABAM coincide.

Theorem 3. Let M be a DST evidence base over FoD Θ. Then for any X ⊆ Θ,
BelM(X) = Prob(PABAM �sk X) and PlM(X) = Prob(PABAM �cr X).

4. Fusion and generation of DST data

In this section we present two techniques for: 1) fusing DST data with; and 2) generating
DST data from existing PABA frameworks.

4.1. DST data fusion with PABA frameworks

Given a DST evidence baseM and a PABA framework P , the so-called the s-union of P
and M defined below is a structure obtained by taking set unions of the corresponding
components of P and PABAM.

Definition 10. Let M be a DST evidence base and P = (V,Pr,F) be a PABA frame-
work. The s-union of P and M, denoted P �M, is simply the triple (V ∪VM,Pr ∪
PrM,F∪FM) obtained by taking set-unions of the corresponding components of P and
the canonical PABA translation PABAM = (VM,PrM,FM) of M.

Let’s introduce a condition to ensure thatP�M is a well-formed PABA framework.

Definition 11. We say that a PABA framework P = (V,Pr,F) syntactically complies
with a FoD Θ iff: 1) all assumptions and rules occurring FDΘ also occur in F; and 2)
for any θ ∈ Θ, ¬θ is not an assumption of F .

Lemma 2. Let M be a DST evidence base over FoD Θ and P be a PABA framework
that is syntactically complies with Θ. Then P �M is a well-formed PABA framework
syntactically complying with Θ.
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Hence � can be viewed as a knowledge fusion operator. Though its applicability is
limited (e.g. � cannot fuse two arbitrary PABA frameworks), � suffices for our purpose
which is to fuse a DST evidence base M with an existing PABA framework P . Now
let’s examine several properties of �. Lemma 3 below says that � in fact encapsulates
the translation technique from DST data to PABA presented in the previous section.

Lemma 3. Let M be a DST evidence base over FoD Θ and P = ( /0, /0,FDΘ). Then
M�P is exactly the canonical PABA translation of M.

As the underlying operation in � is set union, � inherits many desirable properties
from ∪. For example, P � /0= P; and P �M= (P �M1)�M2 ifM1∪M2 =M.

4.2. DST data generation from PABA frameworks

Obviously a Dempster’s structure generated from a PABA framework should share the
same probability space with the framework.

Definition 12. We say that a PABA framework P = (V,Pr,F) generates a Dempster’s

structure D = (W,Pr,Γ,Θ), written P Θ−→D, if

1. D and P have the same set of possible worlds W and the same probability dis-
tribution Pr :W → [0,1], and

2. for each ω ∈W , Γ(ω) = {θ ∈ Θ | Fω �cr θ}.

That is, we add θ into Γ(ω) just in case there is a credulously accepted argument for
θ in Fω . Generated Dempster’s structures can be converted into mass functions, and so:

Definition 13. A PABA framework P generates a mass function m, written P Θ−→ m, if
P Θ−→D and m coincides mD.

It is easy to see that:

Lemma 4. Let PABAM be the canonical PABA translation of DST evidence base M
over FoD Θ. Then PABAM

Θ−→⊗
SM (hence for any m ∈M, PABAm

Θ−→ m).

It is worth noting that the generating PABA framework P does not have to satisfy
any constraint with respect to the FoD Θ of the generated DST data. Concretely:

Lemma 5. Let P be a PABA framework. For any FoD Θ, there is an unique Dempster’s
structure D (resp. mass function m) such that P Θ−→D (resp. P Θ−→ m).

Hence a PABA framework can generate DST data over any FoD. This flexibility,
however, may lead to possible semantic differences between the generated DST data and
the generating PABA framework. Let’s study conditions for preventing such differences.

4.3. Relationships between generated DST data and generating PABA framework

Theorem 4 below says that the degree of plausibility wrt generated DST data and the
credulous semantics of the generating PABA framework always coincide.
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Theorem 4. Suppose P Θ−→ m. Then for any θ ∈ Θ, Plm(θ) = Prob(P �cr θ).

However in general Belm(θ) and Prob(P �sk θ) may be different as illustrated by
the following example.

Example 6. Consider P = ( /0, /0,F) with F = ( /0,{a ←,b ←}). For Θ = {a,b}, we

have P Θ−→ m = {{a,b} �→ 1}. Hence Belm(a) = Belm(b) = 0. However Prob(P �sk a) =
Prob(P �sk b) = 1.

Now let’s introduce a condition that ensures that Belm(θ) = Prob(P �sk θ).

Definition 14. We say that a PABA framework P semantically complies with a FoD Θ
if for each possible world ω and θ ∈ Θ, Fω �sk θ iff {x ∈ Θ | Fω �cr x}= {θ}.

For example, it is easy to see that for a DST evidence base M over FoD Θ, the
PABA canonical translation PABAM ofM always semantically complies with Θ.

Theorem 5 given below and the previous Theorem 4 say that semantic compliance
is a sufficient condition for ensuring the semantic coincidence between generated DST
data and its generating PABA framework.

Theorem 5. Suppose P Θ−→ m. If P semantically complies with Θ then for any θ ∈ Θ,
Belm(θ) = Prob(P �sk θ).

One might ask whether syntactic compliance (defined in Def. 11) ensures semantic
compliance. The following example shows that it does not.

Example 7. Consider FoD Θ = {θ1,θ2} and P = ( /0, /0,F) where F is the ABA frame-
work obtained from FDΘ by adding rules {¬θ1 ← . ¬θ2 ← a. a ← b. b ← a} and as-
sumptions a,b. Clearly P syntactically complies with Θ. However P does not semanti-
cally comply with Θ. To see this consider the possible world ω = {} (the only possible
world of P), clearly {x ∈ Θ | Fω �cr x}= {θ2} but Fω ��sk θ2.

However, syntactic compliance ensures a weaken version of semantic compliance
defined as follows.

Definition 15. We say that a PABA framework P semantically semi-complies with a FoD
Θ if for each possible world ω and θ ∈ Θ, if Fω �sk θ then {x ∈ Θ | Fω �cr x}= {θ}.

Basically P semantically semi-complies but not semantically complies with Θ if for
some possible world ω and answer θ ∈ Θ, {x ∈ Θ | Fω �cr x}= {θ} but Fω ��sk θ . The
PABA framework in Example 7 falls into this case.

Lemma 6. If a PABA framework P syntactically complies with Θ, then P semantically
semi-complies with Θ.

Obviously semantic semi-compliance could not ensure that Belm(θ) = Prob(P �sk
θ). However it ensures a half of this equality as follows.

Lemma 7. Suppose P Θ−→ m. If P semantically semi-complies with Θ then ∀θ ∈ Θ,
Belm(θ)≥ Prob(P �sk θ).
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So a corollary of the above lemmas is that if P Θ−→ m and P syntactically complies
with Θ, then for any θ ∈ Θ, Belm(θ)≥ Prob(P �sk θ) and Plm(θ) = Prob(P �cr θ).

5. Composite PABA frameworks

In this section, we accumulate three presented techniques to propose so-called c-PABA
which lends itself to a development tool for composite argumentation systems.

5.1. Structure and Semantics

A c-PABA framework contains components of two kinds: data-consuming and data-
generating. The latter provides DST data which is consumed by the former.

Definition 16. A composite PABA (c-PABA) framework is a structure of the form S =
({(Θi,Si)}k

i=1,P) where P , which is referred to as the data-consuming component of S,
is a PABA framework; Pi, which is referred to as a data-generating component of S, is
a c-PABA framework; and Θi is a FoD.

The set of all mass functions {mi | i ∈ {1, . . . ,k},Si
Θi−→ mi} generated by all data-

generating components is referred to as the internal information flow in S.

For example, a c-PABA framework ({},P), which shall be written as P for short,
is just a PABA framework. In general, we want to see a c-PABA framework as the com-
bination of its main module and its internal information flow. To ensure that this com-
bination can be computed by the s-fusion operator and always results in a well-formed
PABA framework, let’s introduce a class of well-formed c-PABA frameworks.

Definition 17. A c-PABA framework S = ({(Θi,Si)}k
i=1,P) is said to be well-formed

if for each i, j ∈ {1, . . . ,k}, P syntactically complies with FoD Θi and Si semantically
complies with Θi; further either Θi = Θ j or Θi ∩Θ j = /0 for any j ∈ {1, . . . ,k}.

For example, c-PABA framework S = ({(Θ,PABAmi)}k
i=1,( /0, /0,FDΘ)) represent-

ing a DST evidence base M = {mi}k
i=1 over FoD Θ, is well-formed6. The following

lemma follows directly from Lemma 2.

Lemma 8. Let S = ({(Θi,Si)}k
i=1,P) be a well-formed c-PABA framework with internal

information flow M, and {M1,M2, . . . ,Mn} be the partition on M such that Mi is a DST
evidence base7. Then P �M1�·· ·�Mn is a well-formed PABA framework.

The above PABA framework P �M1 � ·· · �Mn will be referred to as the PABA
representation of the given c-PABA framework S and denoted by PABAS . The semantics
of S is then defined by that of PABAS , concretely:

Definition 18. Let S = ({(Θi,Si)}k
i=1,P) be a well-formed c-PABA framework and π is

a proposition. Define Prob(S �s π)� Prob(PABAS �s π).

Of course we will say that S generates a mass function m over FoD Θ if PABAS
Θ−→

m; S semantically/syntactically complies with Θ if so does PABAS ; and so on.

6It is easy to see that the internal information flow of S coincides withM because PABAmi
Θ−→ mi

7That is, the mass functions in Mi share the same FoD.
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5.2. Two sample applications: DST-based data fusion and ML classifier combination

DST-based data fusion can be implemented by a simple c-PABA framework as follows.

Lemma 9. Let M = {mi}k
i=1 be a DST evidence base over FoD Θ. For any X ⊆ Θ,

BelM(X) = Prob(S �sk X) and PlM(X) = Prob(S �cr X) where S is the c-PABA frame-
work ({(Θ,PABAmi)}k

i=1,( /0, /0,FDΘ)).

ML classifier combination can be implemented by c-PABA as well. Note that a clas-
sifier is an algorithm that assigns to each input pattern x a single class from a set of classes
Θ = {θ1, . . . ,θ|Θ|} - which can be viewed as a FoD. In practice, however a classifier built
by ML often returns a vector [s1, . . . ,s|Θ|] where si indicates some kind of confidence de-
gree that x belongs to class θi. It is a common practice to test a ML classifier against test
datasets, computing various performance indexes such as recognition rate r, substitution
rate s and rejection rate q = 1− r− s. Such indexes are then used to interpret what the
classifier actually says. For example, in [16] Xu et al argue that [s1, . . . ,s|Θ|] should be
interpreted as such a mass function m that: if [s1, . . . ,s|Θ|] = [0, . . . ,0], then m = {(Θ,1)};
if [s1, . . . ,s|Θ|] = [0, . . . ,si = 1, . . . ,0], then m = {({θi},r),(Θ −{θi},s),(Θ,q)}. Now
as different classifiers potentially offer complementary information about patterns to be
classified, one wants to combine the outputs of multiple classifiers for the classification
problem at hand. This combination problem is formalized as follows: given classifiers,
f1, . . . , fk, return a combined classifier f ∗ that for a given input x, assigns a class θ ∗ ∈ Θ
to x, by: 1) for each output vector fi(x), construct a mass function mi; and 2) combine
m1, . . . ,mk to obtain one mass function m∗ which then derives θ ∗. Clearly both steps al-
low choices. Suppose that step (1) uses Xu et al’s rule to compute mi; and step (2) uses
Smet’s rule to computem∗ then returns θ ∗ = argmaxθ∈ΘPlm∗(θ). The lemma below says
that f ∗ can be implemented in c-PABA.

Lemma 10. Suppose f ∗ combines classifiers f1, . . . , fk (by using Xu et al’s rule, Smet’s
rule to arrive at a combined mass function m∗) where fi has recognition/substitution/rejection
rates fi.r, fi.s, fi.q. Then

f ∗(x)� argmaxθ∈ΘPlm∗(θ) = argmaxθ∈ΘProb(S �cr θ)

where S = ({(Θ,Pi)}k
i=1,( /0, /0,FDΘ)), with Pi being any PABA framework that

generates mi - the mass function that Xu et al’s rule derives from the output vector fi(x) =
[si1, . . . ,si|Θ|] of fi.

For example,Pi may be (V,Pr,OIΘ∪{op([si1, . . . ,si|Θ|])←)})with V = {reg,sub,re j},
Pr = { fi.r : reg; fi.s :: sub; fi.q :: re j.} (saying that the probabilities of random variables
reg,sub,re j coincide with the recognition/substitution/rejection rates of fi), and OIΘ is
the ABA framework obtained from FDΘ by adding the following rules for each vector
[0, . . . ,si = 1, . . . ,0]:

• ¬θ j ← reg,op([0, . . . ,si = 1, . . . ,0]) where j �= i representing that θi is the right
class with probability equal the recognition rate.

• ¬θi ← sub,op([0, . . . ,si = 1, . . . ,0]) representing that Θ−{θi} contains the right
class with probability equal the substitution rate.

Note that op([si1, . . . ,si|Θ|])← is a just a fact encoding the output vector of fi.
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6. Conclusion and related work

Against two theoretical backdrops: PABA and DST, we present a development tool called
c-PABA for composite argumentation systems with ML components. Demonstratively
we use c-PABA to implement two key applications of DST: multi source data fusion and
multi-classifier combination. To the best of our knowledge, the only work in the cur-
rent literature that involves both DST and PABA is [8] which uses PABA to re-construct
DST, but does not deal with composite argumentation systems as in the current paper.
However there is a rich line of work combining DST and logic-based reasoning (but not
necessarily argumentative). For example, in [15,2,14] the authors combine DST with de-
ductive reasoning. [11] associate probability mass with formula and compute measures-
like belief degrees of the reasoning with these formula. The notion of arguments of this
work, however, is limited to conjunctions of literals. In [12] the authors define argumen-
tation semantics for subjective logic, a logic that incorporates measures from DST. It
is argued that reasoning systems in these above reasoning formalisms can be viewed as
components in composite argumentation systems that our c-PABA proposal captures.
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Abstract. Epistemic graphs have been developed for modelling an agent’s degree

of belief in an argument and how belief in one argument may influence the belief in

other arguments. These beliefs are represented by constraints on probability distri-

butions. In this paper, we present a framework for reasoning with epistemic graphs

that allows for beliefs for individual arguments to be determined given beliefs in

some of the other arguments. We present and evaluate algorithms based on SAT

solvers.

Keywords. Probabilistic argumentation; Argumentation algorithms; Bipolar argumentation.

1. Introduction

Epistemic graphs are a generalization of the epistemic approach to probabilistic argu-

mentation [1]. In epistemic graphs, the graph is augmented with a set of constraints on

probability distributions. These constraints restrict the belief we have in each argument

and they capture how beliefs in arguments influence each other. The aim is that a set of

constraints captures the subjective, and possibly imperfect way, that an agent views the

beliefs in the arguments and their interactions. The graphs can model both attack and

support (see for example Figure 1) as well as relations that are neither positive nor nega-

tive (see for example Figure 3) with the label denoting the type of influence (e.g. positive

(supporting), negative (attacking), and mixed). Both the label and the constraints provide

information about the argumentation. In this paper, we focus on the constraints.

There are some similarities between epistemic graphs and graded and ranking–based

semantics proposed for a number of argumentation frameworks [2,3,4,5,6,7,8,9,10,11,12]

but there are also substantial differences. Most assign a value in the unit interval to ar-

guments without further clarification of the meaning of the number. Furthermore, many

of the postulates in these approaches are not really applicable in the epistemic approach,

even though they can be perfectly suitable in other scenarios (e.g. in the epistemic ap-

proach, an increase or decrease in beliefs in attackers (or supporters) does not necessarily

invoke an decrease or increase in the belief of the target argument).

Epistemic graphs have some similarities with abstract dialectical frameworks (ADFs)

[13] and weighted ADFs (WADFs) [14]. However, differences include epistemic graphs

allow for a finer-grained probabilistic evaluation of arguments, allowing unattacked ar-

guments to be disbelieved, and long-distance effects between arguments that do not have
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𝙰 = Has Disease𝙱 = Has Alternative Disease

𝙳 = Has Symptom 1 𝙴 = Has Symptom 2𝙲 = LowHeartRate

−

+ +− +

Figure 1. Example of an epistemic graph concerning diagnosis of a disease based on belief in symptoms

and a differential diagnosis which in turn is based on a symptom and a test. The + (resp. −) label denote

support (resp. attack) relations. Assume that if 𝙱 is strongly believed, and 𝙳 or 𝙴 is strongly disbelieved,

then 𝙰 is strongly disbelieved, whereas if 𝙱 is believed, and 𝙳 or 𝙴 is disbelieved, then 𝙰 is disbelieved. Fur-

thermore, if 𝙳 and 𝙴 are believed, then 𝙰 is believed. These constraints could be reflected by the follow-

ing formulae: 𝜑1 ∶ 𝑝(𝙱) > 0.8 ∧ 𝑝(𝙳∨ 𝙴) < 0.2 ⇒ 𝑝(𝙰) < 0.8; 𝜑2 ∶ 𝑝(𝙱) > 0.5 ∧ 𝑝(𝙳∨ 𝙴) < 0.5 ⇒ 𝑝(𝙰) < 0.5;
𝜑3 ∶ 𝑝(𝙳∧𝙴) > 0.5⇒ 𝑝(𝙰) > 0.5; 𝜑4 ∶ 𝑝(𝙲) > 0.5⇒ 𝑝(𝙱) ≤ 0.5; And 𝜑5 ∶ 𝑝(𝙲) ≤ 0.5⇒ 𝑝(𝙱) > 0.5.

an arc connecting them. For more detailed comparison of ADFs with epigraphs, see [1].

Also see [1] for coverage of substantial differences with Bayesian networks.

In previous work, we presented a model-based theorem prover which can be used to

check whether one constraint entails another that was based on enumerating all the mod-

els [15], and an approach based on calculating probability distributions satisfying the con-

straints using numerical optimization methods [16]. These methods only work for small

numbers of arguments. Yet, there is a need for a scalable theorem prover that allows us to

query the constraints of an epistemic graph in order to draw inferences about the belief

in specific arguments. To address this need, we present a new proposal in this paper for

taking a knowledgebase of constraints and optionally further assumptions, and drawing

inferences from them. The approach involves representing the constraints as clauses, and

then uses an off-the-shelf SAT solver (see [17] for an introduction to SAT solvers). We do

this by defining a set of axioms, which we call a completion, of an epistemic graph which

we add to the constraints when querying the SAT solver. By assuming these axioms, we

can obtain a sound and complete inferencing algorithm.

2. Epistemic Graphs: A Simplified Version

In this paper, we present a simpler version of epistemic graphs than presented in [1]. Let

 denote a graph where 𝖭𝗈𝖽𝖾𝗌() be the set of nodes in , and 𝖠𝗋𝖼𝗌() be the set of arcs

in . We consider a probability distribution 𝑃 ∶℘(𝖭𝗈𝖽𝖾𝗌(𝐺))→ [0,1] as being a prob-

ability assignment to each subset of the set of arguments such that this sums to 1 (i.e.∑
Γ⊆𝖭𝗈𝖽𝖾𝗌(𝐺)𝑃 (Γ) = 1). We denote the set of all probability distributions on 𝖭𝗈𝖽𝖾𝗌() by

𝖣𝗂𝗌𝗍(). The constraints restrict the set of probability distributions that satisfy the argu-

ments (as we explain in the rest of this subsection).

Based on a given graph, we can now define the epistemic language. In this paper,

we will only consider a sublanguage of that defined in [1]. The simplified epistemic
language based on graph  is defined as follows: an epistemic atom is of the form 𝑝(𝐴)#𝑥
where # ∈ {<,≤,=,≥,>}, 𝑥 ∈ [0,1] and 𝐴 ∈ 𝖭𝗈𝖽𝖾𝗌(); and an epistemic formula is a

Boolean combination of epistemic atoms. For example, from the epistemic atoms 𝑝(𝙰) ≤
0.5 and 𝑝(𝙱) ≥ 0.5, an epistemic formula is 𝑝(𝙰) ≤ 0.5→ 𝑝(𝙱) ≥ 0.5.

The semantics for constraints come from probability distributions 𝑃 ∈𝖣𝗂𝗌𝗍(). Each

Γ ⊆ 𝖭𝗈𝖽𝖾𝗌() corresponds to a possible world where the arguments in Γ are true. The

probability of an argument being acceptable is defined as the sum of the probabilities of
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𝙰 = Alice doesn’t go to

the party if Bob goes.

𝙱 = Bob doesn’t go to

the party if Chris goes.

𝙲 = Chris doesn’t go to

the party if Alice goes.

−

−

−

Figure 2. The epistemic graph has constraints {𝑝(𝙱) > 0.5 ⇒ 𝑝(𝙰) ≤ 0.5, 𝑝(𝙲) > 0.5 ⇒ 𝑝(𝙱) ≤ 0.5,
𝑝(𝙰) > 0.5⇒ 𝑝(𝙲) ≤ 0.5}. Given these constraints, we see that at most one argument can be believed.

𝙰 = It tastes good.𝙱 = It tastes salty. 𝙲 = It tastes sweet.
∗ ∗

Figure 3. The epistemic graph has constraints {𝑝(𝙱) > 0.5 ∧ 𝑝(𝙲) ≤ 0.5 ⇒ 𝑝(𝙰) > 0.5,
𝑝(𝙲) > 0.5 ∧ 𝑝(𝙱) ≤ 0.5 ⇒ 𝑝(𝙰) > 0.5, 𝑝(𝙱) > 0.5 ∧ 𝑝(𝙲) > 0.5 ⇒ 𝑝(𝙰) ≤ 0.5}. Given these constraints, the

influence of 𝙱 and 𝙲 on 𝙰 is not simply a positive or a negative one. Consider some an item of food. If it is

believed to be tasting salty and not believed to be tasting sweet, or it is not believed to be tasting salty and

believed to be tasting sweet, then it is believed to be good tasting, and if it is believed to be tasting salty and

believed to be tasting sweet, then it is not believed to be good tasting.

the worlds containing it: 𝑃 (𝐴) =
∑

Γ⊆𝖭𝗈𝖽𝖾𝗌() s.t. 𝐴∈Γ𝑃 (Γ). We say that an agent believes

an argument 𝐴 to be acceptable if 𝑃 (𝐴) > 0.5, disbelieves 𝐴 to be acceptable if 𝑃 (𝐴) <
0.5, and neither believes nor disbelieves 𝐴 to be acceptable when 𝑃 (𝐴) = 0.5.

For an epistemic atom 𝑝(𝐴)#𝑣, where # ∈ {<,≤,=,≥,>}, the satisfying distribu-
tions, or equivalently models, of 𝑝(𝐴)#𝑣 are defined as 𝖲𝖺𝗍(𝑝(𝐴)#𝑣) = {𝑃 ′ ∈ 𝖣𝗂𝗌𝗍() ∣
𝑃 ′(𝐴)#𝑣}. The set of satisfying distributions for a given epistemic formula is as fol-

lows where 𝜙 and 𝜓 are epistemic formulae: 𝖲𝖺𝗍(𝜙∧𝜓) = 𝖲𝖺𝗍(𝜙)∩𝖲𝖺𝗍(𝜓); 𝖲𝖺𝗍(𝜙∨𝜓) =
𝖲𝖺𝗍(𝜙) ∪ 𝖲𝖺𝗍(𝜓); and 𝖲𝖺𝗍(¬𝜙) = 𝖲𝖺𝗍(⊤) ⧵ 𝖲𝖺𝗍(𝜙). For a set of epistemic formulae Φ =
{𝜙1,… ,𝜙𝑛}, the set of satisfying distributions is 𝖲𝖺𝗍(Φ) = 𝖲𝖺𝗍(𝜙1) ∩…∩𝖲𝖺𝗍(𝜙𝑛). A set

of epistemic formulae is consistent iff its set of models is non-empty.

Example 1. Consider the set of formulae {𝑝(𝙰) > 0.5→ ¬(𝑝(𝙱) > 0.5), 𝑝(𝙰) = 0∨𝑝(𝙰) =
0.5∨𝑝(𝙰) = 1, 𝑝(𝙱) = 0∨𝑝(𝙱) = 0.5∨𝑝(𝙱) = 1}. Examples of probability distributions that
satisfy the set include 𝑃1 s.t. 𝑃1(∅) = 1, 𝑃2 s.t. 𝑃2(∅) = 𝑃2({𝙰}) = 0.5, 𝑃3 s.t. 𝑃3({𝙰}) =
1, or 𝑃4 s.t. 𝑃4({𝙰}) = 𝑃3({𝙰,𝙱}) = 0.5 (omitted sets are assigned 0). The probability
distribution 𝑃5 s.t. 𝑃5({𝙰,𝙱}) = 1 does not satisfy the formula.

For the arguments in graph , and probability function 𝑃 , an epistemic extension is

the set {𝐴∈𝖭𝗈𝖽𝖾𝗌() ∣ 𝑃 (𝐴)> 0.5}. So the extension is determined from the probability

function rather the structure of the graph. For example, for Figure 2, if 𝑃 (𝙰) = 0.1, 𝑃 (𝙱) =
0.9, and 𝑃 (𝙲) = 0.1, then the epistemic extension is {𝙱}.

We define an entailment relation, denoted ⊧, as follows, where Γ is a set of epistemic

formulae, and 𝜙 is an epistemic formula: Γ ⊧ 𝜙 iff 𝖲𝖺𝗍(𝜙) ⊆ 𝖲𝖺𝗍(Γ)

Example 2. Let Γ= {𝑝(𝙲)> 0.9, 𝑝(𝙱) = 0.3, 𝑝(𝙲)≥ 0.8∧𝑝(𝙱)< 0.6→ 𝑝(𝙰)> 0.5}. Hence,
𝖲𝖺𝗍(𝑝(𝙰) ≥ 0.5) ⊆ 𝖲𝖺𝗍(Γ), and so Γ ⊧ 𝑝(𝙰) ≥ 0.5.

The simplified epistemic language does not incorporate features of the full epistemic

language (as presented in [1]) such as terms that are Boolean combinations of arguments

(e.g. 𝑃 (𝙱∨𝙲) > 0.6 which says that the probability argument 𝙱 or argument 𝙲 is greater
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than 0.6) or summation of probability values (such as 𝑃 (𝙰) +𝑃 (𝙱) ≤ 1 which says that

the sum of probability 𝙰 and probability 𝙱 is less than or equal to 1). Nonetheless, the

restricted epistemic language is a useful sublanguage and it simplifies the presentation

and evaluation in this paper.

An epistemic constraint is an epistemic formula 𝜓 ∈ 𝖥𝗈𝗋𝗆𝗎𝗅𝖺𝖾(). An epistemic
graph is a tuple (,,) where (,) is a labelled graph, and  ⊆ 𝖥𝗈𝗋𝗆𝗎𝗅𝖺𝖾() is a set

of epistemic constraints associated with the graph.

In general, the graph (and its labellings) is not necessarily induced by the constraints

and therefore it contains additional information. The actual direction of the edges in the

graph is also not necessarily derivable from . For example, if we have two arguments 𝙰
and 𝙱 connected by an edge, a constraint of the form 𝑝(𝙰) < 0.5∨ 𝑝(𝙱) < 0.5 would not

tell us the direction of this edge. The constraints may also involve unrelated arguments,

similar to [18], e.g. ¬𝑝(𝙲)> 0.5∨¬𝑝(𝙳)> 0.5when there is no arc between 𝙲 and 𝙳. So the

assignment of a label to an arc (by the  function) is an extra piece of information. The

assignment is intended to denote the kind of influence of the source node on the target

node. If we use the labels {+,∗,−}, then the assignment of + is intended to denote a form

of support, the assignment of − is intended to denote a form of attack, and ∗ is intended

to denote an influence that is neither support nor attack. So ∗ could denote that under

some conditions behaves as an attack and under some conditions behaves as a support

as illustrated in the arc in Example 3. As investigated in [1], there are various ways that

we can formalize the relationships between labels and constraints. We will not consider

labels further in this paper, and we will focus on the constraints.

For this paper, we also require the notion of an observation which is an epistemic

formula. The difference between constraints and observations is that we assume the con-

straints always hold, whereas observations only hold in some situations or for some peri-

ods. For example, if a debater uses an epistemic graph to model what opponents believe,

the observations would be specific beliefs for a specific opponent.

Example 3. Returning to Figure 2, suppose we have the observation 𝑝(𝙲) ≥ 0.8, then we
want to draw the conclusions 𝑝(𝙱) ≤ 0.5 and 𝑝(𝙰) ≤ 0.5.

Example 4. Returning to Figure 3, suppose we have the observations 𝑝(𝙱) = 0.7 and
𝑝(𝙲) = 0.2, then we want to draw the conclusion 𝑝(𝙰) > 0.5. Or suppose we have the
observations 𝑝(𝙱) > 0.7 and 𝑝(𝙲) ≥ 0.8, then we want to draw the conclusion 𝑝(𝙰) ≤ 0.5.

In the following, we will use the term knowledgebase, denoted , to refer to the

union of a set of constraints and a set of observations.

3. Reasoning with Epistemic Graphs

In this paper, our approach to inference with constraints and observations is to use SAT

solvers. So we will need to represent constraints and observations as clauses (i.e. a dis-

junction of literals). Any formula of propositional logic (and similarly any epistemic for-

mula) can be rewritten in conjunction normal form, and then conjunction elimination

applied, to obtain a set of clauses that are logically equivalent to the original epistemic

formula. So we do not lose any expressibility if we represent our epistemic formulae as

clauses. Note, clauses can be rewritten as implications. So 𝛽1 ∨…∨ 𝛽𝑛−1 ∨ 𝛽𝑛 can be

represented as ¬𝛽1 ∧…∧¬𝛽𝑛−1 → 𝛽𝑛.
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We will also restrict the probability values that the formulae can take by using a

restricted value set, denoted Π, which is a subset of the unit interval such that 0,1 ∈ Π,

and for all 𝑥,𝑦 ∈ Π, if 𝑥+𝑦 ∈ [0,1], then 𝑥+𝑦 ∈ Π, and if 𝑥−𝑦 ∈ [0,1], then 𝑥−𝑦 ∈ Π.

For example, {0,0.5,1} and {0,0.1,0.2,… ,0.9,1} are restricted value sets. In this paper,

we will assume Π = {0,0.1,0.2,… ,0.9,1} unless explicitly stated otherwise.

Definition 1. The restricted language based on graph  and a restricted value set Π
is defined as follows: a restricted atom of the form 𝑝(𝐴)#𝑥 where # ∈ {<,≤,=,≥,>},
𝑥 ∈ Π and 𝐴 ∈ 𝖭𝗈𝖽𝖾𝗌(); a restricted clause of the form 𝛽1 ∨…∨𝛽𝑛∨𝛽𝑛+1 where each
𝛽𝑖 in {𝛽1,… ,𝛽𝑛,𝛽𝑛+1} is a restricted literal (i.e. a restricted atom, or its negation).

Example 5. Let Π = {0,0.5,1}. In the restricted language w.r.t. Π, we can only have
atoms of the form 𝑝(𝙰)#0, 𝑝(𝙰)#0.5, and 𝑝(𝙰)#1, where 𝙰 ∈ 𝖭𝗈𝖽𝖾𝗌() and # ∈ {<,≤,=,≥

,>}. From these atoms we compose epistemic formulae, using the Boolean connectives,
such as 𝑝(𝙰) ≤ 0.5→ ¬(𝑝(𝙱) ≥ 0.5).

We also require some subsidiary definitions. Literals 𝜙 and 𝜓 are logically comple-
mentary iff 𝜙 is ¬𝜓 or 𝜓 is ¬𝜙. (e.g. the literals 𝑃 (𝙰) > 0.8 and ¬(𝑃 (𝙰) > 0.8) are log-

ically complementary); And the literals 𝜙 and 𝜓 are probabilistically complementary
iff 𝖲𝖺𝗍(𝜙) ∩ 𝖲𝖺𝗍(𝜓) = ∅ and 𝜙 and 𝜓 are not logically complementary (e.g. 𝑃 (𝙰) > 0.8
and 𝑃 (𝙰) < 0.8 are probabilistically complementary, and when Π = {0,0.1,… ,0.9,1.0},
𝑃 (𝙰) > 0.9 and ¬(𝑃 (𝙰) = 1) are probabilistically complementary).

To reason with a knowledgebase (i.e. a set of constraints and observations), we pro-

pose a proof theoretic approach based on adding extra axioms to the knowledgebase to

capture the implicit probabilistic information that is required. For this we introduce the

notion of equality completion to reduce our knowledgebase and query to disjunctions in-

volving only equality and the restricted value set Π. For example the atom 𝑝(𝐴) > 0.6
implies 𝑝(𝐴) is one of 0.7, 0.8, 0.9, or 1 as captured by the following clause.

¬(𝑝(𝙰) > 0.6)∨𝑝(𝙰) = 0.7∨𝑝(𝙰) = 0.8∨𝑝(𝙰) = 0.9∨𝑝(𝙰) = 1.0

In the following definition of completion, we also include the constraint that an argu-

ment cannot have two values. So for all arguments 𝙰, for all 𝑥,𝑦 ∈ {0,0.1,0.2,… ,0.9,1},
s.t. 𝑥 ≠ 𝑦, ¬(𝑝(𝙰) = 𝑥)∨¬(𝑝(𝙰) = 𝑦).

Definition 2. For a graph , the set of completion clauses is the following set of clauses

𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() =
⋃

𝐴∈𝖭𝗈𝖽𝖾𝗌()

(( ⋃
𝑘∈{1,…,8}

𝖢𝑘(𝐴)

)
∪𝖤𝗑𝖼𝗅𝗎𝗌𝗂𝗈𝗇(𝐴)

)

where 𝖤𝗑𝖼𝗅𝗎𝗌𝗂𝗈𝗇(𝐴) = {¬(𝑝(𝐴) = 𝑥)∨¬(𝑝(𝐴) = 𝑦) ∣ 𝑥 ≠ 𝑦} and

𝖢1(𝐴) = {𝑝(𝐴) > 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≤ 𝑦1,… ,𝑦𝑛}
𝖢2(𝐴) = {¬(𝑝(𝐴) > 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 > 𝑦1,… ,𝑦𝑛}
𝖢3(𝐴) = {𝑝(𝐴) < 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≥ 𝑦1,… ,𝑦𝑛}
𝖢4(𝐴) = {¬(𝑝(𝐴) < 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 < 𝑦1,… ,𝑦𝑛}
𝖢5(𝐴) = {¬(𝑝(𝐴) ≤ 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≤ 𝑦1,… ,𝑦𝑛}
𝖢6(𝐴) = {𝑝(𝐴) ≤ 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 > 𝑦1,… ,𝑦𝑛}
𝖢7(𝐴) = {¬(𝑝(𝐴) ≥ 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≥ 𝑦1,… ,𝑦𝑛}
𝖢8(𝐴) = {𝑝(𝐴) ≥ 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 < 𝑦1,… ,𝑦𝑛}
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The size of 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() is a linear function of the number of arguments in the graph

, as there are 198 axioms in 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() per argument.

Proposition 1. If |𝖭𝗈𝖽𝖾𝗌()| = 𝑛, then |𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()| = 198𝑛.

Proof. For each argument in 𝐴∈𝖭𝗈𝖽𝖾𝗌(), there is 11 axioms for each of 𝖢𝗈𝗆𝟣 to 𝖢𝗈𝗆𝟪
(there are 11 axioms since there is one axiom per value of 𝑥), and there are 110 exclusion

axioms (since, for ¬(𝑝(𝐴) = 𝑥)∨¬(𝑝(𝐴) = 𝑦), there are 11 choices for 𝑥 and therefore 10

choices for 𝑦, which is 110 choices), giving a total of 198 axioms per argument.

The axioms given in the completion are sound. In other words, they are satisfied by

all probability distributions, and are therefore entailed by any knowledgebase.

In the following definition, we present the resolution proof rule as part of the resolu-

tion proof relation. This proof rule takes a pair of clauses where one has a disjunct, and

the other has a disjunct that is its negation, and returns a clause where the disjuncts are

all the disjuncts from the original clauses except the disjunct in the first clauses that is

negated in the second clause.

Definition 3. Let 𝜙 and 𝜙′ be clauses where 𝜙 is of the form 𝛼∨𝛽 and 𝜙′ is of the form
𝛾 ∨𝛿, and 𝛼 and 𝛾 are logically complementary literals (i.e. 𝛼 is ¬𝛾 or ¬𝛼 is 𝛾), then 𝛽∨𝛿

is a resolvent of 𝜙 and 𝜙′. The resolution proof relation, denoted ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇, is defined
as follows where Δ is a set of clauses and 𝜓 is a clause where the proof rules are: (1)
Resolution; (2) Reflexivity; (3) Associativity; and (4) Contradiction.

1 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛽 ∨ 𝛿 if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛼∨𝛽 & Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛾 ∨ 𝛿 & 𝛼 is ¬𝛾
2 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜙 if 𝜙 ∈ Δ
3 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛼1 ∨…∨𝛼𝑚 if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛽1 ∨…∨𝛽𝑛 & {𝛼1,… ,𝛼𝑚} = {𝛽1,… ,𝛽𝑛}
4 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥ if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜙 & Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬𝜙

We now consider resolution with a knowledgebase and completion. Consider two

clauses and two literals (one in each clause) that are either logically complementary or

probabilistically complementary. For entailment, there is no probability distribution that

satisfies both literals, and so the inference follows. In contrast, the resolution proof rule

only deals with logically complementary literals, and so the completion is required to treat

probabilistically complementary literals as logically complementary literals, and thereby

obtain the inference. We illustrate this in the following example.

Example 6. Consider 𝜙1 = 𝑝(𝙰) > 0.8 ∨ 𝑝(𝙱) > 0.5 and 𝜙2 = 𝑝(𝙰) < 0.2 ∨ 𝑝(𝙱) > 0.5.
Clearly, 𝑝(𝙰) > 0.8 and 𝑝(𝙰) < 0.2 are probabilistically complementary literals, and that
{𝜙1,𝜙2} ⊧ 𝑝(𝙱) > 0.5 holds. The following axioms are from the completion.

𝜋1 = ¬(𝑝(𝙰) > 0.8)∨𝑝(𝙰) = 0.9∨𝑝(𝙰) = 1 𝜋4 = ¬(𝑝(𝙰) = 1)∨¬(𝑝(𝙰) = 0)
𝜋2 = ¬(𝑝(𝙰) < 0.2)∨𝑝(𝙰) = 0∨𝑝(𝙰) = 0.1 𝜋5 = ¬(𝑝(𝙰) = 0.9)∨¬(𝑝(𝙰) = 0.1)
𝜋3 = ¬(𝑝(𝙰) = 0.9)∨¬(𝑝(𝙰) = 0) 𝜋6 = ¬(𝑝(𝙰) = 1)∨¬(𝑝(𝙰) = 0.1)

We now show that 𝑝(𝙱) > 0.5 can be obtained using the resolution proof relation with the
completion of the knowledge. We use the names of clauses rather than the clauses in the
premises to save space. The name of each clause generated by resolution is given on the
right after the clause.

A. Hunter / Automated Reasoning with Epistemic Graphs Using SAT Solvers 181



1 {𝜙1,𝜋1} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0.9∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔1)
2 {𝜙2,𝜋2} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0∨𝑃 (𝙰) = 0.1∨𝑃 (𝙱) > 0.5 (𝜔2)
3 {𝜔1,𝜋3} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0)∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔3)
4 {𝜔3,𝜋4} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0)∨𝑃 (𝙱) > 0.5 (𝜔4)
5 {𝜔1,𝜋5} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0.1)∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔5)
6 {𝜔5,𝜋6} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0.1)∨𝑃 (𝙱) > 0.5 (𝜔6)
7 {𝜔2,𝜔4} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0.1∨𝑃 (𝙱) > 0.5 (𝜔7)
8 {𝜔6,𝜔7} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙱) > 0.5 (𝜔8)

In the following lemma, we generalize the above example by showing that if a clause

is entailed by a pair of clauses, then that inference can be obtained from the completion

of the clauses using only the resolution proof rule.

Lemma 1. For graph , if 𝜙,𝜙′,𝜓 are clauses where 𝜙 is of the form 𝛼1 ∨…∨𝛼𝑛, 𝜙′ is
of the form 𝛽1 ∨…∨𝛽𝑚, 𝜓 is of the form 𝛼1 ∨…∨𝛼𝑛−1 ∨𝛽1 ∨…∨𝛽𝑚−1, and {𝜙,𝜙′} ⊧ 𝜓 ,
then {𝜙,𝜙′}∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 .

Proof. Assume {𝜙,𝜙′} ⊧ 𝜓 . So for all 𝑃 ∈ 𝖲𝖺𝗍({𝜙,𝜙′}), 𝑃 ̸⊧ 𝛼𝑛 or 𝑃 ̸⊧ 𝛽𝑚. So either

𝛼𝑛 and 𝛽𝑚 are logically complementary literals (i.e. syntactically, 𝛼𝑛 is ¬𝛽𝑚 or ¬𝛼𝑛 is

𝛽𝑚) or 𝛼𝑛 and 𝛽𝑚 are probabilistically complementary literals (i.e. 𝛼𝑛 is of the form

𝑝(𝐴1)#1𝑣1 and 𝛽𝑚 is of the form 𝑝(𝐴2)#2𝑣2 and there is no assignment for 𝑤1 and 𝑤2
where 𝑃 (𝐴1) = 𝑤1 and 𝑃 (𝐴2) = 𝑤2 that would satisfy 𝛼𝑛 and 𝛽𝑚). In the case that

𝛼𝑛 and 𝛽𝑚 are logically complementary literals, then {𝜙,𝜙′} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 holds, and

hence {𝜙,𝜙′} ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 holds. In the case that 𝛼𝑛 and 𝛽𝑚 are proba-

bilistically complementary literals, then the disjunct 𝛼𝑛 in 𝜙 is resolved with a com-

pletion axiom and so exchanged for a disjunction of 𝑝(𝐴1) = 𝑦1 ∨…∨ 𝑝(𝐴1) = 𝑦𝑛, and

the disjunct 𝛽𝑛 in 𝜙′ is resolved with a completion axiom and so exchanged for a dis-

junction of 𝑝(𝐴2) = 𝑦′1 ∨…∨ 𝑝(𝐴2) = 𝑦′
𝑛
. So together with the exclusion axioms, there

is no assignment for 𝑤1 and 𝑤2 in 𝑝(𝐴1) = 𝑤1 and 𝑝(𝐴2) = 𝑤2 that would satisfy

𝑝(𝐴1) = 𝑦1 ∨…∨𝑝(𝐴1) = 𝑦𝑛 and 𝑝(𝐴2) = 𝑦′1 ∨…∨𝑝(𝐴2) = 𝑦′
𝑛
. So each of these incom-

patible assignments is removed by resolution until none of them remain. So via a number

of resolution steps, {𝜙,𝜙′}∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 .

The following correctness result shows that a literal 𝛼 is entailed if and only if the

negation of the query together with the knowledgebase and completion results in a con-

tradiction using the resolution consequence relation

Proposition 2. For all epistemic graphs (,,), and literals 𝛼,  ⊧ 𝛼 iff  ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()
∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥.

Proof. (⇒) Assume  ⊧ 𝛼. Therefore 𝖲𝖺𝗍( ∪ {¬𝛼}) = ∅. Therefore there is a subset

Γ ⊆  ∪{¬𝛼} such that 𝖲𝖺𝗍(Γ) = ∅ and for all Γ′ ⊆ Γ, 𝖲𝖺𝗍(Γ′) ≠ ∅. So for all 𝜙 ∈ Γ, and

for all 𝛼 ∈ 𝖣𝗂𝗌𝗃𝗎𝗇𝖼𝗍𝗌(𝜙), Γ ⧵ {𝜙} ⊧ ¬𝛼. Moreover, for all 𝜙,𝜙′ ∈ Γ, and for all 𝜓 such

that 𝜓 is a resolvent of 𝜙 and 𝜙′, Γ ⊢ 𝜓 , and by Lemma 1, Γ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇
𝜓 . Since 𝖲𝖺𝗍(Γ) = ∅, Γ ⊢ ⊥, and by Lemma 1, Γ ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. So  ∪
𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. (⇒) Assume  ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. So

𝖲𝖺𝗍( ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼}) = ∅. Since all 𝛿 ∈ 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() are satisfied by all 𝑃 ∈
𝖣𝗂𝗌𝗍() (i.e. for all 𝑃 ∈ 𝖣𝗂𝗌𝗍(), 𝑃 ⊧ 𝛿), we have 𝖲𝖺𝗍(𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()) = 𝖣𝗂𝗌𝗍(). Therefore,

𝖲𝖺𝗍( ∪{¬𝛼}) = ∅. Hence,  ⊧ 𝛼 holds.
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Algorithm 1 Clausal inference for knowledgebase , query 𝛼, and graph 

function INFERENCE(,𝛼, )

if 𝛼 is a positive literal then
return NOT 𝚂𝙰𝚃(∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{¬𝛼})

else
return NOT 𝚂𝙰𝚃(∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{𝛽}) where 𝛼 is of the form ¬𝛽

Algorithm 2 Bounds for argument 𝐴 w.r.t knowledgebase , graph , and increments 𝜇.

function TIGHTINFERENCE(,𝐴,𝜇,)

𝑛 = 0
while INFERENCE(, 𝑝(𝐴) ≥ 𝑛), do

𝑛 = 𝑛+𝜇

𝑚 = 1
while INFERENCE(, 𝑝(𝐴) ≤ 𝑚), do

𝑚 = 𝑚−𝜇

return (𝑛,𝑚)

4. Algorithms

The inference algorithm (Algorithm 1) calls the SAT solver with a knowledgebase, and

its completion, plus the negation of the query. If the SAT solver returns True, then the set

of formulae is consistent, and hence the query does not follow from the premises, whereas

if the SAT solver returns False, then the set of formulae is inconsistent, and hence the

query does follow from the premises.

Proposition 3. For a knowledgebase , and restricted literal 𝛼, INFERENCE(,𝛼,) =
True iff  ⊧ 𝛼.

Proof. INFERENCE(,𝛼,) = True iff ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{¬𝛼} ⊢𝑆𝐴𝑇 ⊥ iff  ⊧ 𝛼.

We also give an algorithm for obtaining bounds on a query (Algorithm 2). It obtains

the tightest bounds 𝑛,𝑚∈Π such that ⊧ 𝑝(𝐴)≥ 𝑛 and ⊧ 𝑝(𝐴)≤𝑚 hold. The parameter

𝜇 specifies the restricted value set. For example, 𝜇 = 0.5whenΠ= {0,0.5,1} and 𝜇 = 0.1
when Π = {0,0.1,0.2,… ,0.9,1}.

Example 7. Given the constraints {𝑝(𝙰) ≥ 0.4), 𝑝(𝙰) < 0.7∨ 𝑝(𝙱) < 0.5} and the obser-
vations {𝑝(𝙱) ≥ 0.5}, we obtain (0.4,0.6) from Algorithm 2 (i.e. 0.4 as the lower bound
for 𝑝(𝙰) and 0.6 as the upper bound for 𝑝(𝙰)).

The algorithms (i.e. Algorithms 1 and 2) were implemented on Python. The imple-

mentation1 uses the PySAT implementation [19] that incorporates SAT solvers such as

Glucose3. The implementation includes code to randomly generate sets of epistemic con-

straints and queries. For a given number of arguments, and an upper limit on the num-

ber of disjuncts in each clause, the code randomly selects the argument, comparator and

probability value for each atom in the clause. Each query is generated in the same way.

1http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/episat.zip
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(2,10) (2,100) (4,10) (4,100) (6,10) (6,100)

25 0.22 0.27 0.44 0.18 0.18 0.45

50 0.40 0.43 0.87 0.38 0.39 0.82

75 0.65 0.62 0.88 0.63 0.65 0.88

100 0.92 0.87 0.96 0.93 0.90 0.94

125 1.19 1.17 1.17 1.19 1.17 1.28

150 1.56 1.52 1.50 1.42 1.52 1.56

175 1.82 2.15 2.38 1.87 1.81 3.05

200 2.10 1.98 3.76 2.19 2.12 2.67

225 2.46 2.48 2.52 2.52 2.55 2.59

250 3.02 4.17 3.03 3.04 2.82 3.04

Table 1. Experiments with the INFERENCE algorithm (Algorithm 1). Each column is for a pair (𝑑,𝑐) where

𝑑 is the upper limit of disjuncts (taking the value 2, 4, or 6 disjuncts) and 𝑐 is cardinality of knowledgebase

(taking the value of 10 or 100 clauses). Each row is the number of arguments in the range 25 to 250. For each

combination of column and row, we obtained the average time taken (seconds) obtained over 10 runs.

Combination (𝑎 = 10, 𝑐 = 10) (𝑎 = 20, 𝑐 = 20) (𝑎 = 30, 𝑐 = 30) (𝑎 = 40, 𝑐 = 40)

Average time 1.47 3.25 5.61 7.55

Table 2. For each combination, where 𝑎 is the number of arguments, and 𝑐 is the number of clauses, we obtained

the average time taken (seconds) obtained over 20 runs for each number of arguments.

The main purpose of the evaluation was to determine how the inference algorithm

performs with the number of arguments (propositional letters), disjuncts per clauses, and

clauses per knowledgebase. We considered the values 2, 4, and 6 for the number of dis-

juncts as this reflects what might be common values in applications, we considered 10

and 100 for the number of clauses, and similarly between 25 and 250 arguments, as they

represent the numbers that might be found in small and larger applications. Table 1 shows

that for each row, the time taken was similar for each column. So increasing the number

of disjuncts per clause (i.e. 𝑑), or increasing the number of clauses (i.e. 𝑐), does not sub-

stantially affect the time taken. In contrast, the number of arguments does substantially

increase the time taken. This can be clearly seen in each column.

The algorithm for bounds involves more computation since repeated queries are made

to the inference algorithm. As a result the average time to obtain bounds were slower than

for entailment as indicated by the results in Table 2. A simple improvement to the algo-

rithm to decrease the time would be to only form the completion once (rather than form

the completion each time the inference algorithm is called) and then use this completion

each time the SAT solver is called.

The conclusion that we draw from the evaluations is that by basing the algorithms on

off-the-shelf SAT solvers, we are able to have scalable reasoning with epistemic graphs.

Given a set of constraints for an epistemic graph together with a set of observations, we

are able to quickly determine the belief in any of the arguments. In other words, the belief

on some arguments can be efficiently propagated through the graph to determine the belief

in the others. We can claim that this is scalable because we see that even with 100s of

arguments with clauses of up to 6 disjuncts, and a set of constraints plus observation

of 100 clauses, the time taken is a few seconds. For instance, with 200 arguments, a

maximum of 5 disjuncts, and 500 clauses in the knowledgebase, the average time is 2.71

seconds.
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5. An Application of Automated Reasoning

We now consider an extended example (which has been adapted from [1]) to illustrate how

we can use the automated reasoning as part of an automated persuasion system. Assume

we have the graph presented in Figure 4 and that through, for instance, crowdsourcing

data, we have learned which constraints should be associated with a given user profile.

So now we assume we are dealing with a user of an automated persuasion system whose

profile leads to the selection of the following constraints in order to predict his or her

attitudes.

(1) 𝑝(𝙱) > 0.5∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.5
(2) 𝑝(𝙱) > 0.7∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.8
(3) 𝑝(𝙱) > 0.9∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.9
(4) 𝑝(𝙲) ≥ 0.9→ 𝑝(𝙰) < 0.25
(5) 𝑝(𝙳) ≤ 0.5→ 𝑝(𝙰) ≥ 0.25
(6) 𝑝(𝙳) > 0.75→ 𝑝(𝙰) < 0.75
(7) 𝑝(𝙴) > 0.9→ 𝑝(𝙱) < 0.5
(8) 𝑝(𝙴) ≤ 0.5∧𝑝(𝙵) > 0.5→ 𝑝(𝙱) > 0.5
(9) 𝑝(𝙶) > 0.5→ 𝑝(𝙲) < 0.5
(10) 𝑝(𝙷) > 0.5→ 𝑝(𝙳) < 0.5
(11) 𝑝(𝙸) > 0.75→ 𝑝(𝙳) ≤ 0.5
(12) 𝑝(𝙹) > 0.5→ 𝑝(𝙴) < 0.5
(13) 𝑝(𝙹) > 0.5→ 𝑝(𝙱) > 0.5
(14) 𝑝(𝙹) > 0.5∧𝑝(𝙵) > 0.5→ 𝑝(𝙱) > 0.9

We explain these constraints as follows: (1) If 𝙱 is believed, and 𝙲 and 𝙳 are disbelieved,

then 𝙰 is believed; (2) This refines above so if 𝙱 is strongly believed, then 𝙰 is strongly

believed; (3) This refines above so if 𝙱 is very strongly believed, then 𝙰 is very strongly

believed; (4) If 𝙲 is very strongly believed, then 𝙰 is strongly disbelieved; (5) If 𝙳 is not

believed, then 𝙰 is not strongly disbelieved; (6) If 𝙳 is strongly believed, then 𝙰 is not

strongly believed; (7) If 𝙴 is strongly believed, then 𝙱 is disbelieved; (8) If 𝙴 is not believed,

and 𝙵 is believed, then 𝙱 is believed; (9) If 𝙶 is believed, then 𝙲 is disbelieved; (10) If 𝙷 is

believed, then 𝙳 is disbelieved; (11) If 𝙸 is strongly believed, then 𝙳 is not believed; (12)

If 𝙹 is believed, then 𝙴 is disbelieved; (13) If 𝙹 is believed, then 𝙱 is believed; And (14)

If 𝙹 is believed, and 𝙵 is believed, then 𝙱 is strongly believed;

We can use these constraints together with any specific observations we have about

an individual (perhaps a lapsed patient at a dental surgery) to predict the belief in the per-

suasion goal (i.e. argument 𝙰)). For instance, if we know that a given individual strongly

believes 𝙵 and 𝙶, e.g. 𝑝(𝙵) = 0.8 and 𝑝(𝙶) = 0.8, then we can infer that 𝙲 is disbelieved

(i.e. 𝑝(𝙲) < 0.5). However, it is not possible to infer whether the individual believes or

disbelieves the persuasion goal.

Next, we could consider presenting an argument to the individual in order to see

whether (according to the epistemic graph) the persuasion goal is believed or even

strongly believed. For instance, if we present 𝙷 and 𝙹, we may assume that the patient

believes the arguments (i.e. 𝑝(𝙷) > 0.5 and 𝑝(𝙹) > 0.5). This assumption could be based

on analyzing the crowdsourced data to see which arguments are believed after being pre-

sented. Then from 𝑝(𝙷)> 0.5 and 𝑝(𝙹)> 0.5, together with the original information about
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𝙰 = I should

book regular

dental check-ups.

𝙱 = Having a regular

check-up will help me

keep my teeth healthy.

𝙴 = It is daily brushing

and flossing that really

keeps my teeth healthy.

𝙵 = I like to be healthy.

𝙲 = I don’t have

the money to

pay for a dentist.

𝙶 = Dental care is free if

you have a low income.

𝙳 = I find having dental

check-ups painful.

𝙷 = If I let a dental

problem develop, it will

be much more painful.

𝙸 = The checkups are painful

because the teeth and gums are

in a bad shape, which is even

more a reason to go to the dentist.

𝙹 = Clinical studies show that

both daily brushing and flossing

are required for healthy teeth.

+

−

−

−

+

−

−

−

+
−

Figure 4. Epistemic graph (adapted from [1]) for the domain model for a case study on encouraging people to

take regular dental check-ups.

the patient (i.e. 𝑝(𝙵) = 0.8 and 𝑝(𝙶) = 0.8), we can infer 𝙱 and 𝙰 are very strongly believed

(i.e. 𝑝(𝙱) > 0.9 and 𝑝(𝙰) > 0.9).
Since it is possible to acquire substantial amounts of crowdsourced data, and apply

machine learning to generate constraints [20], we can easily acquire large numbers of

constraints on a topic that can be harnessed for user models in automated persuasion. The

above example only involved 14 constraints, and so the inferences can be made by hand,

but if we have 100s of constraints (which can easily arise if we have an argument graph

with 100 arguments), then we need automated reasoning such as the approach presented

in this paper (which was shown in the previous section to scale to 100s of clauses with

200 arguments) to be able to identify the implications of specific options for presenting

arguments.

6. Discussion

Epistemic graphs offer a rich and flexible formalism for modelling argumentation. The

approach provides subjective reasoning by allowing different agents to be modelled by

a different set of constraints (which can be useful in complex problem analysis where

different perspectives and the associated unncertainty is captured). This may be useful

for modelling how different decision makers make their decisions based on their beliefs

in the relevant arguments by each presenting an epistemic graph. Epistemic graphs also

allow for better modelling of imperfect agents, which can be important in multi–agent

application with dialogical argumentation (e.g. persuasion, negotiation, etc.).
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The benefit of the work presented in this paper is that we can use the automated rea-

soning system to allow us to draw inferences about a situation modelled by an epistemic

graph, or about what inferences another agent would draw based on what we assume

about their epistemic graph. Off-the-shelf SAT solvers (which are available for a range

of programming languages) allow the reasoning to scale to large epistemic graphs, and

this allows us to deal with much larger numbers of arguments than possible with previous

proposals for automated reasoning with epistemic graphs [15,16]. The approach of using

the completion clauses can be adapted to a range of automated reasoning tasks. We will

explore these in future work. We will also consider generalizing the algorithms to handle

the general version of epistemic graphs that was presented in [1].
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Abstract. This paper presents a formal approach to explaining change of inference
in Quantitative Bipolar Argumentation Frameworks (QBAFs). When drawing con-
clusions from a QBAF and updating the QBAF to then again draw conclusions (and
so on), our approach traces changes – which we call strength inconsistencies – in
the partial order that a semantics establishes on the arguments in the QBAFs. We
trace the strength inconsistencies to specific arguments, which then serve as ex-
planations. We identify both sufficient and counterfactual explanations for strength
inconsistencies and show that our approach guarantees that explanation arguments
exist if and only if an update leads to strength inconsistency.

Keywords. quantitative argumentation, explainable AI, non-monotonic reasoning

1. Introduction

A key challenge in the domain of eXplainable Artificial Intelligence (XAI) is the expla-
nation of an agent’s change of mind: if the agent has inferred (or decided) A at time t0,
why does she infer A′ at t1? This challenge is reflected in fundamental approaches to
decision-making and reasoning. From the perspective of microeconomic decision the-
ory (see, e.g. [1]), a basic assumption is that the agent has consistent preferences, i.e.
assuming two independent choices A and A′, the agent must not decide A and then A′
if A′ has been available as a decision option all along and also A is still available, as
long as no relevant change in circumstances has occurred. If an agent’s preferences on
the available decision options are not consistent, one would expect an explanation that
highlights this relevant change in circumstances that violates the ceteris paribus2 condi-
tion. From an automated reasoning perspective, one would expect that an explanation is
provided if monotony of entailment is violated, i.e. if the agent first infers A and then A′,
such that A �⊆ A′, an explanation of why previously inferred statements are to be rejected
should be provided. In this paper, we define such explanations in the setting of evolving
Quantitative Bipolar Argumentation Frameworks (QBAFs) [2].

1This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.
2Translates to: “all else unchanged” and is a crucial assumption in classical models of economic rationality.

Computational Models of Argument
F. Toni et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220152
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Specifically, our goal is to explain, in a QBAF that was updated by changing ar-
guments, their initial credences and/or relationships, the relative change in acceptabil-
ity of specified arguments. We strive for explanations of changes in arguments’ relative
strengths that pertain to in some sense minimal information causing those changes. We
adopt the notions of (attributive) sufficient explanations and counterfactual explanations
(see [3] for an excellent overview of counterfactual explanations) to the setting of ex-
plaining changes in the partial ordering of argument strengths in evolving QBAFs. In the
example below, we give intuitive readings of the introduced concepts; rigorous defini-
tions follow later.

Example 1

We start with the QBAF depicted in Figure 1.1, which we denote by QBF. We have the
nodes (arguments) a (with initial strength τ(a) = 1), b (with τ(b) = 1), and c (with τ(c) =
5); a supports b and attacks c. Here, b and c are topic arguments, i.e. arguments that
we want to weigh against each other: the topic argument with the highest Final Strength
(FS) can be considered the most promising. a is a support argument, i.e. the final strength
σ(a) is not directly relevant to the decision but impacts the FS of (some) topic arguments.
Typically, we determine σ(x) of an argument x by aggregating the FS of its supporters
and attackers. For instance, we can add to τ(x) the FS of supporters of x and subtract
the FS of attackers of x, iteratively, starting with the neither attacked nor supported leaf
arguments (whose FS equals initial strength). Here, we get σ(b) by adding σ(a) = τ(a)
to τ(b): 1+1= 2; and σ(c) by subtracting σ(a) from τ(c): 5−1= 4. Consequently, c
is the is the topic argument with the highest FS (and hence our recommendation).

a (1) :1

b (1) :2 c (5) :4

+ -

1.1: QBF

a (1) :1

b (1) :2 c (5) :1

e (3) :3

+ - -

1.2: QBFe

a (2) :2

b (1) :3 c (5) :3

+ -

1.3: QBFa

a (2) :1

b (1) :2 c (5) :0

d (1) :1

e (3) :4

+ - -

- +

1.4: QBF ′

Figure 1. QBF and different updates thereof. Here and henceforth, a node labelled x (i) : f carries argument x
with initial strength τ(x) = i and final strength σ(x) = f. Edges labelled + and − respectively represent attack
and support. Arguments with bold borders are strength inconsistency explanation arguments.

Later, our knowledge base receives an update. The update can be of different forms
of changes to the QBAF: we give examples of the different resulting situations in Fig-
ures 1.2, 1.3, 1.4. As we will spell out shortly, we determine the FSs of b and c (using
the same approach as before) in each situation and find that, after any of the updates, b,
rather than c, is the highest-ranking topic argument. We are then interested in explaining
why the ranking of b relative to c has changed.
(i) In Figure 1.2, the final strength of b is 2 and the final strength of c is 1. Here, the
new argument e directly decreases the final strength of c. Intuitively, (the addition of) e
explains the change in the relative ordering of the final strengths for {b,c}.
(ii) In Figure 1.3, the final strengths of b and c are equal to 3. Here, the change in
the initial strength of a from 1 to 2 leads to changes to the final strengths of b and c.
Intuitively, (the change in the initial strength of) a explains the change in the relative
ordering of the final strengths for {b,c}.
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(iii) In Figure 1.4, the final strength of b is 2 and that of c is 0. Here, we have the addition
of new arguments d and e, as well as a change to the initial strength of a, that both
influence the final strengths of b and c. Now, one could say that here all the changes
collectively explain the change in the relative ordering of the final strengths for {b,c}.
However, let us search for in some sense minimal explanations.

For instance, the addition of only e suffices to make b stronger than c, in the absence
of other changes: this is the situation in Figure 1.2. Additionally, since without adding e
and in the absence of the other changes we would just have QBF we started with as in
Figure 1.1, we conclude that {e} is a minimal explanation of the change in the relative
ordering of the final strengths for {b,c}.

Similarly, absent the addition of d and e, with only the change to a, we would be in
the situation in Figure 1.3, where c is not stronger than b. Hence, {a} is also a minimal
explanation of the change in relative ordering of the final strengths for {b,c}.

How about other combinations? Absent the change to a (but with the addition of e
and d), we would find σ(a) = 0 and thus σ(b) = 1= σ(c). I.e. the relative strengths of b
and c would change from QBF. So, intuitively, {d,e} also explains the change. But it is
not a minimal explanation, because {e} is a smaller one. On the other hand, absent the
addition of e, we would find σ(a) = τ(a)−σ(d) = 2− τ(d) = 1, and the final strengths
of b and c would be σ(b) = τ(b)+σ(a) = 2 and σ(c) = τ(c)−σ(a) = 4, just as in
QBF to begin with. So {a,d} is not an explanation, for there is no change in the relative
strengths of b and c. Similarly, if the addition of d was the only change, we would find
σ(a) = 0 and the final strengths of b and c equal to their initial strengths. So d alone is
not an explanation, either.

In the end, we have two ⊂-minimal sufficient explanations, namely {a} and {e}, of
the change in the relative ordering of the final strengths for {b,c}. Note, however, that
the absence of the changes to a does not counterfactually restore strength consistency.
That is, as shown in the above paragraph, if the initial strength of a were 1 in QBF ′ (as it
is in QBF), we would have σ(b) = σ(c) = 1 in QBF ′, whereas σ(b)< σ(c) in QBF. On
the other hand, as shown in the above paragraph, were e absent from QBF ′, we would
have σ(b) = 2 < 4 = σ(c) and strength consistency would be restored: so {e} is not
only a sufficient explanation, but also a counterfactual one. In fact, {e} is a ⊂-minimal
counterfactual explanation: any counterfactual explanation entails e, because in order
to restore strength consistency of b and c we need to revert (the addition of) e.

The above explanations satisfy the following properties: i) it is sufficient to apply
changes to only these arguments (and to ignore the other changes) in the QBAF for
the partial order of final strengths to coincide with the one obtained after the actual
update (sufficient explanations); ii) in addition to i), reverting the changes made to these
arguments only (and keeping all the other changes) restores the original partial order
(counterfactual explanations); iii) the set of explanation arguments is⊂-minimal among
the sets that satisfy i) or ii). These explanations achieve our objective of explaining any
change in the partial order that the assignment of the final strengths establishes on a set
of arguments of interest, by identifying arguments whose change (addition, removal, or
change of initial strength) leads to the change in the partial order of the final strengths.

In what follows we formalise the intuition given above by defining and analysing
novel forms of explanations in QBAFs. We provide the formal preliminaries in Section 2.
We introduce in Section 3 our formal framework for explaining change of inference in
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QBAFs. We analyse the properties of our explanations in Section 4. Finally, in Section 5
we discuss our work in the context of related research.

2. Preliminaries

This section introduces the formal preliminaries of our work. Let I be a set of elements
and let � be a preorder on I. Typically, I = [0,1] is the unit interval3 and �=� is the
standard less-than-equal ordering. A quantitative bipolar argumentation framework con-
tains a set of arguments related by binary attack and support relations, and assigns an
initial strength in I to the arguments. The initial strength can be thought of as initial cre-
dence in, or importance of, arguments. Typically, the greater the strength in say the unit
interval, the more credible or important the argument is.

Definition 1 (Quantitative Bipolar Argumentation Framework (QBAF) [4,2])
A Quantitative Bipolar Argumentation Framework (QBAF) is a quadruple
(Args,τ,Att,Supp) consisting of a set of arguments Args, an attack relation
Att ⊆ Args × Args, a support relation Supp ⊆ Args × Args and a total function
τ : Args → I that assigns the initial strength τ(a) to every a ∈ Args.

Henceforth, we assume as given a fixed but otherwise arbitrary QBAF QBF =
(Args,τ,Att,Supp), unless specified otherwise. We also assume that Args is finite.

Given a ∈ Args, the set AttQBF(a) := {b | b ∈ Args,(b,a) ∈ Att} is the set of at-
tackers of a and each b ∈ AttQBF(a) is an attacker of a; the set SuppQBF(a) := {c | c ∈
Args,(c,a) ∈ Supp} is the set of supporters of a and each c ∈ SuppQBF(a) is a supporter
of a. We may drop the subscript QBF when the context is clear.

Reasoning in QBAFs amounts to updating the initial strengths of arguments to their
final strengths, taking into account the strengths of attackers and supporters. Specifically,
given a QBAF, a strength function assigns final strengths to arguments in the QBAF.
Different ways of defining a strength function are called gradual semantics [2,4].

Definition 2 (QBAF Semantics and Strength Functions)
A gradual semantics σ defines for QBF = (Args,τ,Att,Supp) a strength function σQBF :
Args → I that assigns the final strength σQBF(a) to each argument a ∈ Args.

For the sake of conciseness, we do not consider the case of a gradual semantics as a
partial function that may leave the final strength value of an argument undefined. We may
abuse the notation and drop the subscript QBF so that σ denotes the strength function,
whenever the context is clear. The (final) strength of an argument can be thought of as its
(final) credence or importance. Typically, the greater the strength in I, the more credible
or important the argument is. In our examples, we use I= R.

A gradual semantics can define a strength function as a composition of multivariate
real-valued functions that determines the strength of a given argument by aggregating the
strengths of its attackers and supporters, taking into account the initial strengths [4]. A
strength function so defined is recursive and generally takes iterated updates to produce a
sequence of strength vectors, whence the final strengths are defined as the limits (or fixed
points) if they exist. However, for acyclic QBAFs (without directed cycles) defining a

3However, in our examples we use a simplistic semantics and hence a different interval.
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semantics and computing the final strengths can be more straightforward: in the topolog-
ical order of an acyclic QBAF as a graph, start with the leaves,4 set their final strengths
to equal their initial strengths, and then iteratively update the strengths of parents whose
all children already have final strengths defined. For instance, in Figure 1.4 from Ex-
ample 1, we can use the function σ(x) = τ(x)+

(
∑y∈Supp(x) σ(y)−∑z∈Att(x) σ(z)

)
de-

fined as a composition, namely sum, of the initial strength (τ(x)) and the difference
between the added strengths of the supporters and the added strengths of the attackers
(∑x∈Supp(x) σ(y)−∑z∈Att(x) σ(z)). It gives final strengths of arguments in the topolog-
ical order of QBF ′: first σ(d) = τ(d) = 1, then σ(a) = τ(a)−σ(d) = 1 and σ(e) =
τ(e)+σ(d) = 4, and then σ(b) = τ(b)+σ(a) = 2 and σ(c) = τ(c)−σ(a)−σ(e) = 0.

While many gradual semantics can be defined for QBAFs in general, their conver-
gence is not always guaranteed in a particular QBAF. For several well-studied semantics,
convergence is however always guaranteed in acyclic QBAFs. (See e.g. [4] for a neat
exposition of convergence results under various semantics.) In what follows, we restrict
our attention to QBAFs for which a fixed but otherwise arbitrary gradual semantics is
well-defined. In other words, our study applies to the setting where a gradual semantics
σ defines a total strength function σQBF assigning the final strengths to all arguments of a
givenQBF . Specifically for illustration purposes to avoid dealing with the sometimes de-
manding definitions of strength functions, we use acyclic QBAFs and the above strength
function σ (in accordance with a topological ordering of an acyclic QBAF). We however
note that both the formal definitions and theoretical analysis given in the paper apply to
the general setting of well-defined gradual semantics giving total strength functions.

3. Change Explainability in QBAFs

In this section, we introduce our formal approach to change explainability in QBAFs. We
start by introducing the notion of strength consistency. Henceforth in this section, unless
stated otherwise, we let QBF = (Args,τ,Att,Supp) and QBF ′ = (Args′,τ ′,Att′,Supp′) be
QBAFs, let a,b,x,y ∈ Args∩Args′, let σ be a strength function, and let S ⊆ Args∪Args′.
Let us highlight here that we do not formalise the change operation; instead, we merely
assume that we have two QBAFs that have at least two arguments in common, and the
second QBAF can be considered a revised (or: updated) version of the first one.

Definition 3 (Strength Consistency)
We say that a is strength-consistent w.r.t. b, denoted by a ∼σ ,QBF,QBF ′ b, iff the following
statements hold true:
• If σQBF(a)> σQBF(b) then σQBF ′(a)> σQBF ′(b);
• If σQBF(a)< σQBF(b) then σQBF ′(a)< σQBF ′(b);
• If σQBF(a) = σQBF(b) then σQBF ′(a) = σQBF ′(b).

Intuitively, two arguments are strength-consistent only if their relative strengths cor-
respond between the two QBAFs. In an obvious way, a �∼σ ,QBF,QBF ′ b denotes the nega-
tion of a ∼σ ,QBF,QBF ′ b and we say that a and b are strength-inconsistent. When there
is no ambiguity, we drop the subscripts and write a ∼ b to denote that a is strength-
consistent w.r.t. b, and similarly for the derived notions.

4Here, leaves are nodes without incoming edges.
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In this work we aim to provide a formal approach to supplying answers to ques-
tions regarding changes in arguments’ relative strengths in an evolving QBAF. The main
objective of this paper is to define explanations as to why, given two QBAFs, any two
arguments are strength-inconsistent (or strength-consistent).

As a prerequisite for generating our explanations, we introduce the notion of a QBAF
reversal with respect to a set of arguments, where such sets of arguments will later play
the role of explanations. Colloquially speaking, given QBAFs QBF and its update QBF ′,
a reversal of QBF ′ to QBF w.r.t. a set of arguments S updates the properties of every
argument from S in QBF ′ so that they reflect the properties of the same argument in
QBF : arguments from S that are not in QBF are deleted and arguments from S that are
in QBF but not in QBF ′ are restored.

Definition 4 (QBAF Reversal)
We define the reversal of QBF ′ to QBF w.r.t. S ⊆ Args∪Args′, denoted by QBF←QBF ′(S),
as a QBAF (Args∗,τ∗,Att∗,Supp∗), where:
• Args∗ = (Args′ ∪S)\ (S\Args);
• Att∗ = (Att′ \ (S×Args))

︸ ︷︷ ︸
Attacks in QBF ′ that are not from S to Args

∪ (S×Args∗ ∩Att)
︸ ︷︷ ︸

Attacks in QBF from S to Args∗

;

• Supp∗ = (Supp′ \ (S×Args))∪ (S×Args∗ ∩Supp);
• τ∗ : Args∗ → I and ∀x ∈ Args∗ the following statement holds true:

τ∗(x) =

{
τ(x), if x ∈ Args∩S;
τ ′(x), otherwise .

Intuitively: for arguments that were removed (i.e. arguments from Args \ Args′),
those from S are added back; for arguments that were added (i.e. arguments from
Args′ \Args), those from S are removed. The arguments are restored with the associated
initial strengths, attacks and supports: in the reversal, we restore “old” attacks and sup-
ports from S; we leave “new” attacks and supports unless they are from S to the “old”
arguments. For visual intuition, a Venn diagram of the set Args∗ is given in Figure 2.

Figure 2. Venn diagram for Args∗ (shaded in light and weakly saturated reddish yellow ‘sand’ colour) in the
reversal QBF←QBF ′ (S) = (Args∗,τ∗,Att∗,Supp∗) of QBF ′ to QBF w.r.t. S ⊆ Args′ ∪Args. (Args, Args’ and S
in small highlighted rectangles are labels of the enclosures highlighted in corresponding colours.)

Using the notion of a QBAF reversal, we introduce different notions of strength
inconsistency explanations, that are sets of arguments intuitively described as follows:
• /0 is both a sufficient and a counterfactual explanation if we do not find strength incon-
sistency after the update from QBF to QBF ′.

• S �= /0 is a sufficient explanation of strength inconsistency after the update from QBF
to QBF ′ if the inconsistency persists when we reverse everything except S back – so
changes to S are sufficient for the inconsistency.
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• S �= /0 is a counterfactual explanation of strength inconsistency after the update from
QBF to QBF ′ if the inconsistency persists when we reverse everything except S back,
but does not persist when we reverse back only S itself – so the absence of changes to
S would restore consistency.

• For both sufficient and counterfactual explanations, we define ⊂-minimal versions.
Definition 5 (Strength Inconsistency Explanations)
We say that S ⊆ Args′ ∪Args is a:
• Sufficient Strength Inconsistency (SSI) explanation of x and y w.r.t. σ , QBF, and QBF ′

iff the following statement holds true:

either
(
S = /0 and x ∼σ ,QBF,QBF ′ y

)

︸ ︷︷ ︸
x and y are strength-consistent, so empty explanation

or
(
x �∼σ ,QBF,QBF ′ y and x �∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\S) y

)

︸ ︷︷ ︸
x and y are strength-inconsistent and remain so after reversing everything but S back

SX(x �∼σ ,QBF,QBF ′ y) denotes all SSI explanations of x and y w.r.t. σ , QBF, and QBF ′
and SX⊂min(x �∼σ ,QBF,QBF ′ y) denotes all ⊂-minimal SSI explanations of x and y w.r.t.
σ , QBF, and QBF ′.

• Counterfactual Strength Inconsistency (CSI) explanation of x and y w.r.t. σ , QBF, and
QBF ′ iff the following statement holds true:

S ∈ SX(x �∼σ ,QBF,QBF ′ y)
︸ ︷︷ ︸

S is an SSI of x and y

and x ∼σ ,QBF,QBF←QBF ′ (S) y
︸ ︷︷ ︸

x and y become strength-consistent after reversing S

CX(x �∼σ ,QBF,QBF ′ y) denotes all CSI explanations of x and y w.r.t. σ , QBF, and QBF ′
and CX⊂min(x �∼σ ,QBF,QBF ′ y) denotes all ⊂-minimal CSI explanations of x and y w.r.t.
σ , QBF, and QBF ′.

Analogously to the case of strength consistency, when there is no ambiguity, we may drop
the subscripts and write simply SX(x �∼ y) to denote all SSI explanations of x and y (w.r.t.
the implicit σ , QBF and QBF ′), and similarly for the derived notions.

Intuitively, a sufficient strength inconsistency explanation identifies changes that ex-
plain why the relative strengths between two arguments are inconsistent, given an ini-
tial QBAF and an update thereof; the changes that a counterfactual explanation identi-
fies are – in addition – counterfactual, i.e. their absence would restore the initial relative
strengths between two arguments. Let us revisit the example from the Introduction sec-
tion to illustrate how strength inconsistency explanations explain change of inference in
QBAFs, this time with the formal notation.

Example 2 (Example 1 revisited)
Figures 3.1 and 3.2 depict again the QBAFs QBF = ({a,b,c},τ,{(a,c)},{(a,b)}) and
QBF ′ = ({a,b,c,d,e},τ ′,{(a,c),(e,c),(d,a)},{(a,b),(d,e)}) from Example 1, where:
• τ(a) = τ(b) = 1 and τ(c) = 5;
• τ ′(a) = 2, τ ′(b) = τ ′(d) = 1, τ ′(c) = 5 and τ ′(e) = 3.
Consider the gradual semantics σ defined using the illustrative strength function σ(x) =
τ(x)+

(
∑y∈Supp(x) σ(y)−∑z∈Att(x) σ(z)

)
that updates the strengths of arguments in an

acyclic QBAF according to its topological ordering, as previously discussed. Denote
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σQBF and σQBF ′ by σ and σ ′, respectively. Assume we are primarily interested in the
final strengths of the arguments b and c: σ(b) = 2 < 4 = σ(c). In contrast, σ ′(b) =
2 > 0 = σ ′(c). Hence, b is strength-inconsistent w.r.t. c (b �∼ c), for which we have the
following explanations: (i) SX⊂min(b �∼ c) = {{a},{e}}, (ii) CX⊂min(b �∼ c) = {{e}}.

Indeed, for {a}, its relative complement is S{a} := (Args∪Args′)\{a}= {b,c,d,e},
so that the reversal QBF←QBF ′(S{a}) of QBF ′ to QBF w.r.t. to S{a} has the arguments

(
Args′ ∪S{a}

)∖(
S{a} \Args

)
=

({a,b,c,d,e}∪{b,c,d,e})\ ({b,c,d,e}\{a,b,c}) = {a,b,c,d,e}\{d,e}= Args.

QBFa := QBF←QBF ′(S{a}) = (Argsa,τa,Atta,Suppa) =
(
(Args′ ∪S{a})\ (S{a} \Args),τa,

(
Att′ \ (S{a} ×Args)

)∪ (
(S{a} ×Argsa)∩Att

)
,Suppa

)
=

(
Args,{(a,τ ′(a)),(b,τ(b)),(c,τ(c))},Att′ ∪ /0,Supp′ ∪ /0)=
(Args,{(a,2),(b,1),(c,5)},{(a,c)},{(a,b)}) .

So QBFa is like QBF but with a’s initial strength changed to 2 (as depicted in Figure 1.3
and discussed in Example 1), thus giving σQBFa(b) = 3 = σQBFa(c). So, b and c are
strength-inconsistent (when updating from QBF to QBF ′) and remain so after reversing
everything but {a} back. Hence, {a} is a ⊂-minimal SSI, by Definition 5.

Now observe that reversing w.r.t. a yields

QBF∗ := QBF←QBF ′({a}) = (Args∗,τ∗,Att∗,Supp∗) =
(
(Args′ ∪{a})\ ({a}\Args),τ∗,

(
Att′ \ ({a}×Args)

)∪ (({a}×Args∗)∩Att) ,Supp∗
)
=

(
Args′,{(a,τ(a)),(b,τ ′(b)),(c,τ ′(c)),(d,τ ′(d)),(e,τ ′(e))},Att′,Supp′

)
=

(
Args′,{(a,1),(b,1),(c,5),(d,1),(e,3)},Att′,Supp′

)
.

So QBF∗ is like QBF ′ but with a’s initial strength unchanged from 1 (depicted in Fig-
ure 3.3), thus giving σQBF∗(b) = 1= σQBF∗(c). That is, b and c do not become strength-
consistent after reversing {a} (i.e. b �∼σ ,QBF,QBF←QBF ′ ({a}) c), whence {a} is not a CSI.

a (1) :1

b (1) :2 c (5) :4

+ -

3.1: QBF

a (2) :1

b (1) :2 c (5) :0

d (1) :1

e (3) :4

+ - -

- +

3.2: QBF ′

a (1) :0

b (1) :1 c (5) :1

d (1) :1

e (3) :4

+ - -

- +

3.3: QBF←QBF ′ ({a}).

a (2) :1

b (1) :2 c (5) :4

d (1) :1

+ -

-

3.4: QBF←QBF ′ ({e}).

Figure 3. QBAFs for explanations from Example 1.

For {e}, with S{e} := (Args∪Args′)\{e}= {a,b,c,d} we have that
(
Args′ ∪S{e}

)\(
S{e} \Args

)
= {a,b,c,d,e} \ ({a,b,c,d}\{a,b,c}) = {a,b,c,d,e} \ {d} = {a,b,c,e}.

Since Args∩S{a} = {b,c}, it follows that reversing w.r.t. all arguments except a yields
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It follows that reversing w.r.t. all arguments except e yields

QBFe := QBF←QBF ′(S{e}) =
({a,b,c,e},{(a,τ(a)),(b,τ(b)),(c,τ(c)),(e,τ ′(e))},{(a,c),(e,c)},{(a,b)})=
({a,b,c,e},{(a,1),(b,1),(c,5),(e,3)},{(a,c),(e,c)},{(a,b)}) .

So QBFe is QBF with e and the attack (e,c) added (as depicted in Figure 1.2 and dis-
cussed in Example 1), thus giving σQBFe(b) = 2 and σQBFe(c) = 1. That is, b and c
remain strength-inconsistent after reversing everything but {e} back, and so {e} is a

QBF∗∗ := QBF←QBF ′({e}) = (Args∗∗,τ∗∗,Att∗∗,Supp∗∗)
(
(Args′ ∪{e})\ ({e}\Args),τ∗∗,

(
Att′ \ ({e}×Args)

)∪ (({e}×Args∗∗)∩Att) ,Supp∗∗
)
=

({a,b,c,d},{(a,τ ′(a)),(b,τ ′(b)),(c,τ ′(c)),(d,τ ′(d))},{(a,c),(d,a)},{(a,b)}) .

QBF∗∗ is thus like QBF ′ but without e (depicted in Figure 3.4), giving σQBF∗∗(b) = 2 and
σQBF∗∗(c) = 4. So b and c do become strength-consistent after reversing {e}, whence
{e} is a CSI. Clearly, reversing w.r.t. /0 yields QBF ′, so that /0 is not a CSI, and hence {e}
is also a ⊂-mininmal CSI.

Lastly, one can check that {d} is not an SSI and hence cannot be a CSI: as mentioned
in Example 1, adding only d leaves the final strengths of b and c unchanged from their
initial strengths, so does not explain anything. Thus, {e} is the only ⊂-mininmal CSI.

4. Theoretical Analysis

In this section, we let QBF = (Args,τ,Att,Supp) and QBF ′ = (Args′,τ ′,Att′,Supp′) be
QBAFs, x,y∈Args∩Args′, and σ be a strength function. We show that both minimal suf-
ficient and counterfactual explanations are sound and complete: either we have strength
inconsistency and at least one non-empty set (and no empty set) of explanation argu-
ments or we have strength consistency explained by the empty set (and only by the empty
set).

First, if two arguments are strength-consistent given two QBAFs in which they occur
and a gradual semantics, then there is no strength inconsistency to explain and the only
explanation is the empty set (SX⊂min -soundness).

Proposition 1 (SX⊂min -Soundness)
If x ∼ y, then SX⊂min(x �∼ y) = { /0}.

Proof. Let x ∼ y. Then /0 is an SSI directly by Definition 5. It is clearly ⊂-minimal, so
{ /0} ⊆ SX⊂min(x �∼ y). On the other hand, no S �= /0 can be an SSI, by definition, precisely
because x ∼ y. So SX⊂min(x �∼ y)⊆ { /0}. Hence, SX⊂min(x �∼ y) = { /0} as required.

If arguments are strength-inconsistent though, then there exists an explanation, but
no empty explanation (SX⊂min -completeness).

Proposition 2 (SX⊂min -Completeness)
If x �∼ y, then |SX⊂min(x �∼ y)| ≥ 1 and /0 �∈ SX⊂min(x �∼ y).

⊂-minimal SSI. Further, reversing w.r.t. e yields
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Proof. Let x �∼σ ,QBF,QBF ′ y.
Proof of |SX⊂min(x �∼σ ,QBF,QBF ′ y)| ≥ 1. By definition of an SSI, since x �∼σ ,QBF,QBF ′ y,
any S ⊆ Args ∪ Args′ is an SSI of x and y (w.r.t. σ , QBF , and QBF ′) iff
x �∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\S) y. Suppose for a contradiction that such a set S

does not exist: ∀S ⊆ Args ∪ Args′, x ∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\S) y. Trivially then,
x ∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\(Args∪Args′)) y. Since QBF←QBF ′( /0) = QBF ′ by defini-
tion of QBAF reversal (Definition 4), it follows that x ∼σ ,QBF,QBF ′ y, contradicting
x �∼σ ,QBF,QBF ′ y. By contradiction, there is at least one S ∈ SX⊂min(x �∼σ ,QBF,QBF ′ y).
Proof of /0 �∈ SX⊂min(x �∼σ ,QBF,QBF ′ y). Suppose /0 ∈ SX(x �∼σ ,QBF,QBF ′ y) for a con-
tradiction. Since x �∼σ ,QBF,QBF ′ y, we have x �∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\ /0) y, by def-
inition of an SSI. As QBF←QBF ′(Args ∪ Args′) = QBF by definition of QBAF rever-
sal, it follows that x �∼σ ,QBF,QBF y. But this is in direct contradiction to the defini-
tion of strength consistency (Definition 3). Thus, /0 �∈ SX(x �∼σ ,QBF,QBF ′ y), and hence
/0 �∈ SX⊂min(x �∼σ ,QBF,QBF ′ y).

We can prove analogous properties for ⊂-minimal CSIs.

Proposition 3 (CX⊂min -soundness)
If x ∼ y, then CX⊂min(x �∼ y) = { /0}.

Proof. Let x ∼σ ,QBF,QBF ′ y. By definition, a CSI is an SSI S for which
x ∼σ ,QBF,QBF←QBF ′ (S) y. Since QBF←QBF ′( /0) = QBF ′ and x ∼σ ,QBF,QBF ′ y, we find
x ∼σ ,QBF,QBF←QBF ′ ( /0) y, whence /0 is a CSI. Clearly, it is a unique ⊂-minimal CSI.

Proposition 4 (CX⊂min -completeness)
If x �∼ y, then |CX⊂min(x �∼ y)| ≥ 1 and /0 �∈CX⊂min(x �∼ y).

Proof. Let x �∼σ ,QBF,QBF ′ y.
Proof of |CX⊂min(x �∼σ ,QBF,QBF ′ y)| ≥ 1. Consider S = Args ∪ Args′. First note
that QBF←QBF ′((Args ∪ Args′) \ (Args ∪ Args′)) = QBF←QBF ′( /0) = QBF ′, and so
x �∼σ ,QBF,QBF←QBF ′ ((Args∪Args′)\(Args∪Args′)) y. Thus, Args∪Args′ ∈ SX(x �∼σ ,QBF,QBF ′ y).
Now, since QBF←QBF ′(Args∪Args′) = QBF and x ∼σ ,QBF,QBF y holds true by defini-
tion, we have that x ∼σ ,QBF,QBF←QBF ′ (Args∪Args′) y. Thus, by definition, Args ∪ Args′ ∈
CX(x �∼σ ,QBF,QBF ′ y), so that the non-empty CX(x �∼σ ,QBF,QBF ′ y) must have at least
one ⊂-minimal element. Therefore, |CX⊂min(x �∼σ ,QBF,QBF ′ y)| ≥ 1.
Proof of /0 �∈ CX⊂min(x �∼σ ,QBF,QBF ′ y). Since a ⊂-minimal CSI is an SSI, if /0 were an
SSI, then /0 would be a ⊂-minimal SSI, contradicting Proposition 2.

The above results show that there are non-trivial (i.e. non-empty) sufficient and
counterfactual strength inconsistency explanations if and only if a strength inconsistency
results between two arguments after an update to a given QBAF. We deem this a desir-
able property: one needs to explain only if a change in the relative strengths of arguments
actually happens after an update; and if there are explanations of changes in the relative
strengths of arguments, then they should correctly refer to such changes.
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5. Discussion

In this paper, we introduced explanations for changes in the relative strengths of two
arguments after a QBAF update; explanations are in the form of sets of arguments that
have been changed (added, removed, changed in their initial score or outgoing attacks
and supports). Intuitively, a change by means of a set of arguments E provides a sufficient
explanation of an alteration in the relative strengths of some arguments of interest if it
suffices to change E without making other changes to obtain the alteration in question.
Additionally, E is a counterfactual explanation if the absence of change to E would revert
back the alteration in the relative strengths of the arguments of interest, even with all
the other changes present. Our approach helps to answer a key explainability question –
“why b and no longer a?” – in dynamic quantitative bipolar argumentation.

To our knowledge, this is the first paper on explainability in quantitative bipolar ar-
gumentation. Our explanations are immediately applicable to quantitative (non-bipolar)
argumentation, where explainability has not been researched either, with the exception of
[5]. There, the authors formalise a notion of impact of an argument on the final strength
of another argument, roughly as a difference between the final strengths of the latter
argument with and without the former argument being present. We instead consider as
explanations the changes to arguments that guarantee alterations in the relative strengths
of other arguments after a given update to the quantitative argumentation framework.

More generally, our work is positioned at the intersection of argumentation dynam-
ics and explainable argumentation, both of which have been studied in depth: see [6] for
a survey on argumentation dynamics, as well as [7] and [8] for surveys on argumenta-
tion and explainability. Few works study the intersection of dynamics and explainability
explicitly. A notable exception is [9], where we studied, in the context of (admissibility-
based) abstract argumentation, how the violation of monotony of entailment can be ex-
plained in so-called normal expansion scenarios, in which new arguments are added to
an argumentation framework, but the relation among previously existing arguments re-
mains unchanged. The present work is different in that it i) addresses QBAFs, and ii) ex-
plains strength inconsistency (i.e. change in preferences from a decision-theoretical per-
spective) rather than the violation of monotony of entailment.

However, several argumentation explainability approaches consider dynamics im-
plicitly. For instance, assuming some space of modifications in a given argumentation
framework, the modifications that would change some topic argument’s acceptability sta-
tus (or strength) can be seen as explanations of such a change [10,11,12]. In particular, a
collection of additions or removals of arguments or attacks in an abstract argumentation
framework in a way that changes the acceptability of a specific argument is an explana-
tion in e.g. [13,12]. Relatedly, though not directly concerning changes, [14,15,16] define
explanations, roughly speaking, as sets of arguments (in non-quantitative argumentation
frameworks) that are sufficient for acceptance or rejection of some target argument(s).

Our work is on QBAFs instead, concerning gradual semantics and changes to numer-
ical argument strengths. We also defined counterfactual explanations, rather than neces-
sary ones: for comparison, in Example 1, neither a nor e could be said to be necessary
explanations, because changing neither one alone is needed for strength inconsistency;
rather, e is counterfactual in that the absence of its change guarantees strength consis-
tency back, given all other changes. Collectively, {a,e} could be said to be necessary, as
changing at least one element therein is needed in any combination of changes that leads
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to strength inconsistency. We leave formal investigations of this for future work. In the
future we can also expand the current perspective on QBAF (change) explainability by in
addition providing sub-graphs to trace sets of explanation arguments to topic arguments.
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Abstract. Abstract dialectical frameworks (ADFs) have been introduced as a for-
malism for modeling and evaluating argumentation allowing general logical satis-
faction conditions. Different criteria used to settle the acceptance of arguments are
called semantics. Semantics of ADFs have so far mainly been defined based on the
concept of admissibility. Recently, the notion of strong admissibility has been intro-
duced for ADFs. In the current work we study the computational complexity of the
following reasoning tasks under strong admissibility semantics. We address 1. the
credulous/skeptical decision problem; 2. the verification problem; 3. the strong jus-
tification problem; and 4. the problem of finding a smallest witness of strong justi-
fication of a queried argument.

Keywords. argumentation, abstract dialectical frameworks, complexity

1. Introduction

Despite the fact that Dung’s abstract argumentation frameworks [1] (AFs for short) are
widely used and studied within AI, in certain scenarios AFs are too limited to properly
model the complex relations between arguments. Thus, several generalizations of AFs
have been introduced [2], e.g., SETAFs and Bipolar AFs. Abstract dialectical frameworks
(ADFs) [3,4,5] are an expressive generalization of AFs that can represent logical rela-
tions among arguments and subsume many popular generalizations of AFs. Semantics
of AFs and ADFs single out coherent subsets of arguments that fit together, according to
specific criteria [6].

There are several established semantics for AFs and ADFs. In this work we consider
strong admissibility semantics and grounded semantics, which are the most skeptical
types of semantics. Characteristics of grounded semantics for AFs include that 1. each
AF has a unique grounded extension; 2. the grounded extension collects all the arguments
about which no one doubts their acceptance; 3. the grounded extension is often a subset
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of the set of extensions of other types of AF semantics. Thus, it is important to investigate
whether an argument belongs to the grounded extension of a given AF. The notion of
strong admissibility is introduced for AFs to answer the query ‘Why does an argument
belong to the grounded extension?’.

While the grounded extension collects all the arguments of a given AF that can
be accepted without any doubt, a strongly admissible extension provides a (minimal)
justification why specific arguments can be accepted without any doubt, i.e., belong to
the grounded extension. Thus, the strong admissibility semantics can be the basis for an
algorithm that can be used not only for answering the credulous decision problem but
also for human-machine interaction that requires an explainable outcome (cf. [7,8]).

In AFs, strong admissibility semantics were first defined in the work of Baroni and
Giacomin [9], and later in [10]. Furthermore, in [11], Caminada and Dunne presented a
labelling account of strong admissibility to answer the decision problems of AFs under
grounded semantics. Moreover, Caminada showed in [12,10] that strong admissibility
plays a crucial role in discussion games for AFs under grounded semantics. This moti-
vated the study of the computational complexity of strong admissibility of AFs in general
and in particular of the problem of computing small strongly admissible sets that justify
the acceptance of an argument [13,14].

In previous work, we generalized the concept of strong admissibility to ADFs [15].
This concept fulfils properties that are related to those of the strong admissibility seman-
tics for AFs, as follows: 1. Each ADF has at least one strongly admissible interpretation.
2. The set of strongly admissible interpretations of ADFs forms a lattice with as least
element the trivial interpretation and as maximum element the grounded interpretation.
3. The strong admissibility semantics can be used to answer whether an argument is jus-
tifiable under grounded semantics. 4. The strong admissibility semantics for ADFs is a
proper generalization of the strong admissibility semantics for AFs.

Whereas several fundamental properties of strong admissibility semantics for ADFs
have been established, the computational complexity under strong admissibility seman-
tics has not previously been studied. The current work closes this gap by studying the
complexity of the central reasoning tasks under the strong admissibility semantics of
ADFs. The paper is organised as follows: In Section 2 we recall the basic definitions
of ADFs and strong admissibility. In Section 3 we provide exact complexity classifica-
tions for the different decision problems for strong admissibility semantics. We consider
standard decision problems, i.e., the credulous and skeptial decision problems and the
verification problem, the strong justification problem, i.e., deciding whether an argument
is strongly justified in an interpretation, and the problem of finding a small witness of
strong justification of an argument, i.e, whether there exists a strongly admissible inter-
pretation that satisfies a queried argument and is smaller than a given bound. Finally, we
conclude in Section 4. 2

2This paper is based on an earlier presentation at the non-archival workshop NMR 2021. Proofs of
all theorems are available in the dissertation [16] (Chapter 4), see https://research.rug.nl/nl/
publications/abstract-dialectical-frameworks-semantics-discussion-games-and-va.
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2. Formal Background

We recall the basics of ADFs [5]. Also we recall the definition of strong admissibility for
ADFs, presented in [17].

2.1. Abstract Dialectical Frameworks

We summarize key concepts of abstract dialectical frameworks [3,5].

Definition 1. An abstract dialectical framework (ADF) is a tuple D = (A,L,C) where:
1. A is a finite set of arguments (statements, positions); 2. L⊆A×A is a set of links among
arguments; 3. C = {ϕa}a∈A is a collection of propositional formulas over arguments,
called acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and links show
the relations between arguments. Each argument a in an ADF is labelled by a proposi-
tional formula, called acceptance condition, ϕa over par(a), where par(a) = {b | (b,a)∈
L}. The acceptance condition of each argument clarifies under which condition the argu-
ment can be accepted.

A three-valued interpretation v (for D) is a function v : A �→ {t, f,u} that maps ar-
guments to one of the three truth values true (t), false (f), or undecided (u). For rea-
sons of brevity, we will shorten the notation of three-valued interpretation v = {a1 �→
t1, . . . ,am �→ tm} as follows: v = {ai | v(ai) = t} ∪ {¬ai | v(ai) = f}. For instance,
v = {a �→ f,b �→ t}= {¬a,b}. Interpretation v is called trivial, and v is denoted by vu, if
v(a) = u for each a ∈ A. Furthermore, v is called a two-valued interpretation if for each
a ∈ A either v(a) = t or v(a) = f.

Truth values can be ordered via the information ordering relation <i given by u <i t

and u <i f and no other pair of truth values are related by <i. Relation ≤i is the reflexive
closure of <i. Meet operator �i is defined over the truth values such that t�i t = t and
f�i f = f, while it returns u otherwise. The meet of two interpretations v and w is then
defined as (v�i w)(a) = v(a)�i w(a) for all a ∈ A.

Given an interpretation v (for D), the partial valuation of ϕa by v is v(ϕa) = ϕv
a =

ϕa[b/	 : v(b) = t][b/⊥ : v(b) = f], for b ∈ par(a). Note that in this work we assume that
D = (A,L,C) is a finite ADF and v is an interpretation of D. Semantics for ADFs can be
defined via the characteristic operator ΓD, presented in Definition 2.

Definition 2. Let D be an ADF and let v be an interpretation of D. Applying ΓD on
v leads to v′ such that for each a ∈ A, v′(a) = t if ϕv

a is irrefutable, v′(a) = f if ϕv
a is

unsatisfiable, and v′(a) = u, otherwise.

Most types of semantics for ADFs are based on the concept of admissibility. An inter-
pretation v for a given ADF F is called admissible iff v ≤i ΓF(v); it is preferred iff v
is ≤i-maximal admissible; it is the grounded interpretation of D iff v is the least fixed
point of ΓD. The set of all σ interpretations for an ADF D is denoted by σ(D), where
σ ∈ {adm,grd,prf} abbreviates the different semantics in the obvious manner. Given
an interpretation v and an argument a ∈ A, a is called acceptable with respect to v if ϕv

a
is irrefutable and a is called deniable with respect to v if ϕv

a is unsatisfiable.
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a b c d

	 a∧¬c ¬b∧d ⊥

Figure 1. ADF of Example 1

2.2. The Strong Admissibility Semantics for ADFs

In this section, we rephrase the concept of strong admissibility semantics for ADFs from
[15], which is defined based on the notion of strongly justifiable arguments (i.e., strongly
acceptable/deniable arguments). Below, the interpretation v|P is equal to v(p) for any
p ∈ P, and returns u otherwise, i.e., v|P = vu|p∈P

v(p) .

Definition 3. Let D be an ADF. Argument a is a strongly justified argument in interpre-
tation v with respect to set E if one of the following conditions holds:

• v(a) = t and there exists a subset P of parents of a excluding E, namely P ⊆
par(a) \E, such that (a) a is acceptable with respect to v|P and (b) all p ∈ P are
strongly justified in v w.r.t. set E ∪{p}.

• v(a) = f and there exists a subset P of parents of a excluding E, namely P ⊆
par(a) \E, such that (a) a is deniable with respect to v|P and (b) all p ∈ P are
strongly justified in v w.r.t. set E ∪{p}.

An argument a is strongly acceptable, respectively strongly deniable, in v if v(a) = t,
resp. v(a) = f, and a is strongly justified in v with respect to set {a}. We say that a is
strongly justified in v if it is either strongly acceptable or strongly deniable in v.

Note that in Definition 3, E is used to keep track of the arguments that cannot be used to
justify a. We say that a is not strongly justified in an interpretation v if there is no set
of parents of a that satisfies the conditions of Definition 3 for a. Example 1 presents the
notion of strongly justified arguments in an interpretation.

Example 1. Let D be the ADF depicted in Figure 1. Let v = {b,¬c,¬d}. First, since
ϕvu

d ≡⊥, it holds that d is strongly deniable in v. We show that c is strongly deniable in
v with respect to E = {c}. Let P = {d}; it is clear that ϕ

v|P
c is unsatisfiable. That is, c is

deniable w.r.t. v|d . Then, since d ∈ P, v(d) = f and d is strongly justified in v with respect
to E = {d}, c is strongly deniable in v. We show that b is not strongly acceptable in v.
Let P = par(b). Since ϕ

v|P
b �≡ 	, there is no subset of par(b) that satisfies the conditions

of Definition 3 for b. Thus, b is not strongly acceptable in v. It will turn out that v is not
a strongly admissible interpretation, see Definition 4.

Definition 4. LetD be an ADF. An interpretation v is a strongly admissible interpretation
if for each a such that v(a) = t/f, it holds that a is a strongly justified argument in v. The
set of all strongly admissible interpretations of D is denoted by sadm(D).

Consider again the ADF of Example 1. Let v = {b,¬c,¬d}. As shown in Example 1,
c and d are strongly justified in v. However, b is not strongly justified in v. Thus, v �∈
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sadm(D). However, for instance, v1 = {a}, v2 = {¬c,¬d} and v3 = {a,b,¬c,¬d} are
strongly admissible interpretations of D. Furthermore, v3 ∈ grd(D).

Algorithms in Section 5 of [17] answer the verification problem under strong admis-
sibility semantics and the strong justification problem. To present the algorithms, Defi-
nition 28 in [17] introduces a variant of the characteristic operator restricted to a given
interpretation v; we rewrite it in Definition 5.

Definition 5. Let D be an ADF and let v,w be interpretations of D. We define Γ0D,v(w) =

w and ΓD,v(w) = ΓD(w)�i v, where Γ j
D,v(w) = ΓD,v(Γ j−1

D,v (w)) for j with j ≥ 1.

The sequence of interpretations Γ j
D,v(vu) as defined in Definition 5 is named the sequence

of strongly admissible interpretations constructed based on v in D. Theorems 28 and
29 in [17] show that one can use iterative fixed-point computations of ΓD,v operators
to decide (a) verification of a given strongly admissible interpretation and (b) whether
an argument is strongly acceptable/deniable within a given interpretation. However, be-
cause testing whether an argument is acceptable in ΓD is already NP/coNP-hard [18],
these procedures are in PNP. As we will show, both problems allow for algorithms of
significantly lower complexity.

3. Computational Complexity

We analyse the complexity under strong admissibility semantics for (a) the standard rea-
soning tasks of ADFs [18] and (b) two problems specific to strong admissibility seman-
tics: (i) the small witness problem introduced for AFs [14,13] in order to minimize the
length of the corresponding discussion games; and (ii) the strong justification problem.
For a given ADF D, argument a and the truth value x ∈ {t, f}, we consider the following
problems:

1. The credulous decision problem: whether a is credulously justifiable w.r.t.
the strong admissibility semantics of D, denoted as Credsadm(a,x,D), where
Credsadm(a,x,D) = yes if there exists v ∈ sadm(D) s.t. v(a) = x, and it returns no
otherwise.

2. The skeptical decision problem: whether a is skeptically justified w.r.t. the strong
admissibility semantics ofD, denoted as Skeptsadm(a,x,D), where Skeptsadm(a,x,D)
= yes if for each v ∈ sadm(D) it holds that v(a) = x, and it returns no otherwise.

3. The verification problem: whether v ∈ sadm(D) denoted by Versadm(v,D), where
Versadm(v,D) = yes if v ∈ sadm(D), and it returns no otherwise.

4. The strong justification problem: The problem whether a given argument a is
strongly justified in a given interpretation v, denoted as StrJust(a,x,v,D), where
StrJust(a,x,v,D) = yes if a is strongly justified in v, and it returns no otherwise.

5. The small witness problem: We are interested in computing a strongly admissi-
ble interpretation that has the least information of the ancestors of a given argu-
ment, namely a, where v(a) = x. The decision version of this problem is the k-
Witness problem, denoted by k-Witnesssadm, indicating whether a given argument
is strongly justified in at least one v such that v ∈ sadm(D) and |vt ∪ vf| ≤ k. Note
that k is part of the input of this problem. This decision problem is presented for-
mally as follows: k-Witnesssadm(a,x,D) = yes if there exists v∈ sadm(D) such that
v(a) = x and |vt ∪ vf| ≤ k, and it returns no otherwise.
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3.1. The Credulous/Skeptical Decision Problems

In this section we show the complexity of deciding whether an argument in question is
credulously/skeptically justifiable in at least one/all strongly admissible interpretation(s)
of a given ADF. We show that Credsadm is coNP-complete and Skeptsadm is trivial. To this
end, we use the fact, presented in [17], that the set of strongly admissible interpretations
of a given ADF D forms a lattice with respect to the ≤i-ordering, with the maximum
element being grd(D). Thus, any strongly admissible interpretation of D has at most an
amount of information equal to grd(D). Thus, answering the credulous decision problem
under the strong admissibility semantics coincides with answering the credulous decision
problem under the grounded semantics.

Theorem 1. Credsadm is coNP-complete.

Proof. We have that Credsadm(a,x,D) = Credgrd(a,x,D) and the latter has been shown
to be coNP-complete in [19, Proposition 4.1.3.].

Concerning skeptical acceptance, notice that the trivial interpretation is the least strongly
admissible interpretation in each ADF. Thus, Skeptsadm(a,x,D) is trivially no.

Theorem 2. Skeptsadm is a trivial problem.

3.2. The Verification Problem

In this section, we settle the complexity of Versadm(v,D). We have mentioned at the end
of Section 2.2 that this problem can be solved in PNP; in the sequel, we will show that its
complexity is in fact lower. We first sketch a simple translation-based approach that re-
duces the verification problem of strongly admissible semantics to the verification prob-
lem of grounded semantics. In order to reduce Versadm(v,D) to Vergrd(v,D′), we modify
the acceptance conditions ϕa of D to ϕ ′

a = ¬a if v(a) = u and ϕ ′
a = ϕa otherwise. We

then have that v ∈ sadm(D) iff v ∈ grd(D′), so that we can use the DP procedure for
Vergrd(v,D′) [19, Theorem 4.1.4]. However, as we will discuss next, Versadm(v,D) can
even be solved within coNP.

Intuitively, since the grounded interpretation is the maximum element of the lat-
tice of strongly admissible interpretations and the credulous decision problem under
grounded semantics is coNP-complete, it seems that the verification problem under the
strong admissibility semantics has to be coNP-complete. However, having the positive
answer for Credgrd(a,x,D) for each a with v(a) = t/f does not lead to the positive an-
swer of Versadm(v,D). This is because v ≤i grd(D) does not imply that v is a strongly
admissible interpretation of D (see Example 2 below).

Example 2. Let D = ({a,b},{ϕa : 	,ϕb : a∨ b}). The grounded interpretation of D is
{a �→ t,b �→ t}. Furthermore, the interpretation v = {a �→ u,b �→ t} is an admissible
interpretation of D such that v ≤i grd(D). However, v is not a strongly admissible inter-
pretation of D. As we know, the answer of Credgrd(b, t,D) is yes, but b is not strongly
acceptable in v. Thus, the answer to Versadm(v,D) is no.

To show that Versadm is coNP-complete, we modify and combine both the fixed-point
iteration from [17] and the grounded algorithm from [19]. To this end, we need some
auxiliary results that are shown in Lemmas 1 and 2.
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Lemma 1. Given an ADF D with |A|= n, the following statements are equivalent:

1. v is a strongly admissible interpretation of D;
2. v = Γn

D,v(vu);
3. for each w ≤i v, it holds that v = Γn

D,v(w).

In the following, let v∗ = vt ∪ vf. The notions of completion of an interpretation and
model are presented in Definition 6; they are used in Lemma 2.

Definition 6. Let w be an interpretation. We define the completion of w, denoted by [w]2,
as follows: [w]2 = {u | w ≤i u and u is a two-valued interpretation}.

Furthermore, a two-valued interpretation u is said to be a model of formula ϕ , if
u(ϕ) = t, denoted by u |= ϕ .

Lemma 2. Let D be an ADF and let v be an interpretation of D. Then v �∈ sadm(D) iff
there exists an interpretation w of D that satisfies all the following conditions:

1. w <i v;
2. For each a ∈ wu ∩ vt there exists ua∈ [w]2 s.t. ua �|= ϕa;
3. For each a ∈ wu ∩ vf there exists ua∈ [w]2 s.t. ua |= ϕa.

Proof. ⇐: Assume that v and w are interpretations of D that satisfy all of the items 1, 2,
3 presented in the lemma. We show that v �∈ sadm(D). Toward a contradiction, assume
that v ∈ sadm(v). Let a be an argument such that a ∈ wu ∩ vt; thus, since w satisfies
the conditions of the lemma, it holds that there exists ua ∈ [w]2 such that ua �|= ϕa, i.e.,
ua(a) = f. Furthermore, since v(a) = t and v ∈ sadm(D), for any j ∈ [v]2 it holds that
j |= ϕa. Since w <i v, it holds that j ∈ [w]2, i.e., ΓD(w)(a) = u. The proof method for the
case that a ∈ wu ∩ vf is similar, i.e., if a ∈ wu ∩ (vt ∪ vf), then ΓD(w)(a) = u. Thus, for
a ∈ wu ∩ v∗ we have ΓD,v(w)(a) = (ΓD(w)� v)(a) = u. In other words, ΓD,v(w)(a) ≤i
w and thus, by the monotonicity of ΓD,v(w), also Γn

D,v(w)(a) ≤i w <i v. Thus, since
Γn

D,v(w) �∼i v, the third item of Lemma 1 does not hold for w with w <i v. Therefore,
v �∈ sadm(D).
⇒: Assume that v �∈ sadm(D). That is, for the fixed point w = Γn

D,v(vu) we have w <i v.
Consider a ∈ wu ∩ vt. Because w is a fixed point, we have that ΓD,v(w)(a) �= t and thus
ΓD(w) �= t. That is, there is a ua ∈ [w]2 such that ua �|= ϕa. Similar reasoning applies to
a ∈ wu ∩ vf.

Theorem 3 shows that Versadm is coNP-complete for ADFs.

Theorem 3. Versadm is coNP-complete for ADFs.

Proof sketch. We first show that Versadm ∈ coNP for ADFs. Let D be an ADF and let
v be an interpretation of D. For membership, consider the co-problem. By Lemma 2,
if there exists an interpretation of w that satisfies the condition of Lemma 2, then v �∈
sadm(D). Thus, guess an interpretation w, together with an interpretation ua ∈ [w]2 for
each a ∈ v∗, and check whether they satisfy the conditions of Lemma 2. Note that since
w <i v, we have to check the second and the third items of Lemma 2 a total of |v∗ \wu|
number of times. That is, this checking has to be done at most |v∗| number of times
when w is the trivial interpretation. Thus, this checking step is linear in the size of v∗.
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a b

b¬b∨b

Figure 2. Reduction used in Theorems 3 and 5, for ψ = ¬b∨b.

Therefore, the procedure of guessing of w and checking whether it satisfies 1,2,3 of
Lemma 2 is an NP-problem. Thus, if a w satisfies the items of Lemma 2, then the answer
to Versadm(v,D) is no. Otherwise, if we check all interpretations w such that w <i v and
none of them satisfies the conditions of Lemma 2, then the answer to Versadm(v,D) is yes.
Thus, Versadm(v,D) ∈ coNP.

Now let us show that Versadm is coNP-hard. For hardness of Versadm, we consider
the standard propositional logic problem of VALIDITY. Let ψ be an arbitrary Boolean
formula and let X = atom(ψ) be the set of atoms in ψ . Let a be a new atom, i.e., a �∈ X .
Construct ADF D = ({X ∪{a}},L,C) where ϕx : x for each x ∈ X and ϕa : ψ . We show
that ψ is valid if and only if v = vu|at is a strongly admissible interpretation of D. An
illustration of the reduction for the formula ψ = ¬b∨ b to the ADF D = ({a,b},L,ϕa :
ψ,ϕb : b) is shown in Figure 2. One can show that ψ is a valid formula iff v is the
grounded interpretation of D.

3.3. Strong Justification of an Argument

Note that it is possible that an interpretation v contains some strongly justified arguments
but v is not strongly admissible itself. For instance, in interpretation v = {b,¬c,¬d},
presented in Example 1, arguments c and d are strongly deniable in v, however, argument
b is not strongly acceptable in v. Thus, v is not a strongly admissible interpretation of
D. However, there exists a strongly admissible interpretation of D in which c and d are
strongly acceptable and that has less information than v, namely, v′ = {c,d}. Thus, the
problem StrJust(a,x,v,D) of deciding whether an argument is strongly justified in a given
interpretation of an ADF is different from the previously discussed decision problems.
We show that StrJust is coNP-complete.
Algorithm 2 in [17] presents a direct method of deciding whether a is strongly justi-
fied in an interpretation v. That is, a is strongly acceptable/deniable in v iff it is accept-
able/deniable by the least fixed point of the operator ΓD,v, which is equal to Γn

D,v(vu) for
sufficiently large n.

However, the repeated evaluation of ΓD is a costly part of this algorithm and results
in a PNP algorithm.We will next discuss a more efficient method to answer this reasoning
task. To this end, we translate a given ADF D to ADF D′, presented in Definition 7,
such that the queried argument is strongly justifiable in a given interpretation of D if
and only if it is credulously justifiable in the grounded interpretation of D′. As shown
in Proposition 4.1.3 in [19], Credgrd ∈ coNP. Thus, verifying whether a given argument
is strongly justified in an interpretation is a coNP-problem, since the translation can be
done in polynomial time with respect to the size of D. In the following, assume that v is
an interpretation of D.

Definition 7. Let D = (A,L,C) be an ADF and let v be an interpretation of D. The
translation of D under v is D′ = (A′,L′,C′) such that A′ = A ∪ {x,y} where x,y �∈ A.
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Furthermore, for each a ∈ A′ we define the acceptance condition of a in D′, namely ϕ ′
a,

as follows: 1. ϕ ′
x : x; 2. ϕ ′

y : y; 3. if v(a) = u, then ϕ ′
a : ¬a; 4. if v(a) = t, then ϕ ′

a = ϕa∨x;
5. if v(a) = f, then ϕ ′

a = ϕa ∧ y.

Notice that we introduced arguments x, y to ensure that arguments in v∗ are not assigned
to the opposite truth value during the iteration of ΓD′ that leads to grd(D′). Theorem 4
shows the correctness of the reduction.

Theorem 4. Let D be an ADF, let v be an interpretation of D, and let D′ be the translation
of D, via Definition 7. Then, StrJust(a,x,v,D) = yes, iff Credgrd(a,x,D′) = yes.

Proof. We assume that StrJust(a, t,v,D) = yes, and we show that Credgrd(a, t,D′) = yes.
The proof for the case that StrJust(a, f,v,D) = yes is similar. Assume that vu is the triv-
ial interpretation of D and v′u is the trivial interpretation of D′. Assume that Γi

D,v(vu)
is a sequence of strongly admissible interpretations constructed based on v in D, as in
Definition 5. Let w be the limit of the sequence of Γi

D,v(vu).
StrJust(a, t,v,D) = yes implies that w(a) = t. Since w ∈ sadm(D), it holds that

g(a) = t where g ∈ grd(D), i.e., there exists a natural number n such that Γn
D(vu)(a) = t.

By induction on n, it is easy to show that Γn
D′(v′u)(a) = t. That is, g′(a) = t where

g′ ∈ grd(D′). Thus, Credgrd(a, t,D′) = yes.
We assume that Credgrd(a,x,D′) = yes, and we show that StrJust(a,x,v,D) = yes.

Assume that a is justified in the grounded interpretation of D′, namely w. Thus, there
exists a j such that w = Γ j

D′(wu) for j ≥ 0, where wu is the trivial interpretation of D′.
By induction we prove the claim that for all i, if a �→ t/f ∈ Γi

D′(wu), then a is strongly
justified in v.

Base case: Assume that Γ1D′(wu)(a) ∈ {t, f}. By the acceptance conditions of x and
y in D′, both of them are assigned to u in w. Then it has to be the case that either ϕ ′

a =
ϕa ∨ x or ϕ ′

a = ϕa ∧ y in D′. Thus, Γ1D′(wu)(a) ∈ {t, f} implies that ϕ ′
a

wu ≡ 	/⊥. Thus,
w(x/y) = u, ϕ ′

a = ϕa ∨ x/ϕa ∧ y and ϕ ′
a

wu ≡ 	/⊥ together imply that ϕa
wu ≡ 	/⊥.

Hence, ϕvu
a ≡ 	/⊥ where vu is the trivial interpretation of D. That is, a is strongly

justified in v.
Induction hypothesis: Assume that for all j with 1 ≤ j ≤ i, if a �→ t/f ∈ Γ j

D′(wu),
then a is strongly justified in v.

Inductive step: We show that if a �→ t/f ∈ Γi+1
D′ (wu), then a is strongly justified in

v. Because x/y �→ u ∈ w, we have that ϕw
a ≡	/⊥ implies that ϕv

a ≡	/⊥. Furthermore,
a �→ t/f ∈ Γi+1

D′ (wu) says that there exists a set of parents of a, namely P, where P ⊆
wt∪wf, such that, ϕ

w|P
a ≡	/⊥. Thus, ϕv|P

a ≡	/⊥. By induction hypothesis, each p ∈ P
is strongly justified in v. Thus, a is strongly justified in v.

We use the auxiliary Theorem 4 to present the main result of this section, i.e., to show
that StrJust is coNP-complete.

Theorem 5. Let D be an ADF, let a be an argument, and let v be an interpretation of
D. Deciding whether a is strongly justified in v, i.e., whether StrJust(a,x,v,D), is coNP-
complete.

Proof sketch. First we show that StrJust(a,x,v,D) ∈ coNP. It is shown in [19, Propo-
sition 4.1.3] that Credgrd(a,x,D) ∈ coNP. Furthermore, the translation of a given ADF
D to D′ via Definition 7 can be done in polynomial time. By Theorem 4, it holds that
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Credgrd(a,x,D) = yes iff StrJust(a,x,v,D) = yes. Thus, deciding whether a given argu-
ment is strongly justified in interpretation v is a coNP-problem.

Next we show that StrJust(a,x,v,D) is coNP-hard. Let ψ be any Boolean formula
and let X = atom(ψ) be the set of atoms in ψ . Let a be a new variable. Construct D =
({X ∪{a}},L,C), s.t. ϕx : x for each x ∈ X and ϕa : ψ . ADF D can be constructed in
polynomial time w.r.t. the size of ψ . One can check that a is strongly acceptable in any
v where v(a) = t iff ψ is a valid formula. An illustration of the reduction for the formula
ψ = ¬b∨b to the ADF D = ({a,b},L,ϕa : ψ,ϕb : b) is depicted in Figure 2.

For credulous denial of a, it is enough to present the acceptance condition of a equal
to the negation of ψ inD, i.e., ϕa :¬ψ , and follow a similar method. That is, a is strongly
deniable in v, where v(a) = f, iff ψ is a valid formula.

3.4. Smallest Witness of Strong Justification

Assume that an argument a, its truth value x, and a natural number k are given. We
are eager to know whether there exists a strongly admissible interpretation v such that
v(a) = x and |vt ∪ vf| < k. This reasoning task is denoted by k-Witnesssadm(a,x,D). We
show that k-Witnesssadm is ΣP

2 -complete. Lemma 3 shows that this problem is a ΣP
2 -

problem and Lemma 4 indicates the hardness of this reasoning task.

Lemma 3. Let D be an ADF, let a be an argument, let x ∈ {t, f}, and let k be a natural
number. Deciding whether there exists an interpretation v such that v ∈ sadm(D), v(a) =
x, and |vt ∪ vf|< k is a ΣP

2 -problem, i.e., k-Witnesssadm ∈ ΣP
2 .

Proof. For membership in ΣP
2 , non-deterministically guess an interpretation v and verify

whether this interpretation satisfies the following items: 1. v ∈ sadm(D); 2. v(a) = x;
3. |vt ∪ vf| < k. If v satisfies all the items, then the answer to the decision problem
is yes, i.e., k-Witnesssadm(a,x,D) = yes. Notice that we have shown in Section 3.2 that
testing (1) is coNP-complete and testing (2) and (3) can clearly be done in polynomial
time. That is, the algorithm first non-deterministically guesses an interpretation v and
then performs checks that are in coNP to verify that v satisfies the requirements of the
decision problem. Thus, this gives an NPcoNP = ΣP

2 procedure.

Lemma 4. Let D be an ADF, let a be an argument, let x ∈ {t, f}, and let k be a natural
number. Deciding whether there exists a strongly admissible interpretation v of D where
v(a) = x and |vt ∪ vf|< k is ΣP

2 -hard, i.e., k-Witnesssadm is ΣP
2 -hard.

Proof sketch. Consider the following well-known problem on quantified Boolean for-
mulas. Given a formula Θ = ∃Y∀Z θ(Y,Z) with atoms X = Y ∪Z (and Y ∩Z = /0) and
propositional formula θ . Deciding whether Θ is valid is ΣP

2 -complete (see e.g. [20]). We
can assume that θ is of the form ψ ∧∧

y∈Y (y∨¬y), where ψ is an arbitrary proposi-
tional formula over atoms X , and that θ is satisfiable. Moreover, we can assume that the
formula θ only uses ∧, ∨, ¬ operations and that negations only appear in literals. Let
Ȳ = {ȳ : y ∈ Y}, i.e., for each y ∈ Y we introduce a new argument ȳ.

We construct an ADF DΘ = (A,L,C) with A = Y ∪ Ȳ ∪Z ∪{θ} and C = {ϕy : 	 |
y ∈ Y}∪{ϕȳ :	 | y ∈ Y}∪{ϕz : ¬z | z ∈ Z}∪{ϕθ : θ [¬y/ȳ]}.

It is easy to verify that g ∈ grd(DΘ) sets all arguments Y ∪Ȳ to t and all arguments Z
to u. Moreover, g(θ) ∈ {t,u}. An illustration of the reduction for the formula θ = ((y1∧
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y1 ϕy1 :	 ȳ1 ϕȳ1 :	 z1 ϕz1 : ¬z1

θ

ϕθ : ((y1∧¬z1)∨ (z1∧ ȳ1))∧ (y1∨ ȳ1)

Figure 3. Illustration of the reduction from the proof of Lemma 4 for
Θ = ∃y1∀z1((y1 ∧¬z1)∨ (z1 ∧¬y1))∧ (y1 ∨¬y1).

¬z1)∨ (z1 ∧¬y1))∧ (y1 ∨¬y1) to the ADF D = (A,L,C) is shown in Figure 3, where:
A = {y1, ȳ1,z1,θ}, ϕy1 : 	,ϕȳ1 : 	,ϕz1 : ¬z and ϕθ : ((y1 ∧¬z1)∨ (z1 ∧ ȳ1))∧ (y1 ∨ ȳ1).
One can check that there is an interpretation v with v ∈ sadm(DΘ), v(θ) = t, and |S| =
|Y |+1 where S = vt ∪ vf iff Θ is a valid formula.

Theorem 6 is a direct result of Lemmas 3 and 4.

Theorem 6. k-Witnesssadm is ΣP
2 -complete.

4. Conclusion

We studied the computational properties of the strong admissibility semantics of ADFs.
When compared to AFs, computational complexity for ADFs typically increases by one
step in the polynomial hierarchy for the non-trivial reasoning tasks [21,18]. We have
shown that, similarly, ADFs have higher computational complexity under the strong ad-
missibility semantics when compared to AFs.

We next highlight an interesting difference in the complexity landscapes of AFs and
ADFs. When relating the complexity of grounded and strong admissibility semantics,
we have that for AFs the verification problems can be (log-space) reduced to each other,
while for ADFs there is a gap between the coNP-complete Versadm problem and the DP-
complete Vergrd problem. That is, on the ADF level the step of proving arguments to be
u in the grounded interpretation adds an NP part to the complexity; a similar effect can
be observed for admissible and complete semantics.

Our complexity analysis for ADFs paves the way to investigate the complexity of
strong admissibility for generalizations of Dung AFs that form subclasses of ADFs, e.g.,
different types of bipolar ADFs [3].
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Just a Matter of Perspective
Intertranslating Expressive Argumentation Formalisms
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Abstract. Many structured argumentation approaches proceed by constructing a
Dung-style argumentation framework (AF) corresponding to a given knowledge
base. While a main strength of AFs is their simplicity, instantiating a knowledge
base oftentimes requires exponentially many arguments or additional functions in
order to establish the connection. In this paper we make use of more expressive ar-
gumentation formalisms. We provide several novel translations by utilizing claim-
augmented AFs (CAFs) and AFs with collective attacks (SETAFs). We use these
frameworks to translate assumption-based argumentation (ABA) frameworks as
well as logic programs (LPs) into the realm of graph-based argumentation.

Keywords. Argumentation, Translations, ABA, CAF, Logic Programs, SETAF

1. Introduction

Argumentation structures often arise from instantiating knowledge bases and identify-
ing their relevant conflicts. The representation of knowledge bases in terms of graph-
based argumentation formalisms has several advantages. First, they provide an intuitive
and user-friendly way for conflict-representation due to their graphical design. Second,
the uniform representation allows to compare different, seemingly unrelated knowledge
bases and helps to identify their similarities. Various kinds of knowledge bases and appli-
cations lead to the invention of several tailor-made argumentation formalisms, each with
their own advantages and disadvantages. In formal argumentation, Abstract Argumenta-
tion due to Dung [1] serves as a common denominator for many of these formalisms.
Popular extensions of Dung’s original framework incorporate for example propositional
acceptance conditions [2], assumptions [3], claims [4], or collective attacks [5]. At first
glance, these formalisms seem incompatible due to their focus on seemingly entirely dif-
ferent features. In an effort to relate selected formalisms, researchers singled out pairs of
formalisms and provided translations for the respective cases. For the classical Dung se-
mantics, i.e., for complete, preferred, stable, and grounded semantics (com,pref,stb,grd),
semantics-preserving translations have been successfully established in many cases.

In this work, we take a step back and compare a variety of argumentation for-
malisms, namely Assumption Based Argumentation (ABA) [3], Claim-Augmented
Frameworks (CAF) [4], and Argumentation Frameworks with Collective Attacks
(SETAF) [5]. Moreover we consider the closely related Normal Logic Programs (LP) and
the restricted atomic LPs [6] (we expect readers to enjoy this work the most if they are al-
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SETAF
CAF

LP

ADF

ABA

[10,11,12]

[7]

[13,14]

[8,9]

[a,b]
[f] [e][c,d]

Figure 1. Overview of existing and novel transformations. Novel translations between ABA and CAFs are
given in [a] Def. 3.6 and [b] 3.9; we present two translations relating ABA and SETAFs, cf. [c] Def. 3.13 and
[d] 3.17; translations between [e] SETAFs and LP are in Section 4.2; and for [f] CAFs and LPs by Def. 4.3.

ready familiar with some of these formalisms). There already exist semantics-preserving
translations between several classes of the aforementioned formalisms. Caminada and
Schulz [7] provide a translation between ABA and LP and vice versa. In [8,9], the corre-
spondence between well-formed CAFs and SETAFs has been settled. All of these men-
tioned translations preserve complete, stable, and preferred models (extensions).

If we furthermore take the well-investigated relation between Abstract Dialectical
Frameworks (ADF) [2] and LPs [13,14] as well as to SETAFs, respectively [10,11,12],
into account and collect all available results, we obtain the following insight: (classes of)
ABA frameworks, LPs, ADFs, SETAFs, and CAFs can all be viewed, to some extent,
as different sides of the same (pentagonal) coin. We summarize this insight in Figure 1.
We note that not all translations consider all instances of the domain; e.g., the translation
from CAFs to SETAFs restricts to so-called well-formed CAFs; also, Dvořák et. al [10]
as well as Alcântara and Sá [11] focus on attacking (support-free) ADFs. Likewise, the
image of the translation often do not cover all instances of the target formalism, e.g.,
Polberg [12] translates SETAFs into attacking ADFs and Caminada and Schulz [7] map
LPs to a sub-class of ABA frameworks. As one can verify by following the directed
arrows, there exists semantics-preserving rewriting methods between (classes of) all of
these formalisms. While this existential statement suffices to establish a theoretical cor-
respondence it is hardly of practical use for translating, e.g., ABA instances to CAFs
(this concrete example would require the application of four different translations). From
a theoretical point of view, one would have to comprehend several steps through various
different formalisms, thereby missing the observation that there are immediate transla-
tions which preserve the structure quite well, as we will establish in this paper. For exam-
ple the CAF obtained from an ABA framework is natural and can be constructed directly,
and the role of the additional claims becomes clear immediately.

The paper is organized as follows. In Section 3 we focus on the intertranslatabil-
ity of ABA, CAFs, and SETAFs. We show how an ABA framework naturally induces a
CAF which preserves the structure of the knowledge base due to the flexible handling of
claims. Moreover, we explore the advantageous features of SETAFs which yield a rep-
resentation that requires fewer arguments. We will show that if one is solely interested
in the underlying assumptions, SETAFs yield impressively concise representations. In
Section 4 we discuss the close relation between atomic LPs, CAFs, and SETAFs, pro-
vide natural pairwise translations and demonstrate their compatibility. Along the way,
we show that the instantiation procedure [15] (i.e. constructing arguments from a general
LPs) can be bridged by first making the LP atomic.

We omit proofs in the present paper; full proofs are made available at https://www.
dbai.tuwien.ac.at/research/report/dbai-tr-2022-123.pdf.
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2. Background

We recall the necessary background for AFs since they constitute our main underlying
formalism. The other formalisms will be introduced on the fly. An argumentation frame-
work (AF) [1] is a directed graph (A,R)where A is a finite set of arguments and R⊆ A×A
the attack relation. An argument x (set E⊆A) attacks y if (x,y)∈R (some z∈E attacks y).
We write E+

R = {a ∈ A | E attacks a} and E−
R = {a ∈ A | (a,b) ∈ R,b ∈ E}, and for short

x+R = {x}+R , x−R = {x}−R ; we omit subscript R if it is clear from the context.
A set E ⊆ A is conflict-free in F = (A,R) iff (x,y) /∈ R for all x,y ∈ E; E defends

an argument x if E attacks each attacker of x. A conflict-free set E is admissible in F
(E ∈ adm(F)) iff it defends all its elements. A semantics σ is a function which returns
a set of subsets of A. These subsets are called σ -extensions. In this paper we consider
so-called complete, grounded, preferred, and stable semantics (abbr. com, grd, pref, stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ adm(F). We let E ∈ com(F) iff E
contains all arguments it defends; E ∈ grd(F) iff E is⊆-minimal in com(F); E ∈ pref(F)
iff E is ⊆-maximal in com(F); E ∈ stb(F) iff E+ = A\E.

Throughout the paper we will frequently use the notion of a hitting set: LetM be a
set of sets. We callH a hitting set ofM ifH ∩M �= /0 for eachM ∈M . By HSmin(M )
we denote the ⊆-minimal hitting sets ofM . We will make use of the following result.

Lemma 2.2 ([16]). Let X = {X1, . . . ,Xn} be a set of sets with Xi �⊆ Xj for i �= j. Then
HSmin(HSmin(X)) = X.

3. Intertranslatability of ABA Frameworks, CAFs, and SETAFs

In this section, we consider the relation between ABA frameworks, well-formed CAFs,
and SETAFs. Semantics for ABA can be equivalently formulated in terms of assumptions
or in terms of arguments via attacks based on their claims. There are different represen-
tations that put the focus on either preserving assumption-sets or extensions in terms of
conclusions. Figure 2 shows the different translations and directions we consider in this
section: while the CAF representation focuses on extensions in terms of conclusions but
also preserves assumption-extension under projection (cf. translation [a] in Figure 2),
there are several possibilities to represent ABA frameworks as SETAFs. Translation [c]
relates assumptions in the ABA framework with arguments in the SETAF while Transla-
tion [d] relates conclusions with arguments. We also consider the reversed direction, i.e.,
constructing ABA frameworks from CAFs and SETAFs (cf. [b] and [c], respectively). In
Section 3.1, we consider the relation of ABA and CAFs; in Section 3.2 we examine the
relation between ABA and SETAFs. First, we provide necessary background for ABA.

SETAF

CAF

ABA

[a]

[b]

[d]

[c]

Translations [a,d] from ABA to CAFs and SETAFs
preserve conclusions (cf. Def. 3.6 and 3.17);
Translation [b] from CAFs to ABA preserves
proper conclusion-extensions (cf. Def. 3.9); Trans-
lation [c] between ABA and SETAFs preserves
assumption-sets (cf. Def. 3.13). The diagram com-
mutes w.r.t. dashed lines (cf. Prop. 3.21).

Figure 2. Semantics-preserving translations between ABA frameworks, CAFs, and SETAFs.
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Assumption-based Argumentation. We assume a deductive system (L ,R), where L
is a formal language and R is a set of inference rules of the form r : a0 ← a1, . . . ,an,
ai ∈ L ; head(r) = a0 denotes the head and body(r) = {a1, . . . ,an} the body of rule r.

Definition 3.1. An ABA framework is a tuple (L ,R,A , ), where (L ,R) is a deduc-
tive system, A ⊆ L , A �= /0 a set of assumptions, and a contrary function :A → L .

We focus on ABA frameworks which are flat, i.e., for each rule r ∈R, head(r) /∈A ,
and finite, i.e.,L ,R, A are finite. Furthermore, we assumeL to be a set of atoms.

An atom p ∈ L in an ABA framework D = (L ,R,A , ) is tree-derivable from
assumptions S ⊆A and rules R ⊆R, denoted by S �R p, if there is a finite rooted labeled
tree such that the root is labeled with p, the set of labels for the leaves is equal to S or
S∪{
}, and there is a surjective mapping from the set of internal nodes to R s.t. each
internal note v is labeled with head(r) for some r ∈ R and the set of all successor nodes
corresponds to body(r) or 
 if body(r) = /0. We write S � p if there exists R ⊆ R with
S �R p. Derivability for a set of assumptions S ⊆ A is defined via ThD(S) = {p | S � p}.

A set S ⊆ A attacks a ∈ A if there is S′ ⊆ S such that S′ � a; S attacks T ⊆ A
if it attacks some a ∈ T . S is conflict-free if it does not attack itself; S is admissible if
it is conflict-free and counter-attacks each attacker (we say: S defends itself). We recall
grounded, complete, preferred, and stable ABA semantics (abbr. grd, com, pref, stb).

Definition 3.2. For an ABAD= (L ,R,A , ) and an admissible set S⊆A , S∈ com(D)
iff S contains every assumption it defends; S ∈ grd(D) iff S is⊆-minimal in com(D); S ∈
pref(D) iff S is ⊆-maximal in com(D); S ∈ stb(D) iff S attacks each {x} ⊆ A \S. Given
σ ∈ {com,grd,pref,stb}, the σ -conclusion-extensions of D are σT h(D) = {ThD(S) | S ∈
σ(D)}, the proper σ -conclusion-extensions of D are given by {C \A |C ∈ σT h(D)}.

ABA frameworks and AFs are closely related (see, e.g., [17]). Viewing tree deriva-
tions as arguments, an ABA framework induces a corresponding AF as follows.

Definition 3.3. The associated AF FD = (A,R) of an ABA D=(L ,R,A , ) is given by
A = {S � p | ∃R ⊆R : S �R p} and attack relation (S1 � p,S2 � q)∈ R iff p ∈ {s | s ∈ S2}.
Example 3.4. Consider the ABADwith assumptionsA = {a,b,c} and rules r1 : p ← a,
r2 : p ← c, and r3 : q ← b. Moreover, a = b, b = p, and c = q. Below we depict the attacks
between the assumption-sets (left, we omit /0, {a,b}, {b,c}, andA ) and the AF FD (right)
with arguments xi (induced by rules ri) and arguments xa, xb, xc for the assumptions.

{a}
{b}

{c}
{a,c}

AF FD: x3
x1

x2
xa xb xc

The ABA D has two stable assumption-sets: S1 = {b} and S2 = {a,c} with ThD(S1) =
{b,q} and ThD(S2)= {a,c, p}. The stable extensions in FD are {x3,xb} and {x1,x2,xa,xc}.

For an argument x = S � p, we consider functions cl(x) = p and asms(x) = S; more-
over, cl(E) = {cl(x) | x ∈ E} and asms(E) =

⋃
x∈E asms(x) for a set of arguments E.

Proposition 3.5 ([17]). For an ABA D, its associated AF F, σ ∈ {grd,com,pref,stb}; if
E ∈ σ(F) then asms(E)∈ σ(D); and if S ∈ σ(D) then {S′ � p | ∃S′ ⊆ S : S′ � p} ∈ σ(F).
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3.1. Assumption-based Argumentation and Claims

Claim-augmented Argumentation Frameworks. A claim-augmented argumentation
framework (CAF) [4] is a tripleF = (A,R,cl) where F = (A,R) is an AF and a function
cl which assigns a claim to each argument in A. The claim-function is extended to sets
in the natural way, i.e. for a set E ⊆ A, we let cl(E) = {cl(a) | a ∈ E}. For a CAF F =
(A,R,cl), F = (A,R), and an AF semantics σ , we define σc(F ) = {cl(E) | E ∈ σ(F)}.
In this work, we focus on CAFs that are well-formed; i.e. CAFs satisfying a+R = b+R for
all a,b ∈ A with cl(a) = cl(b). Whenever we write CAF, we mean well-formed CAF.

ABA-CAF Translations. There is a natural adaption of the AF instantiation given in
Definition 3.3 to CAFs by assigning each argument S � p its claim p:

Definition 3.6. The associated CAF FD = (A,R,cl) for an ABA D=(L ,R,A , ) is
obtained by constructing (A,R) from Definition 3.3 and cl(S � p) = p for all S � p ∈ A.

Example 3.7. Instantiating ABA D from Example 3.4 yields the following CAF:

CAFFD: x3
q

x1 p

x2p
xaa xb

b
xc c

The CAFFD is well-formed since attacks depend on the conclusion of the attacking
argument: an argument x attacks argument y if cl(x) = a for some a ∈ asms(y). Due
to Proposition 3.5, the translation preserves the σ -conclusion-extensions of an ABA D;
assumption-extensions can be obtained by restricting the conclusion-sets to A .

Proposition 3.8. For an ABA D = (L ,R,A , ), its associated CAF FD and σ ∈
{grd,com,pref,stb}, it holds that σT h(D) =σc(FD) and σ(D) = {C∩A |C ∈σc(FD)}.

For the other direction, we identify each claim c in a given well-formed CAF as
contrary of some hidden assumption ac; moreover, each argument which is attacked by
claim c is derived from assumption ac (i.e., ac is attacked by all arguments with claim c).

Definition 3.9. The associated ABA DF = (L ,R,A , ) of a CAF F = (A,R,cl) is
given byA = {ac | c∈ cl(A)},L =A ∪cl(A), contrary function ac = c for all c∈ cl(A),
andR = {cl(x)←{acl(y) | y ∈ x−} | x ∈ A}.

We obtain a translation which relates claim-sets of the CAF with the proper
conclusion-extensions of the obtained ABA. Note the restriction to the proper conclusion-
extensions is necessary since the translation treats assumptions as implicit information.

Proposition 3.10. For a CAF F =(A,R,cl), its corresponding ABA DF and a semantics
σ ∈ {grd,com,pref,stb}, it holds that σc(F ) = {C \A |C ∈ σT h(DF )}.

Example 3.11. Consider the CAFFD from Example 3.7. We construct an ABA DFD =
(L ,R,A , ) with A = {ap,aq,aa,ab,ac}, contrary function ax = x for each claim in
FD and rules p ← ab, p ← aq, q ← ap, a ← ab, b ← ap, and c ← aq. The ABA DFD
has two stable assumption-sets S1 = {aa,ap,ac} and S2 = {ab,aq} with ThDFD

(S1) =
{aa,ap,ac,b,q} and ThDFD

(S2) = {ab,aq,a,c, p}. The proper conclusion-extensions of
DFD are {b,q} and {a,c, p} which correspond to the conclusion-extensions of D.
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3.2. Assumption-based Argumentation and Collective Attacks

Argumentation frameworks with collective attacks. A SETAF [18] is a pair SF = (A,R)
where A is a finite set of arguments and R ⊆ (2A \{ /0})×A is the attack relation. For an
attack (T,h) ∈ R we call T the tail and h the head of the attack. SETAFs (A,R) where
|T |= 1 for all (T,h) ∈ R amount to AFs. In that case, we write (t,h) to denote ({t},h).

A set T1 ⊆ A attacks h ∈ A (the set T2 ⊆ A) if there is T ′
1 ⊆ T1 (and h ∈ T2, resp.)

such that (T ′
1 ,h) ∈ R. We write h−R = {T | (T,h) ∈ R} to denote the set of attackers of the

argument h (in R). For S ⊆ A, we use S+R to denote the set of arguments attacked by S
(in R). S is conflict-free in SF if it does not attack itself; S defends argument a ∈ A if it
attacks each attacker of a; likewise, S defends T ⊆ A iff it defends each a ∈ T . A set S
is called admissible if it defends itself (adm(SF) denotes the set of all admissible sets in
SF). AF semantics generalize to SETAFs in the following way [19,5].

Definition 3.12. Given a SETAF SF = (A,R) and a set S ∈ adm(SF). Then, S ∈ com(SF)
iff S contains each argument it defends; S ∈ grd(SF) iff S is ⊆-minimal in com(SF);
S ∈ pref(SF) iff S is ⊆-maximal in com(SF); S ∈ stb(SF) iff S attacks all a ∈ A\S.

ABA-SETAF-translations: relating assumptions with arguments. When inspecting the
definitions of attacks for ABA frameworks and SETAFs we find the following natural
correspondence: a set of arguments T attacks an argument h in the SETAF iff T derives
the contrary of h in the corresponding ABA. We obtain an ABA framework from a given
SETAF by introducing a rule h ← T for each attack (T,h) ∈ R. For the other direction,
we identify conflicts between assumption-sets. Below, we give the resulting translations.

Definition 3.13. For an ABA D = (L ,R,A , ), we define the corresponding SETAF
SFD = (AD,RD) with AD = A and (S,a) ∈ RD iff S � a. For a SETAF SF = (A,R), we
define the corresponding ABA DSF = (LSF ,RSF ,ASF , ) withLSF = A∪{px | x ∈ A},
ASF = A, x = px for all x ∈ A, and for each (T,h) ∈ R, we add a rule ph ← T toRSF .

Example 3.14. Instantiating ABA D from Example 3.4 yields the following SETAF:

SETAF SFD: a b c

The translations indeed preserve the (assumption-based) semantics.

Proposition 3.15. Given a semantics σ ∈ {grd,com,pref,stb}. For an ABA D and its
associated SETAF SFD, it holds that σ(D) = σ(SFD). For a SETAF SF and its associated
ABA DSF , it holds that σ(SF) = σ(DSF).

We obtain the following strong intertranslatibility result using the correspondence
(S,a) ∈ R in SF iff a ← S in DSF iff S � a in DSF iff (S,a) ∈ R in SFDSF = SF .

Proposition 3.16. Given a SETAF SF, it holds that SFDSF = SF.

This result shows that no information is lost in the SETAF when representing it
in terms of ABA. The other direction, i.e., translating ABA frameworks to SETAFs,
however, comes with a cost: given an ABA framework D, it is impossible to extract the
σ -conclusion-extensions from SETAF SFD. This means that the conclusions of a given
ABA instance are lost when applying the translation. In the following, we present a
translation that preserves conclusions of an ABA instance.
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ABA-SETAF-translations: relating conclusions and arguments. In order to establish
a translation from ABA frameworks to SETAFs that preserves the conclusions of the
original instance, we proceed as follows: For a given ABA instance D = (L ,R,A , ),
we construct a corresponding SETAF SFD = (A,R) with

1. A = {p | ∃S ⊆ A : S � p}, i.e., conclusions in D correspond to arguments of our
resulting SETAF (observe that each assumption a ∈A is a conclusion of D); and

2. a set of conclusionsC attacks a conclusion p in SFD, i.e., (C, p)∈R, iffC contains
a contrary for each set of assumptions S with S � p, and C is ⊆-minimal among
all such sets (i.e.,C is a minimal hitting set of the set {{a | a ∈ S} | S � p}).

Definition 3.17. For a given ABA instance D = (L ,R,A , ), letSp = {S | S � p} and
S p = {{a | a ∈ S} | S � p} for each p ∈ L . We construct the SETAF SFc

D = (A,R) with
A = {p | ∃S ⊆ A : S � p} and R = {(C, p) | p ∈ A,C ∈ HSmin(S p)}.
Example 3.18. We construct SETAF SFc

D from the ABA D from Example 3.4. The ar-
guments in SFc

D correspond to the conclusions in D, i.e., A = {a,b,c, p,q}. We deter-
mine the attackers of p ∈ A: first, we identify the set Sp = {{a},{c}} that contains all
assumption-sets that derive p (in D); the set S p = {{b},{q}} contains the respective
contraries. The unique hitting set of S p is {b,q}, thus {b,q} attacks p. We depict the
resulting SETAF below (the joint arcs from {b,q} to p (in blue) represent the set-attack):

SETAF SFc
D: a

b

p

q
c

The construction indeed preserves the σ -conclusion-extensions for the considered
semantics; moreover, we obtain the assumption-extensions of the original instance by
projecting the conclusion-extensions to the assumptions A .

Proposition 3.19. For an ABA D = (L ,R,A , ), its associated SETAF SFc
D and σ ∈

{grd,com,pref,stb}, it holds that σT h(D) = σ(SFc
D) and σ(D) = {C∩A |C ∈ σ(SFc

D)}.

3.3. Summary & Compatibility

We presented several different translations from ABA to CAFs and SETAFs and vice
versa. For CAFs, we related claims with conclusions; for SETAFs, we considered two
translations by relating arguments with assumptions and with conclusions, respectively.

When comparing the ABA instances when starting from a CAF or a SETAF (cf. Def-
inition 3.9 and 3.13, respectively), we observe the following similarities: in both cases,
the resulting ABA is flat, also, each rule contains only assumptions in its body, further-
more, no contrary of an assumption is an assumption. We furthermore observe the fol-
lowing notable difference between the two translations: while the translation from ABA
to CAF potentially causes an exponential blow-up as the argument-construction can be
exponential in the number of assumptions, we observe that the resulting SETAF is linear
in the number of assumptions, i.e., the exponential blow-up can be avoided. We note,
however, that the computation of the SETAF might be exponential—the computational
effort is shifted to the construction of the attack relation which requires to identify tree-
derivations S � a in the ABA framework to define attacks (S,a) in the SETAF.
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We end this section by presenting a strong intertranslatability result for our consid-
ered formalisms. For this, we make use of the translation from well-formed CAFs to
SETAFs [8]. To fit our setting, we reformulate the translation in terms of hitting sets
instead of CNF and DNF-formulas to capture the attack-structure of the frameworks.

Definition 3.20 (cf. [8]). For a well-formed CAF F = (A,R,cl), we define the cor-
responding SETAF SFF = (AF ,RF ) by letting AF = cl(A) and RF = {(T,c) | c ∈
cl(A),T ∈ HSmin({cl(x−R ) | x ∈ A,cl(x) = c})}. For a SETAF SF = (A,R), we define the
corresponding CAF FSF = (ASF ,RSF ,clSF) with ASF = {xc,h | c ∈ A, h ∈ HSmin(c−R )},
clSF(xc,h) = c, and RSF = {(xc,hx ,yd,hy) | c ∈ hy}.

Restricting the translation to redundancy-free CAFs, i.e., frameworks s.t. there are
no x,y ∈ A with cl(x) = cl(y), x+ = y+, and x− ⊆ y−, we obtain the following result.

Proposition 3.21. Given an ABA D = (L ,R,A , ), its corresponding SETAF SFc
D (cf.

Definition 3.17), let FD be the corresponding CAF (cf. Definition 3.6), and let SFc
FD

be
the SETAF corresponding to the CAF FD (cf. Definition 3.20). It holds that SFc

D = SFc
FD

.

4. Strong Intertranslatability of LPs, CAFs, and SETAFs

In this section we strengthen the results regarding CAFs, LPs, and SETAFs by provid-
ing structure-preserving translations for suitable normal forms of the formalisms. This
highlights their equivalent expressiveness. While there is an immediate correspondence
between CAFs and LPs, the connection to SETAFs is via a detour making use of hitting
sets, as we will explain in more detail in Section 4.1 (cf. [20]). The relations we will
discuss are depicted in Figure 3. Our way to extract arguments from an LP is similar
to the AF-instantiation reported in [15] where a semantics correspondence between LPs
and AFs has been established. Due to space restrictions, we will focus our attention on
stable semantics since this is the most commonly used semantics for LPs, but we want to
emphasize that analogous results hold for the other cases, i.e. com, grd, and pref as well.
Moreover, most results reported in this section are concerned with syntactical properties.

Logic Programs. We consider logic programs with default negation not. Such programs
consist of rules of the form “c ← a1, . . . ,an,not b1, . . . ,not bm.” where 0 ≤ n,m and the
ai, bi and c are ordinary atoms. We let head(r) = c, pos(r) = {a1, . . . ,an} and neg(r) =
{b1, . . . ,bm}. LetL (P) be the set of all atoms occurring in P. For B = {b1, . . . ,bm}, we
use not B as a shorthand for the conjunction not b1, . . . ,not bm. A rule r is atomic [6] if
pos(r) = /0; a program P is atomic if each rule in P is.

For LPs without default negation (neg(r) = /0) the unique stable model is the smallest
set of atoms closed under all rules, where a set E is closed under a rule r with neg(r) = /0

SETAF

CAF

LP atomic LP

Figure 3. Transformations between formalisms discussed in Section 4
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iff pos(r) ⊆ E implies head(r) ∈ E. For any LP P, a set E of atoms is a stable model
(E ∈ stb(P)) iff E is the stable model of PE = {head(r)← pos(r) | neg(r)∩E = /0}.
Example 4.1. If P = {(d ← not a, not b.),(d ← not c.),(a ← not c.),(c ← not a.),(b.)},
then P is atomic. For E = {b,c} we have PE = {(c.),(b.)} and thus E ∈ stb(P).

Redundancies. Throughout this section we will require redundancy notions for our for-
malisms. An argument x ∈ A in a CAFF = (A,R,cl) is redundant if there is y ∈ A with
cl(x) = cl(y) and y− ⊆ x−. An attack (T,h) ∈ R in a SETAF SF = (A,R) is redundant
if there is (T ′,h) ∈ R with T ′

� T . A rule r ∈ P of an atomic LP is redundant if there is
r′ ∈ P with head(r) = head(r′) and neg(r′)⊆ neg(r); an atom a ∈ L (P) is redundant if
it does not occur as a rule head in P. A CAF resp. SETAF resp. LP without redundant
arguments resp. attacks resp. rules and atoms is redundancy-free.

4.1. High Level Point of View

In the following subsections we will require various translations between the formalisms,
which may appear rather technical at first glance. However, by closely inspecting all
cases we observe that the constructed instances of the respective formalisms are quite
similar in their spirit and translations are obtained by using suitably applied simple steps.

More precisely, inter-translating CAFs and atomic LPs is done by identifying rule
heads with claims and bodies with in-going attacks. Recall our program P from above.
In a rather immediate way, the program induces a CAFFP consisting of five arguments
xi (one for each rule) where cl(x1) = cl(x2) = d, cl(x3) = a, cl(x4) = c, and cl(x5) = b
corresponding to the rule heads. Moreover, cl(x−1 ) = {a,b}, cl(x−2 ) = cl(x−3 ) = {c},
cl(x−4 ) = {a}, and cl(x−5 ) = /0 defines the attack relation of the well-formed CAFFP.

When connecting either CAFs or atomic LPs to SETAFs, the notion of a hitting set
is required. In SETAFs, we do not use multiple copies of the same claim resp. rule head,
but encode the acceptability condition solely in the attack relation. The corresponding
SETAF would therefore possess only the four arguments a,b,c,d. For example, d cannot
be accepted if (i) either a or b is inferred (first rule not applicable) and (ii) c is inferred
(second rule not applicable either). This yields the following SETAF SFP. Below, we also
depict the CAFFP we calculated earlier:

SFP: a
c

d

b
FP: x2

d

x4
c

x3
a

x1
d

x5
b

The more challenging part is dropping the assumption that the given LP P is atomic (see
Figure 3). For this, we will utilize an inductive procedure constructing arguments [15].

Definition 4.2. For an LP P, A is an argument in P (A∈Args(P)) with CONC(A)=c,
RULES(A) =

⋃
i≤nRULES(Ai) ∪ {r}, and VUL(x) = ⋃

i≤nVUL(Ai) ∪ {b1, . . . ,bm} iff
there are A1, . . . ,An ∈ Args(P) and a rule r ∈ P with r = c ← CONC(A1), . . . ,CONC(An),
not b1, . . . ,not bm, and r /∈ RULES(Ai) for all i ≤ n.

We will show that this procedure can be mimicked by rewriting P. For example let
P′ = {(d ← c, not b.),(d ← not c.),(a ← not c.),(c ← not a.),(b.)}. The atomic program
P from above is the result of inserting the rule (c ← not a.) in (d ← c, not b.).
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4.2. Translations

CAFs and Logic Programs. We will now formally establish the correspondence be-
tween CAFs and LPs, by making use of Args(P) in case P is not atomic.

Definition 4.3. For a CAFF = (A,R,cl), we define the corresponding atomic LP PF by
P = {c ← not B. | a ∈ A, cl(a) = c, cl(a−) = B}. For an LP P, we setFP = (AP,RP,clP)
where AP = Args(P), RP = {(a,b) | cl(a) ∈ VUL(b)}, and clP(a) = CONC(a).

Example 4.4. The LP P′ from above yields four arguments stemming from the atomic
rules, e.g. there is some argument Awith CONC(A) = c, VUL(A) = {a} and RULES(A) =
{(c ← not a.)}. From (d ← c, not b.) and this argument Awe construct another argument
with conclusion d and vulnerabilities {a,b} (inherited from A and the applied rule). The
complete corresponding CAFFP′ is the same as the CAFFP depicted in Section 4.1.

A rather convenient feature of this approach is that we can infer the semantics cor-
respondence from [15] due to the way CAF semantics make use of the claims.

Proposition 4.5. For F a CAF and P an LP, stb(F ) = stb(PF ) and stb(P) = stb(FP).

By inspecting Definition 4.2 we observe that the challenging part is handling pos-
itive atoms in rule bodies. If P is atomic, we can extract the corresponding CAF
FP = (AP,RP,clP) immediately via AP = P, RP = {(a,b) | head(a) ∈ neg(b)}, and
clP(a) = head(a). The fact that atomic LPs and CAFs are so closely related motivates
the question whether we can transform the LP before constructing the arguments as done
in [15]. A technique of this kind could pre-process the LP instead of utilizing the instan-
tiation procedure. In the following, we formalize this idea.

Definition 4.6. For an LP P the corresponding atomic LP PAT is defined inductively:

• If r ∈ P is atomic, then r ∈ PAT .
• If there is a rule r0 ∈ P with pos(r0) = {a1, . . . ,an} and for each ai, 1 ≤ i ≤ n,
there is some rule ri ∈ PAT s.t. head(ri) = ai, then there is a rule r ∈ PAT with
head(r) = head(r0), pos(r) = /0, and neg(r) =

⋃n
i=1 neg(ri).

Example 4.7. Applied to our LP P′ = {(d ← c, not b.),(d ← not c.),(a ← not c.),(c ←
not a.),(b.)} this procedure yields P′

AT = P with P as in Example 4.1.

The following theorem formalizes that this pre-processing step successfully mimics
the inductive procedure from [15]. Informally speaking, instantiating the LP is done as in
Definition 4.2 and yields the same result as turning the LP into an atomic one via iterative
insertion of atomic rules and then extracting the corresponding CAF by identifying rule
heads with claims and rule bodies with in-going attacks. Formally:

Theorem 4.8. Let P be an LP. Then FP = FPAT .

SETAFs and LPs We also want to briefly mention that analogous results hold when
turning an LP into a SETAF, which can be done as follows. For an LP P we de-
fine by AP =

⋃
A∈Args(P)CONC(a) and RP = {(T,c) | T ∈ HSmin({VUL(A) | A ∈

Args(P), CONC(A) = c})} the associated SETAF SFP. For a SETAF SF = (A,R), we
define its associated LP PSF = {c ← not B. | B ∈ HSmin(c−R )}. As observed before, the
construction of Args(P) can be omitted if P is atomic. With these constructions, we find:
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Theorem 4.9. For a SETAF SF and an LP P, stb(SF) = stb(PSF) and stb(P) = stb(SFP).
Moreover, SFP = SFPAT .

4.3. Summary & Compatibility

In this section, we presented translations from LPs to SETAFs and to CAFs, respectively.
We observe that when instantiating an LP as CAF or SETAF, an exponential blow-up
cannot be avoided due to the construction of arguments which is an inherent part of both
procedures. For atomic LPs, on the other hand, the number of arguments is linear in the
number of rules in both formalisms. For the other direction, i.e., when translating a CAF
or SETAF into an LP, the resulting LP is atomic. It can be shown that for atomic LPs,
these constructions are bijective and each others inverse, establishing a close relation.

Lemma 4.10. For all redundancy-free atomic LPs P, CAFs F , and SETAFs SF, respec-
tively, it holds that i) SFPSF = SF; ii) PSFP = P = PFP; and iii) FPF

= F .

We end this section with a strong intertranslatability result in the spirit of Theo-
rem 3.21, stating that all (atomic, well-formed, and redundancy-free) instances of the
considered formalisms can be equivalently represented as CAFs, LPs, or SETAFs with-
out any loss of information via the presented translations and the method in [9] (cf. Defi-
nition 3.20). This shows that all of our constructions are compatible with each other and
similar in their behavior. In particular, the order in which they are applied is arbitrary.

Theorem 4.11. For all redundancy-free atomic LPs P, SETAFs SF, CAFs F , we have
FSF ∼= FPSF ; PSF = PFSF ; FP ∼= FSFP ; SFP = SFFP ; SFF = SFPF

; and PF = PSFF
.

5. Discussion

In this paper we investigated translations between the argumentation formalisms ABA,
CAF, SETAF as well as their connections to LP. We strengthened the implicitly exist-
ing intertranslatability result by providing additional translations, filling some of the ex-
isting gaps. For selected translations we showed structure-preserving properties and ar-
gued why others (such as those involving ABA) might not feature this preservation. Fi-
nally, our overview yields implications regarding expressiveness: the formalisms under
our consideration admitting strong intertranslatability are equally expressive—i.e. , they
can describe the same sets of models (extensions). These results illustrate the usefulness
of the versatility in argumentation formalisms: while certain applications might suggest
the usage of a specific formalism, it might be useful to later translate this framework and
utilize features that are native to another formalism. Strong intertranslatability even guar-
antees the preservation of the structure, which opens interesting topics for future work:
as some of the discussed translations are modular in some sense, one might even be able
to instantiate the same knowledge base as part formalism A and part formalism B, while
connecting both parts in later steps during the workflow. Another useful consequence of
our findings is that it is now easier to transfer concepts and ideas between formalisms,
serving as a starting point for various investigations that highlight the similarities of the
considered approaches even further.
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On the Impact of Data Selection when
Applying Machine Learning in Abstract

Argumentation

Isabelle KUHLMANN, Thorsten WUJEK and Matthias THIMM
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Abstract. We examine the impact of both training and test data selection in ma-
chine learning applications for abstract argumentation, in terms of prediction ac-
curacy and generalizability. For that, we first review previous studies from a data-
centric perspective and conduct some experiments to back up our analysis. We fur-
ther present a novel algorithm to generate particularly challenging argumentation
frameworks wrt. the task of deciding skeptical acceptability under preferred se-
mantics. Moreover, we investigate graph-theoretical aspects of the existing datasets
and perform some experiments which show that some simple properties (such as
in-degree and out-degree of an argument) are already quite strong indicators of
whether or not an argument is skeptically accepted under preferred semantics.

Keywords. Abstract Argumentation, Approximate Reasoning, Artificial Neural
Networks, Graph Neural Networks, Machine Learning

1. Introduction

Formal argumentation is a modern approach for non-monotonic reasoning within the
general area of Artificial Intelligence. In particular, an (abstract) argumentation frame-
work [1] consists of a set of arguments and a relation describing attacks between such
arguments. Semantics are expressed in form of extensions, i.e., sets of arguments that
meet certain prerequisites and are thus considered mutually acceptable. Typical computa-
tional problems in abstract argumentation are deciding whether an argument is included
in some extension of a given semantics (or in all such extensions), or enumerating one
(or all) extensions of a given semantics [2,3,4]. Most algorithmic approaches for solving
such problems are sound and complete methods; see [4] for a recent overview. However,
the high complexity of these problems—for instance, the problem of deciding whether
an argument is included in all preferred extensions isΠP

2 -complete [2]—prohibits a scal-
able behavior of such approaches in the worst case. Thus, with the rise of Deep Learning
approaches for numerous fields of application in recent years, a few authors suggested to
use artificial neural networks for this task [5,6,7]. The advantage of a neural network is
that, once it is trained properly, it can solve problems in time linear to the input. Never-
theless, this comes at the cost of exactness: the result is not guaranteed to be correct.

In this work, we review the existing literature on the topic of deep learning ap-
proaches for abstract argumentation with emphasis on the data used in the individual
works. Although there is some overlap, none of the works use the same dataset, neither
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for training nor for testing purposes. This is (at least partly) due to the reason that for
abstract argumentation, there exists no dedicated “standard” data set suitable for Ma-
chine Learning (ML) purposes, as opposed to, e.g., image processing, where datasets
such as MNIST1 or CIFAR2 are well-known and publicly available. This paper takes a
data-centric perspective and examines which properties a dataset in our field should pos-
sess. We perform an experimental analysis in which we explore the impact of different
training and test sets on two different neural network architectures known from the liter-
ature. We also propose an algorithm to generate particularly challenging argumentation
frameworks for the task of deciding skeptical acceptability under preferred semantics.

Furthermore, we investigate graph-theoretical properties of the datasets at hand. We
show that some simple properties can be quite strong indicators of an argument’s ac-
ceptability status. To illustrate this, we conduct some experiments in which we use a se-
lection of “classical” ML methods which are only given the arguments’ in-degrees and
out-degrees as features. While the accuracy of these approaches is still lower than the
accuracy of the deep learning methods, it is surprisingly high and raises doubt about the
requirement to use complex deep learning methods for this purpose.

The remainder of this paper is structured as follows. We begin by giving an overview
on abstract argumentation as well as related neural network techniques in Section 2. In
Section 3, we take a closer look at the data used in the context of existing deep learning
solutions for abstract argumentation and propose a new dataset which is particularly
challenging for the task of deciding skeptical acceptability under preferred semantics.
We conduct some experimental analysis on this new dataset as well as existing ones in
Section 4. Section 5 provides a discussion and deeper analysis, in particular regarding
graph-theoretical properties, and Section 6 concludes this work.

2. Preliminaries

We provide the basics of abstract argumentation in Section 2.1 and give an overview on
existing works using artificial neural networks for abstract argumentation in Section 2.2.

2.1. Abstract Argumentation

An abstract argumentation framework (AF) [1] is a tuple F = (Args,R), where Args is
the set of arguments and R ⊆ Args×Args is the attack relation. An argument a ∈ Args is
said to attack another argument b ∈ Args if (a,b) ∈ R. We abbreviate

a−F = {b ∈ Args | (b,a) ∈ R} a+F = {b ∈ Args | (a,b) ∈ R}

and analogously E−
F and E+

F for a set E ⊆ Args. An argument a ∈ Args is defended by
a set of arguments E ⊆ Args if a−F ⊆ E+. A set E ⊆ Args is conflict-free if E ∩E+ = /0.
A set E ⊆ Args is called admissible (we also say E ∈ ad(F)) if E is conflict-free and
each a ∈ E is defended by E within a given AF F . E is a preferred extension (i.e.,
E ∈ pr(F)) if E ∈ ad(F) and for every E ′ ∈ ad(F), E �⊂ E ′. An argument a ∈ Args
is skeptically accepted wrt. preferred semantics (abbreviated pa) iff a is contained in

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/∼kriz/cifar.html
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every preferred extension. Let pa(F) denote the set of all pa arguments in F and define
pna(F) = Args \ pa(F). We denote the computational problem of deciding whether an
argument is skeptically accepted wrt. preferred semantics asDSpr. An argument a∈Args
is credulously accepted wrt. preferred semantics iff a is contained in some preferred
extension.

We say that E ∈ co(F) (E is complete) if E ∈ ad(F) and for each a ∈ Args defended
by E in F , it holds that a ∈ E. We define that E is a grounded extension if E ∈ co(F) and
for every E ′ ∈ co(F), E ′ �⊂ E. Moreover, E is an ideal extension if E ∈ ad(F), for every
E ′ ∈ pr(F), E ⊆ E ′, and E is maximal (wrt. set inclusion) with these two properties. Note
that everyAF F has a uniquely defined grounded extension Egr [1] and a uniquely defined
ideal extension Eid [8] and that Egr ⊆ Eid ⊆ pa(F). An argument a ∈ Args is accepted
wrt. grounded semantics (abbreviated ga), if a is contained in the grounded extension
Egr. Let ga(F) denote the set of all ga arguments and let ia(F) be the corresponding
notion for ideal semantics.

2.2. Artificial Neural Networks for Abstract Argumentation

The purpose of an ML approach, such as an artificial neural network, is to “learn” from
given data (i.e., the training set), in order to subsequently apply the acquired “knowl-
edge” to previously unknown data (e.g., the test set during evaluation). The term valida-
tion set refers to a dataset that is essentially used as a trial test set. It is used during the
training process of a neural network to check how well it would perform on unknown
data at certain training stages. A typical problem for the application of ML is that of
classification. In abstract argumentation, our objective is to decide whether an argument
is acceptable or not under a given semantics and wrt. a given reasoning mode (credulous
or skeptical). Therefore, we aim to classify an argument as acceptable or not accept-
able. More precisely, we can train, e.g., a neural network using a set of AFs with labels
(accepted/not accepted) for each argument.

There are a few works about the application of neural networks to decide the ac-
ceptability status of arguments [5,6,7]. A first work [5] makes use of so-called Graph
Convolutional Networks (GCNs) as proposed by Kipf and Welling [9]. The authors con-
sider the problem of credulous acceptance under preferred semantics. Malmqvist et al.
[7] improve the GCN approach used by [5] by proposing a randomized training regime as
well as a scheme to dynamically balance the training data. They consider both credulous
and skeptical acceptance under preferred semantics. Craandijk and Bex [6] introduce an
Argumentation Graph Neural Network (AGNN) which learns a message-passing algo-
rithm. The authors apply their approach on the tasks of deciding credulous and skeptical
acceptance under all four classical semantics (i.e., complete, grounded, preferred, and
stable semantics). The latter work is the most promising one so far—the authors report
almost perfect predictions in their evaluation.

3. Selection of Data for Abstract Argumentation

As this paper takes a data-centric perspective, we now investigate how the problem of
data selection was approached in the previously mentioned works (Section 2.2) and we
discuss these design choices. In this paper we consider only the problem DSpr, but note
that some of the works mentioned above also consider other problems.
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Kuhlmann and Thimm [5] generate training sets of different sizes using the probo
Benchmark Suite3 [10] as well as AFBenchGen4 [11], which include a total of six dif-
ferent graph generators. The authors create datasets of different sizes which contain be-
tween 30 and 600 AFs, each consisting of 100–400 arguments. A test set of 120 AFs is
generated in the same manner. In addition, they use some benchmark data from the Inter-
national Competition on Computational Models of Argumentation5 (ICCMA) 2017 for
testing purposes. During training, a fraction of the training set is used as a validation set.
Malmqvist et al. [7] used a dataset of 900 AFs from ICCMA 2017, divided into training
set (90%) and test set (10%). Again, part of the training data is used as a validation set.
Craandijk and Bex [6] use the same generators as [5], i.e., those included in the Probo
Benchmark Suite and AFBenchGen, and generate a test set consisting of 1000 AFs with
exactly 25 arguments each. A fixed validation set is generated analogously. As a training
set they create a total of one million AFs with 5≤ |Args| ≤ 25.

All works above use different datasets, which makes their results difficult to com-
pare. Further, none of the papers poses the question what a suitable dataset should look
like. To begin with, a test set should contain instances with various properties (different
sizes, complexity, etc.), and at least some of them should be considered “challenging”—
after all, the purpose of using a deep learning approach for abstract argumentation is to
solve problems faster than with an exact approach. While at least some instances of the
ICCMA dataset can be considered “challenging” (as they are competition benchmarks),
the data generated by the Probo Benchmark Suite and AFBenchGen is a different matter.
Craandijk and Bex [6] use a test set consisting of AFs that are made up of 25 elements
each by using the aforementioned generators. Deciding whether an argument in such an
AF is pa merely takes 0.0013 s on average using, e.g., the μ-toksia solver6 [12]. In com-
parison, an AGNN takes 0.00003 s on average7 for the same task8. Consequently, there
is a reduction in computation time when using the neural network approach, neverthe-
less this advantage must be weighed against the disadvantage that exactness can never be
guaranteed with a deep learning method. In the case of such small AFs, it might be more
practical to use an exact approach, since the absolute difference in runtimes (0,00127 s
on average absolute difference between the correct system μ-toksia and the approximate
system AGNN) is very likely to be negligible for real-world applications. However, in
the case of more complex AFs, the fast solving time of a neural network may be the more
suitable solution in practice. This highlights that researchers should select their (test)
data in a way that it represents those cases, in which a deep learning approach would
grant an actual advantage in practical applications.

Furthermore, the ICCMA instances exhibit a property that makes them somewhat
less “challenging” as well, as most arguments that are pa are also ga (see the |ga| and
|pa| values of iccma-test in Table 1). Recall that the computational complexity of decid-
ing DSpr is Π2

P-complete [13] in general. However, there are certain easy cases where
DSpr can be decided with much less effort. For example, arguments in the grounded ex-

3https://sourceforge.net/projects/probo/
4https://sourceforge.net/projects/afbenchgen/
5http://argumentationcompetition.org/
6System properties: 32GB RAM, AMD® Ryzen 7 pro 5850u
7Note that we measured the time the model took to process the entire test set and afterwards divided it by

the number of arguments in the test set (i.e., 25,000).
8System and training setup as described in Section 4.1
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Table 1. Overview of all datasets used in the experiments. Let F be an arbirtrary AF. All columns including
mean values additionally include the standard deviation.
Dataset # AFs # argu-

ments
(= n)

Mean # arguments
per AF

Mean # attacks per AF Mean |pa(F)| Mean |ia(F)| Mean |ga(F)|

pbbg-train 100000 1898327 18.98 ±6.07 55.34 ±48.62 5.96 ±4.50 5.94 ±4.51 5.33 ±4.84
pbbg-test 1000 25000 25.00 ±0.0 84.97 ±60.96 7.07 ±5.70 7.02 ±5.74 6.14 ±6.15
kwt-train 1000 151000 151.00 ±0.0 6523.54 ±1728.29 69.44 ±23.47 69.32 ±23.82 16.31 ±34.45
kwt-test 1000 151000 151.00 ±0.0 6567.07 ±1734.52 69.12 ±23.63 68.99 ±23.99 15.90 ±34.16
iccma-test 450 292221 649.38 ±1398.99 52734.64 ±175454.90 70.23 ±333.51 64.233 ±324.47 59.08 ±313.15

tension are always pa (and the grounded extension can be computed in polynomial time)
as well as arguments in the ideal extension [14] (where related problems are “only” ΘP

2 -
complete), and arguments attacked by some admissible set are never pa (and deciding
this is a problem in NP). We developed a graph generator (to which we refer by KWT
in the following) that is tailored towards generating abstract argumentation frameworks
that are particularly hard for tasks related to DSpr by avoiding (as much as possible)
these easy cases. The graph generator KWT takes as parameters (among others) the total
number of arguments, the number of arguments to be pa, the number of arguments to
be contained in at least one preferred extension, and the number of preferred extensions.
Arguments are associated to the different preferred extensions (at random, using some
further parameters for randomisation) and each argument of each extension is attacked
by at least one other argument (so we will have a small grounded extension in most
cases). We performed some simple experiments to verify that these graphs are indeed
relatively hard for problems related to DSpr, but a careful analysis of this is part of on-
going work (and also not relevant for the work reported here, due to our results below).
In our experiments we generated argumentation frameworks with 151 arguments, 60–90
pa arguments, 15–60 further arguments that are in at least one extension, and 100–200
preferred extensions. The graph generator9 and the script10 we used can be found online.

4. Experimental Analysis

We conduct two experiments. First we examine different test sets for the same trained
model (an AGNN as presented by Craandijk and Bex [6]), and, as follow-up work, we
use an alternative training set in order to achieve more accurate results for one of the
more challenging test sets. We repeat these experiments with a different neural network
model which was proposed in [5].

4.1. Experimental Setup

We generate AFs as in [6]. We create a test set and a validation set containing 1000 AFs
each, with each AF consisting of exactly 25 arguments (i.e., |Args| = 25), as well as
a training set consisting of AFs with 5 ≤ |Args| ≤ 25. We denote these sets pbbg-test,
pbbg-val, and pbbg-train, respectively. However, we only create 100,000 AFs for the
training set, as opposed to Craandijk and Bex, who used 1 million AFs, as the results
of a training with 100,000 AFs are expressive enough (see Section 4.2). See Table 1 for

9http://tweetyproject.org/r/?r=kwt gen
10http://tweetyproject.org/r/?r=kwt gen ex
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a statistical overview of the training and test set we generated. To actually generate the
AFs and corresponding solutions, we use the AGNN framework11, which also offers the
option to train and evaluate other neural network models.

As a second dataset, we generate a total of 2200 KWT instances12 as described in
Section 3. We split this data into a training set (kwt-train) consisting of 1000 AFs, a
test set (kwt-test), also consisting of 1000 instances, and a validation set (kwt-val) of
200 instances. Moreover, we use part of the ICCMA 2017 data as an additional test
set13 (iccma-test14). In total, we use 450 AFs15 from groups A, B, and C, spanning all
difficulty levels. Details on all these sets are displayed in Table 1 The corresponding
solutions were generated using the solvers Pyglaf [15] and μ-toksia [12].

In our first experiment, we train16 an AGNN as in [6] (the only difference being
the smaller training set). Hence, for training we use pbbg-train, for validation pbbg-
val, and for testing pbbg-test. We then test the trained model on the other two test sets
(kwt-test and iccma-test) to examine whether it performs similarly well. As a follow-up
experiment, we train an AGNN on kwt-train, in order to inspect if it is able to perform
better on kwt-test. Again, we use all three test sets. Afterwards, we conduct the same
two experiments on an implementation of the FM2 model [5] which is also included in
the AGNN framework. In each experiment, the network is trained for 300 epochs, i.e.,
the training set is passed through the model 300 times.

In order to quantify our results, we use the Matthews Correlation Coefficient
(MCC), as well as accuracy, True Positive Rate (TPR) and True Negative Rate
(TNR). Let TP/FP and TN/FN denote true/false positives and true/false negatives,
respectively, where the positive class are the pa arguments. Then we can define
MCC= TP·TN−FP·FN√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)
. Moreover, TPR = TP/(TP + FN), and

TNR = TN/(TN + FP). Accuracy is defined as TP+TN
TP+TN+FP+FN , and precision as

TP/TP+FP.

4.2. Results

Reproducing the training procedure described by Craandijk and Bex [6] yields an MCC
of 0.962. Although this value is slightly lower than the one provided in the original paper
(0.997), it is still quite high. Besides, the small discrepancy can be explained by the fact
that we used a smaller training set, and could be compensated by the use of more message
passing steps during the testing phase. However, the MCC values regarding kwt-test and
iccma-test are significantly lower (0.631 and 0.507, respectively). As Table 2 reveals,
this is mostly due to a low TPR, meaning that arguments that are pa are not recognized
as such in many cases. Training an AGNN with kwt-train results in an increased MCC
for kwt-test (0.927). This shows that AGNNs are actually able to learn KWT data quite
well if they are exposed to such data during training. The MCCs regarding the other two

11https://github.com/DennisCraandijk/DL-abstract-argumentation
12https://fernuni-hagen.sciebo.de/s/ZEmipULEN05FxxC
13Due to hardware limitations (in particular concerning the GPU memory), we could not use the ICCMA

data for training.
14https://fernuni-hagen.sciebo.de/s/qjbSqMETOjb2JSY
15https://fernuni-hagen.sciebo.de/s/ZvNyWJ4af4ehEaB
16All computations were conducted on a computer equipped with an NVIDIA GeForce GTX 980 Ti GPU

(6144MB internal memory), an AMD® Ryzen 5 2600 processor, and 16GB RAM.
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Table 2. Overview of the experimental results.

Training Set Test set MCC Accuracy TPR TNR Precision

Model: AGNN

pbbg-train
pbbg-test 0.962 0.985 0.964 0.993 0.981
kwt-test 0.631 0.801 0.588 0.980 0.962
iccma-test 0.507 0.847 0.446 0.974 0.845

kwt-train
pbbg-test 0.693 0.880 0.666 0.965 0.882
kwt-test 0.927 0.962 1.000 0.930 0.924
iccma-test 0.250 0.780 0.312 0.928 0.577

Model: FM2

pbbg-train
pbbg-test 0.558 0.822 0.670 0.882 0.692
kwt-test 0.359 0.642 0.220 0.998 0.989
iccma-test 0.211 0.763 0.315 0.905 0.512

kwt-train
pbbg-test 0.078 0.719 0.030 0.991 0.568
kwt-test 0.364 0.643 0.220 1.000 1.000
iccma-test 0.055 0.761 0.016 0.996 0.583

test sets are lower than in the previous experiment (see Table 2). Thus, a training on
KWT data alone is not practical either, and a future standard training set should probably
contain instances of both KWT data and other datasets, such as pbbg-train. But these
results suggest that the AGNN does no actually learn the concept (or an approximate
concept) of skeptical acceptance wrt. preferred semantics, but rather particular properties
of the benchmarks that correlate with it.

The results of our experiments with the FM2 network point in the same direction as
the previously described ones. Training the network with pbbg-train results in a lower
MCC wrt. kwt-test and iccma-test than wrt. pbbg-test (see the bottom half of Table 2).
However, the FM2 model is clearly less accurate (in particular wrt. accepted arguments)
and does not generalize very well. This problem becomes even more apparent when the
network is trained with kwt-train. The resulting model does not significantly recognize
accepted arguments from pbbg-test or iccma-test. Nevertheless, one should note that the
problem of FM2 with imbalanced data has been recognized in the literature [5,7] and
that other parameters could potentially improve the model’s accuracy. Also, the fact that
FM2 does not learn KWT data very well supports the hypothesis that the KWT instances
are rather challenging—which was our goal when we developed the generator.

5. Discussion and Further Analysis

In the following, we look a little bit deeper into the actual approach that ML methods
take to solve DSpr, and how the data may bias learning. In particular, we have a look
at the different graph types and how the accuracy of the existing approaches varies over
these. Furthermore, we show that classical ML approaches perform already quite well
when just considering very simple graph-theoretic features, suggesting that the complex
deep learning approaches tend to simply learn these features as well.
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Table 3. AGNN results on different subsets of iccma-test. Rows containing sets of AFs generated using
methods which are not included in the generation process of pbbg-train and pbbg-test are marked in gray.

Training Set
pbbg-train kwt-train

Test Set MCC Accuracy TPR TNR Precision MCC Accuracy TPR TNR Precision
ABA2AF 0.804 0.989 0.692 0.999 0.947 0.680 0.978 0.764 0.985 0.626
admbuster −0.110 0.486 0.003 0.968 0.086 −0.454 0.329 0.000 0.657 0.000
BA 0.946 0.973 0.977 0.970 0.963 0.645 0.812 0.917 0.729 0.725
ER −0.001 0.999 0.000 0.999 0.000 0.009 0.998 0.012 0.999 0.028
grd 0.690 0.970 0.600 0.992 0.827 0.265 0.935 0.226 0.979 0.391
Planning2AF 0.660 0.914 0.759 0.938 0.655 0.227 0.693 0.552 0.715 0.231
scc 0.135 0.998 0.127 0.999 0.151 0.016 0.989 0.049 0.990 0.008
sembuster − 0.687 − 0.687 − − 0.804 − 0.804 −
stb 0.463 0.926 0.329 0.988 0.742 0.172 0.904 0.097 0.987 0.438
traffic 0.789 0.931 0.723 0.989 0.947 0.541 0.858 0.499 0.958 0.768
WS 0.262 0.992 0.233 0.997 0.302 0.067 0.986 0.091 0.991 0.062

5.1. Analysis of Graph Types

As iccma-test overall seems to be hard to predict, we divide the dataset into multiple
subsets. Each subset contains data from one distinct generator or source17. The sets grd,
scc, and stb contain those instances produced by the generators of the Probo Benchmark
Suite, i.e., the GroundedGenerator, SccGenerator, and StableGenerator, respectively.
The sets BA, ER, andWS contain the instances generated using AFBenchGen2, i.e., they
correspond to the Barabasi-Albert, Erdős-Rényi, and Watts-Strogatz approach, respec-
tively. Consequently, these six graph “types” are also included in pbbg-train (and pbbg-
test)18. The other five subsets, namely ABA2AF, admbuster, Planning2AF, sembuster,
and traffic, conform to the remaining five generators (for a detailed explanation, see the
official competition benchmark report [16]).

We considered the AGNN models trained on pbbg-train and kwt-train which we
described in Section 4.2 and tested them on all individual subsets of iccma-test. Table 3
shows that the results vary widely. For instance wrt. pbbg-train, the BA instances are
predicted quite accurately, with an MCC of 0.946. On the other hand, wrt. the ER subset,
the model essentially just learned to classify all arguments as pna, which results in a
TNR of 0.999, but a TPR of 0.000 (and anMCC of−0.001). Further, we can observe that
both models tend to perform similarly. Although the model trained on pbbg-train overall
performs superior to the one trained on kwt-train, they both perform best (wrt. MCC) on
ABA2AF and BA, and worst on admbuster and ER. Moreover, it should be highlighted
once again that the model trained on pbbg-train performs very poorly on ER—although
the training set itself contained AFs generated using the Erdős-Rényi algorithm. Another
interesting observation is that the AGNN performs very poorly on the admbuster set [17].
This is surprising because the admbuster graphs are acyclic and pa(F) coincides with the
grounded extension in all its instances F . So, although “being in the grounded extension”
is a sufficient condition for pa and easy to compute for classical algorithms, it is not
learned by the deep learning approach.

5.2. Impact of In-degree and Out-degree

An advantage of deep learning approaches to ML is that the tedious task of feature en-
gineering is taken over by the learning approach. The approaches [5,6,7] all learn the

17Overview of the AFs belonging to each subset: https://fernuni-hagen.sciebo.de/s/pySMMAfE7zEzn6i
18Note, however, that different parameters were used.
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features used for classification implicitly when presented with the raw input data. While
this is beneficial from the point of view of the engineer, it also makes the model hard to
explain as it is not clear, how exactly recommendations are drawn from the input. This
can also lead to models that make predictions on correlations rather than on causal rela-
tionships. A famous example of such a misbehavior comes from image recognition [18].
There, an ML approach was given a set of images classified either as wolf or dog (husky)
and a classifier was trained to predict these two classes. But rather than identifying some
intrinsic feature to distinguish wolves from dogs, the ML approach learned the feature
of “snow in the background”. In both the training and test set, most images of wolves
had snow in the background, and this feature actually could be used very well for distin-
guishing wolves from dogs. However, it is clear that “snow in the background” is not a
good feature to describe what makes a wolf a wolf.

While the above example is an extreme case of an ML approach focussing on cor-
relation, we would like to analyse whether something similar happens in the case of pre-
dicting DSpr in abstract argumentation frameworks. For that we analysed the distribu-
tions of several graph-theoretic features, such as degrees, diameter, clustering coefficient,
etc., of the graphs in our datasets, with respect to the differences between pa and pna
arguments. We found out that the two features of in- and out-degree (i.e., the number
of incoming and outgoing attacks per argument) already distinguish these two classes
very well. Table 4, which comprises the mean degrees of pas and pnas wrt. all datasets
used in this work, shows that both mean in-degree and mean out-degree are in all cases
lower wrt. pa compared to pna. Regarding the out-degree, this is only a tendency, and
there exist exceptions—for instance, we examined a dataset consisting of 1000 AFs (25
arguments each) generated by Probo’s GroundedGenerator, where the mean out-degree
per pa (14.83) was higher than the mean out-degree per pna (10.75). Regarding the in-
degree, it is also possible to construct cases where the mean pa in-degree is higher than
the mean pna in-degree. However, the clear tendency of lower in-degrees of pa is clearly
visible. This is no coincidence in the data, but an intrinsic property of DSpr: the number
of the incident attacks in pna(F) is necessarily at least as large as the number of incident
attacks in pa(F) (this is actually true for all conflict-free semantics).

Proposition 1. For any AF F, |pa(F)+F |+ |pa(F)−F | ≤ |pna(F)+F |+ |pna(F)−F |.

Proof. Let (a,b) ∈ R. Since pa(F) is conflict-free, it follows that either

1. a ∈ pa(F), b ∈ pna(F),
2. a ∈ pna(F), b ∈ pa(F), or
3. a ∈ pna(F), b ∈ pna(F).

In the first two cases, both sets pa(F) and pna(F) are incident to the attack (a,b), while
in case three, only pna(F) is incident to the attack (with both end points). Summing over
all attacks, the claim follows.

The above observation becomes important, when we recall what “exact” problem the
classifiers are learned upon. The actual problem is that, given an argumentation frame-
work, predict pa/pna simultaneously for all arguments of the framework. As already
discussed in Section 3, for many arguments the problem of deciding whether they are
pa/pna is actually quite easy. With the additional information that low in-degrees are a
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Table 4. Comparison of the mean number (and standard deviation) of outgoing and incoming attacks (i.e.,
in-degree and out-degree) wrt. the set of skeptically accepted arguments and the set of unaccepted arguments
under preferred semantics.

Dataset Mean out-degree
per pa

Mean out-degree
per pna

Mean in-degree
per pa

Mean in-degree
per pna

pbbg-train 2.15 ±2.02 2.71 ±1.93 0.82 ±0.98 3.29 ±1.86
pbbg-test 2.06 ±2.09 3.41 ±2.38 0.84 ±1.04 3.90 ±2.25
kwt-train 15.92 ±12.83 66.45 ±12.40 13.64 ±10.77 69.17 ±12.01
kwt-test 15.97 ±12.78 66.62 ±12.33 13.88 ±10.75 69.27 ±11.92
iccma-test 20.69 ±69.57 56.71 ±133.83 12.11 ±48.15 57.07 ±134.16

Table 5. Results of a naive classifier which uses the constraint “ain <meanpain ∨aout <meanpaout?” to classify
arguments as pa or pna.

Training Set Test Set MCC Accuracy TPR TNR Precision

pbbg-train pbbg-test 0.396 0.674 0.825 0.615 0.458
pbbg-train iccma-test 0.364 0.737 0.827 0.726 0.268
kwt-train kwt-test 0.739 0.868 0.768 0.951 0.930

very good indicator for having a pa argument, we can already classify many arguments
correctly.

In the following, we will describe the results of some additional experiments to ex-
plore the impact of in-degree and out-degree in classification tasks. For that, we simpli-
fied the instances of our datasets to a tabular format, in which each row only contains an
argument ID, the argument’s in-degree, out-degree, and label (pa or pna). So, the actual
argumentation frameworks are not given to the learning algorithm as input! We then train
several ML algorithms on this data and measure the resulting MCC, accuracy, TPR and
TNR. To begin with, we define a naive classifier whose “training” consists of calculating
the mean pa in-degree (meanpain ) and out-degree (meanpaout) of the training set. The classi-
fication process then simply consists of checking whether the in-degree or the out-degree
of a given argument a (ain and aout) is smaller than meanpain or meanpaout, respectively: if
one of them is indeed smaller, the argument is classified as pa, if this is not the case, it is
classified as pna. Although the results are, as one would expect, far from perfect, Table
5 shows that in-degree and out-degree alone are quite good indicators of the acceptabil-
ity status of an argument. In particular, accepted arguments are predicted surprisingly
accurately, with a TPR between 0.768 and 0.825.

Furthermore, we train a number of “classical” ML models. Again, we use the for-
matted datasets which only contain the in-degree and out-degree of each node, but no
further information about the graph structure. To be precise, we consider the following
methods [19]: k-Nearest Neighbors (KNN) (with k = 5), Naive Bayes (NB), Decision
Tree (DT), and Random Forest (RF)19. The results, displayed in Table 6, show that the
previously described results yielded by the naive classifier can generally be improved
by using a more sophisticated approach. In particular, the results on kwt-test are quite
accurate, with an MCC of 0.924 when using an RF. While DT and RF exhibit the best
performance wrt. MCC, one should notice that NB offers the most “balanced” results
wrt. TPR and TNR, in particular regarding pbbg-train. Besides, it is noticeable that DT
and RF feature very similar, or even identical results in all cases. This is most likely due

19We used the implementations and default parameters provided by https://scikit-learn.org/stable/.
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Table 6. Overview of test results wrt. multiple training and test sets as well as four different ML methods.

Training Set Test Set Approach MCC Accuracy TPR TNR Precision

pbbg-train pbbg-test

KNN 0.567 0.834 0.576 0.936 0.779
NB 0.514 0.761 0.831 0.733 0.551
DT 0.630 0.857 0.615 0.952 0.836
RF 0.630 0.857 0.615 0.952 0.836

pbbg-train iccma-test

KNN 0.191 0.832 0.309 0.895 0.264
NB 0.389 0.775 0.793 0.773 0.298
DT 0.399 0.911 0.200 0.997 0.895
RF 0.399 0.911 0.200 0.997 0.895

kwt-train kwt-test

KNN 0.884 0.942 0.952 0.934 0.924
NB 0.868 0.934 0.935 0.934 0.923
DT 0.923 0.960 0.998 0.929 0.922
RF 0.924 0.961 0.998 0.929 0.922

to the fact that the datasets only possess two features, which might lead to the decision
trees in the random forest to be similar (or identical) to a single decision tree.

Overall, our results suggest that classical ML techniques trained only on the features
in-degree and out-degree might not be accurate enough for practical applications, yet
they also show that these two simple features are still very strong indicators for the
acceptance status of an argument. Therefore, the question arises whether (and if so, in
which manner) such a dominant feature influences a neural network’s training process.

6. Conclusion

The objective of this work was to shed some light on the importance of data selection—
a common problem in ML research, but less common in knowledge representation and
reasoning. To successfully bridge the gap between both fields, we need to take different
perspectives. Our experiments showed that a training set consisting of only rather small
AFs (5–25 arguments) offers little room for variability. Thus, a neural network cannot
solve more complex cases as accurately. However, we also saw that a neural network (in
particular the AGNN architecture [6]) is in fact able to learn more complex features if
it is exposed to them during training. We also discussed the question whether the appli-
cation of ML techniques is even useful for small and simple AFs. Such cases could be
solved by an exact approach in a reasonable amount of time without any losses in terms
of accuracy. Further, there are other “simple” cases which should be taken into consider-
ation. For example, when regarding DSpr, a dataset should contain a significant number
of arguments that are pa but not ga, since the grounded extension can be computed in
polynomial time.

Furthermore, as a subject of future work, we need to take a closer look at graph-
theoretical aspects. For instance, a dataset could benefit fromAFs which include accepted
arguments that have similar properties (such as in-/out-degree) as arguments that are not
accepted. Therefore, a neural network would need to learn less superficial features to
learn the acceptability status of arguments. Another topic of future work is to examine
other semantics and tasks more closely, as we only focused on DSpr. Yet another aspect
that could be explored is to use ML techniques to guide sound and complete solvers, in
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order to accelerate their execution times. Moreover, the compilation of a standard dataset
that includes all of the above perspectives and aspects could facilitate future research in
this area.
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Abstract. Assumption-based argumentation (ABA) is one of the most-studied for-
malisms for structured argumentation. While ABA is a general formalism that can
be instantiated with various different logics, most attention from the computational
perspective has been focused on the logic programming (LP) instantiation of ABA.
Going beyond the LP-instantiation, we develop an algorithmic approach to reason-
ing in the propositional default logic (DL) instantiation of ABA. Our approach is
based on iterative applications of Boolean satisfiability (SAT) solvers as a natural
choice for implementing derivations as entailment checks in DL. We instantiate the
approach for deciding acceptance and for assumption-set enumeration in the DL-
instantiation of ABA under several central argumentation semantics, and empiri-
cally evaluate an implementation of the approach.

Keywords. structured argumentation, assumption-based argumentation, default
logic, decision procedures, SAT, counterexample-guided abstraction refinement

1. Introduction

Assumption-based argumentation (ABA) [1,2] is a central approach to structured argu-
mentation [3,4,5]. ABA captures and generalizes different approaches default reason-
ing, constituting a general-purpose framework which can be instantiated for any formal
logic to support various different application settings. Derivations of conclusions from
assumptions via inference rules in the logic of choice give rise to arguments.

Arguably the most-studied ABA instantiation is the logic programming (LP) frag-
ment of ABA [1] in which arguments are derived with logic programming rules. From the
computational perspective, development of algorithmic approaches to central reasoning
problems, such as acceptance, in ABA has focused on the LP-instantiation [6,7,8,9,10].
In the LP-instantiation, derivations are computable in polynomial time, which implies
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that deciding acceptance in ABA is a computational problem contained in NP for various
argumentation semantics [11]. However, algorithmic approaches to reasoning in ABA
beyond the LP-instantiation, i.e., ABA instantiated with more expressive logics, and in
particular ones for which derivations may be hard to compute, are scarce. Addressing
this challenge, in this work we develop algorithms for reasoning in ABA instantiated for
propositional default logic (DL) [12,13], which we refer to as DL-ABA.

In DL-ABA, derivations of arguments require checking entailment (coNP). This im-
plies that reasoning about acceptance is beyond the first level of the polynomial hierar-
chy [11]. The need for entailment checking suggests using Boolean satisfiability (SAT)
solvers [14] as a basis for developing approaches to reasoning in DL-ABA. Indeed, we
employ incremental SAT solving for developing an approach that allows for deciding
acceptance and the enumeration of assumption-sets under several central argumentation
semantics. We provide an implementation of the approach and a first empirical evalua-
tion of its scalability. Although there have been earlier developments for computing ex-
tensions in DL [15,16,17,18] which in particular corresponds to computing extensions
under stable semantics in DL-ABA, to our best understanding our approach presented is
the first in its generality for DL-ABA.

2. Preliminaries

We review background on assumption-based argumentation (ABA) [1,2] with proposi-
tional default logic (DL) [12] as the underlying deductive system.

The first ingredient for ABA is a deductive system (L ,R). For our purposes L is
a set of propositional formulas andR a set of rules of the form r = a0 ← a1, . . . ,an with
ai ∈ L . We say that a0 is the head of the rule (head(r) = a0) and the set {a1, . . . ,an}
is the body (body(r) = {a1, . . . ,an}). A sentence a ∈ L is derivable from A ⊆ L (in
symbols A �R a) if either a ∈ A, or there is a sequence of rules (r1, . . . ,rn) from R s.t.
head(rn) = a and body(ri)⊆⋃

j<i head(r j)∪A for 1≤ i ≤ n; that is, each body element
of rules must be present either in A or as heads of previous rules in the sequence. We omit
subscript R when clear from context. We assume that (Lp,Rp) is a deductive system
for propositional logic, i.e., Lp is the set of all propositional formulas and A �Rp a iff
A |= a (i.e., there is a derivation via Rp iff classical semantic entailment holds; one may
select any sound and complete inference system for classical propositional logic asRp).

A propositional default theory is a pair T = (W,D), where W ⊆ Lp and D is a
set of default rules of the form r = c ← a,Mb1, . . . ,Mbn with c,a,b1, . . . ,bn ∈ Lp and
Mbi /∈ Lp (Mbi are not propositional formulas). We refer to c as the conclusion, to a as
the prerequisite, and to {Mb1, . . . ,Mbm} as the justifications of the default rule r. We use
the shorthands M(r) = {Mb1, . . . ,Mbn}, prereq(r) = a and conc(r) = c. Intuitively, Mb
is interpreted as ¬b can not be proven and thus it is consistent to assume b.

We directly state ABA instantiated with propositional default logic.

Definition 1. Let (W,D) be a propositional default theory. The assumption-based argu-
mentation framework (ABF) corresponding to (W,D) is F = (L ,R,W,A , ) with

• L = Lp ∪{Mα | α ∈ Lp},
• R = Rp ∪D,
• A = {Mb | Mb occurs in some default rule in D, b ∈ Lp}, and
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• a function mapping A to L defined by Mb = ¬b for all Mb ∈ A .

An Mb ∈ A is an assumption (in a given ABF). For brevity, as (W,D) uniquely
determines the corresponding ABF and as we focus on ABFs corresponding to propo-
sitional default theories, we identify (W,D) with the corresponding ABF F and write
F = (W,D) referring to the ABF corresponding to (W,D).

Given an ABF, derivability from a set of assumptions A is defined byW ∪A �R a,
i.e., a is derivable fromW and the assumption set (note thatR includes default rules from
the default theory). A set of assumptions A ⊆ A attacks a set of assumptions B ⊆ A iff
W ∪A �R Mb for some b ∈ B, or equivalently,W ∪A �R ¬b; that is, a set of assumptions
is a set of justifications (which are “assumed”), and A attacks B, if one can derive the
negation of some justification in B from the propositional theoryW with all default rules
whose justifications are met by A. For a singleton B = {b} we say that A attacks b.
Note that an atom b may be entailed although Mb is not, as assumptions are not part of
the propositional vocabulary. In ABA terminology, an ABF is flat if assumptions do not
occur as heads of rules, as is the case for DL-ABA.

A set of assumptions A is conflict-free if A does not attack A. A defends the assump-
tion set B if A attacks each assumption setC that attacks B.

Definition 2. For a given ABF F = (W,D) and a conflict-free set of assumptions A ⊆A ,
we say A is

• admissible (in F) if A defends itself,
• complete (in F) if A is admissible and contains every assumption set it defends,
• grounded (in F) if A is ⊆-minimally complete, and
• stable (in F) if A is conflict-free and attacks every assumption a ∈ A \A.

A useful equivalent characterization for grounded semantics is by utilizing FF for
an ABF F = (W,D), defined by FF(S) = {Mb ∈ A | {Mb} defended by S} for an S ⊆
A . The grounded assumption set is then the (unique) least fixed point ofFF [1]. There is
a direct correspondence between Reiter’s default extensions [12] and stable assumption
sets: E is a default extension of (W,D) iff E ′ is a stable assumption set of F = (W,D)
with E = {a | W ∪E ′ � a}∩Lp [1]. An atom x ∈ L is credulously (resp., skeptically)
accepted under semantics σ ∈ {adm,com,grd,stb} (for admissible, complete, grounded,
stable) if x is derivable from some (resp., all) σ -assumption set(s).

Example 1. Let W = (¬b∨¬a)∧(¬b∨¬c) and D contain four default rules: (r1 = a ←
Ma), (r2 = b ← Mb), (r3 = c ← Mc), and (r4 = d ← a∧b,Md). For the corresponding
ABF, L and R are together an extension of a propositional deductive system with de-
faults and the assumptions A = {Ma,Mb,Mc,Md}. Contrariness is given by Mx = ¬x
for x ∈ {a,b,c,d}. The four singleton assumption sets {Mx} are all conflict-free. For
instance, ¬a is not derivable from W and Ma, i.e., W ∪{Ma} �� ¬a. Using only rules
from Rp (representing classical propositional entailment), ¬a cannot be derived from
W ∧Ma. However, Ma can be derived and thereby via r1 the atom a. Thus W ∪{Ma} � a.
Moreover, ¬b is derived via the first clause in W. Thus {Ma} attacks {Mb}. Symmetri-
cally, {Mb} attacks {Ma}. Only assumption sets including Mb derive ¬a. Thus {Ma}
attacks all assumption sets that attack {Ma}, indicating that {Ma} is admissible. {Md}
does not attack any other set and is not attacked, as d does not occur anywhere outside
r4. As all other sets are attacked, {Md} is the (unique) grounded assumption set. A com-
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plete and stable assumption set is {Ma,Md}. It holds that a is credulously accepted un-
der complete semantics, since the complete assumption set {Ma,Md} derives a. It holds
that {Mb,Md} (another complete assumption set) does not derive a. Thus a is not skep-
tically accepted. Finally, rule r4 does not trigger: its prerequisite is never entailed by a
conflict-free assumption set (a∧b is unsatisfiable with W).

The complexity of ABA instantiated with propositional default logic was investi-
gated in [13,11,19]. For flat ABA instantiated with a deductive system whose derivation
complexity is in coNP, we have ΣP

2 -completeness for credulous reasoning under admissi-
ble and stable semantics (and since credulous acceptance under admissible and complete
semantics coincides [2], also for complete semantics). Skeptical acceptance under admis-
sibility is coNP-complete and Π2

P-complete under stable semantics. The complexity of
reasoning under grounded semantics (and skeptical acceptance for complete semantics)
is in Δ2P (i.e., decidable via a deterministic polynomial time algorithm with access to an
NP oracle). Furthermore, the complexity of credulous and skeptical reasoning in propo-
sitional default logic (i.e., deciding whether a formula is entailed by one or all extensions
according to Reiter [12]) coincides with the complexity of stable semantics [13].

3. A SAT-Based Approach to Deciding DL-ABA

Our SAT-based approach to deciding DL-ABA under different argumentation semantics
is based on counterexample-guided abstraction refinement [20] which has earlier proven
successful in the realm of abstract argumentation (see, e.g., [21,22]). For high-level intu-
ition, our algorithms work by iteratively first “guessing” with a SAT solver a candidate
assumption set A, and then employing a SAT solver to determine the setC of conclusions
of default rules in D that are applicable by A. After this, we employ a SAT solver to
check if A conforms to the semantics of interest (together with a query, in case of ac-
ceptance problems) based on C. If this is the case, the search terminates. If not, a coun-
terexample witnessing this fact is obtained, and we proceed to the next iteration to guess
another candidate assumption set A. The counterexamples obtained are used for further
restricting (or “refining”) the set of candidate assumption sets that will be considered in
the forthcoming iterations, depending on the semantics at hand.

We will continue by describing the approach in more detail, including how the can-
didate assumption sets are guessed, conclusions determined, counterexamples obtained,
and refinements made. As convenient, we will treat a set of propositional formulas inter-
changeably as the conjunction of the formulas the set contains.

The following observation is central to our approach. For a given ABF F = (W,D),
we define a function that, given a subset S ⊆A of assumptions, iteratively constructs the
set of conclusions of defaults in D that are applicable by S. Let derivedS(X) = {c | (c ←
a,Mb1, . . . ,Mbn) ∈ D where Mb1, . . . ,Mbn ∈ S andW ∪{∧c′∈X c′} |= a}. For a given S,
it holds that derivedS is ⊆-monotone; this follows by monotonicity of classical propo-
sitional entailment |=. Further, a unique least fixed-point exists and can be computed
by iteratively applying derivedS starting with X = /0, i.e., derivedi

S( /0) for some i ≥ 0
reaches the least fixed point. This fact can be directly inferred since D is assumed to
be finite: derivedi

S( /0) reaches some fixed-point after some number of iterations, and the
result of each iteration must be a subset of each fixed-point of derivedS (e.g., it holds that
derivedS( /0) is part of each fixed-point, and then also derived1S( /0) must be, and so on).
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Proposition 1. Suppose an ABA framework F = (L ,R,W,A , ), a set of assumptions
A ⊆A and a sentence x ∈L . Let X be the least fixed point of derivedA and C =

∧
c∈X c.

It holds that x is derivable from A in F if and only if either x ∈ A or the propositional
formula W ∧C∧¬x is not satisfiable.

Proof. We first show that y ∈ X implies that y is derivable from A in F via induction on
derivedi

A( /0) with i ≥ 1. For the base case i = 1, since y ∈ derivedA( /0), there is a rule
y ← a,Mb1, . . . ,Mbn with {Mb1, . . . ,Mbn} ⊆ A andW |= a. Thus there is a derivation of
a fromW in F . For the induction step, assume that y ∈ derivedi

A( /0) implies y is derivable
from A in F . We need to show that z ∈ derivedi+1

A ( /0) implies z is derivable from A in
F . Then there is, again, a rule z ← a,Mb1, . . . ,Mbn with {Mb1, . . . ,Mbn} ⊆ A. It must
hold that a is entailed byW ∧∧

c∈derivedi
A( /0)

c, implying that there is a derivation in F for
a from A and, in turn, also for z. Thus, y ∈ X implies y is derivable from A in F . Now
assume thatW ∧C∧¬x is not satisfiable, and thusW ∧C |= x. Each conjunct c of C is a
subset of X and thus, as shown, derivable from A. Therefore x is derivable from A in F .

Suppose x is derivable from A in F . Then there is a sequence of rules in R s.t. each
body element of each rule is either in A or the head of a rule previously in the sequence.
We can assume that the derivation is of finite length, since there are only finitely many
default rules, and a derivation in a sound and complete inference system in propositional
logic can be assumed to be only requiring finitely many steps. Consider again an induc-
tive line of reasoning on the length of the derivation. The base case is straightforward:
the body of the first rule is in A orW , and, in turn, the head is entailed byW ∧C. Assume
that up to i each head of preceding rules is entailed byW ∧C. Independently of the rule
being a default, the body of the rule is either entailed byW ∧C (from previous rules and
induction hypothesis) or in A, implying the claim.

We continue by detailing our algorithmic approach. Apart from W , central to the
approach is a propositional formula φ over all of the assumptionsMa of the framework in
question, used to guess candidate assumption sets. Initially φ is the empty formula, and
φ is expanded at each refinement step conjunctively with further propositional clauses.
Following Proposition 1,W is used to decide derivations and thus attacks from any given
assumption set. In the following, for a truth assignment I we let IA = {Ma | Ma ∈A ∩ I}
to denote the set of assumptions that are assigned to true by I.

Algorithm 1 gives the skeleton for credulous reasoning under stable, admissible and
complete semantics. Recall that φ is a conjunction of refinement clauses ruling out prov-
ably incorrect candidate solutions (initially the empty formula). A candidate assumption

Algorithm 1 Credulous reasoning: skeleton for stable, admissible and complete
Require: ABA framework (W,D) and a query q ∈ Lp
Ensure: return YES if q is credulously justified under given semantics, NO otherwise
1: Let φ be an empty propositional formula over A
2: while I ← Sat(φ) do

3: C ← Concluded via Defaults(IA )
4: if CF Derive Query(IA ,C,q) then

5: if ¬Counterexample(I,C) then return YES
6: φ ← Refine(I)
7: return NO
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Algorithm 2 Concluded via Defaults(A)
Require: A ⊆ A
Ensure: return the conclusions of the default rules that are applicable by A.
1: X ←{r ∈ X | M(r)⊆ A}
2: C ←�
3: changes ← true

4: while changes do

5: changes ← false

6: X ′ ← X
7: while X ′ �= /0 do

8: testrule ← pop(X ′)
9: if I←Sat(W ∧C∧¬prereq(testrule)) then X ′←X ′ \ {r ∈ X | ¬prereq(r) ∈ I}
10: else

11: C ←C∧ conc(testrule)
12: Remove testrule from X
13: changes ← true

14: break

15: return C

set IA is guessed by constraining the solution space with the refinement clauses. As ex-
plained further in what follows, the following subroutines are used in the algorithms.
HereC is the least fixed point of derivedA for assumption set A (Algorithm 2).

• notDerivable(C,q): invokes a SAT solver onW ∧C∧ (¬q), true iff q is not deriv-
able from A.

• ExistUndefeated(B,C): invokes a SAT solver onW ∧C∧∨
Ma∈B a, true iff there is

an assumption in B not attacked by A.
• Attacked(B,C): returns the set of assumptions in B attacked by A (Algorithm 4).

On Line 3 of Algorithm 1, the rules applicable by IA are determined, and the con-
clusions of those rules are conjoined as C. Line 4 checks if IA is conflict-free and the
query is derived from IA ; both checks useW with every element ofC enforced to hold. If
those checks succeed, the existence of a counterexample is checked on Line 5. The form
of the counterexample depends on the semantics as detailed later on. If a counterexample
is not found, IA is a σ -assumption set that derives q. Otherwise a refinement is added,
again depending on semantics; see below.

The details of the subroutines Concluded via Defaults, CF Derive Query, and At-
tacked are provided as Algorithms 2, 3 and 4, respectively. Given an assumption set A,
Algorithm 2 computes the least fixed-point of derivedA (recall Proposition 1). The rules
whose justifications is a subset of A are collected to X (Line 1). C is a conjunction over

Algorithm 3 CF Derive Query(I,C,q)
Ensure: return YES if IA is conflict-free and derives q
1: if Attacked(IA ,C) �= /0 or notDerivable(C,q) then

2: φ ← Refine(I)
3: return NO
4: return YES
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Algorithm 4 Attacked(B,C)

Ensure: return the elements of B that are attacked by A
1: X ←{x | Mx ∈ B}
2: while X not empty do

3: if I ← Sat(W ∧C∧∨
x∈X x) then X ← X \ I else return {Mx | x ∈ X}

4: return {Mx | x ∈ X}

the set of conclusions of rules in X that are in the deductive closure; initially C is empty
(Line 2). In the loop starting on Line 4 it is iteratively checked for rules in X if their
prerequisite is entailed by W ∧C. If not, all rules whose prerequisite occurs negatively
in the found assignment I are removed from consideration for this loop, because none of
those prerequisites are entailed (Line 9). If a rule is entailed, the conclusion of this rule is
added to C (Line 11). In this case the rule is removed from further consideration as it is
already determined to be applicable (Line 12). This rule being applicable changes what
W ∧C entails, and thus the algorithm will not terminate (Line 13). Instead, each rule not
already found to be applicable is considered in the next iteration. This is continued until
no more prerequisites of rules in X are entailed.

Algorithm 3 checks if the candidate is conflict-free and derives the query. Concretely
it returns NO and applies the appropriate refinements if there is an attack from the can-
didate to itself, checked with Algorithm 4, or the query is not entailed byW ∧C. Given
assumption sets A and B, and the conclusions of default rules applicable by A, Algo-
rithm 4 considers the contents of assumptions in B (Line 1), and iteratively removes from
consideration those contents of B whose negationW ∧C does not entail, as this implies
that A does not derive them. The rest of the assumptions are attacked by A. If the call
on Line 3 is unsatisfiable, then the set of attacked assumptions returned on Line 3 is not
empty, otherwise the empty set is returned on Line 4.

3.1. Counterexamples

Counterexample(I,C) is defined as follows for the individual semantics. These subrou-
tines determine if a conflict-free assumption set A is a σ -assumption set under stable,
admissible, or complete semantics, respectively. They employ W and C (the least fixed
point of derivedA) as computed in Algorithm 2.

• Stable: return ExistUndefeated(A \ IA ,C). That is, it is checked whether there is
an assumption that is not in the current candidate A and not defeated by it.

• Admissibility: return true if Attacked(IA ,C′) �= /0, whereU = A \ Attacked(A \
IA ,C), and C′ = Concluded via Defaults(U). That is, collect all assumptions U
not defeated by A, and then check thatU does not defeat A.

• Complete: with U and C′ as above, return true if either Attacked(IA ,C′) �= /0 or
ExistUndefeated(A \ IA ,C′) is true. That is, A is not complete if it is not admis-
sible or there is an assumption outside A that is not attacked by the assumptions
that A does not attack.

3.2. Refinements

The details of the refinement step made when a counterexample is found depend on the
semantics at hand. In particular, we make use of the observations detailed in Proposition 2
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to obtain in cases stronger refinements—ruling out more than one candidate from further
consideration at forthcoming iterations of Algorithm 1 than what is be achieved by the
so-called trivial refinement, consisting of ruling out only the particular candidate for
which a counterexample is obtained from further consideration.

Proposition 2. Given an ABA framework F = (L ,R,W,A , ) and an assumption set
A ⊆ A , it holds that

1. if A is not conflict-free, then no A′ ⊇ A is conflict-free,
2. if A is conflict-free but not stable, then no A′ ⊆ A is stable,
3. if A does not derive x, then no A′ ⊆ A derives x, and an A′ that derives x must

cover the justifications of at least one default rule not covered by A,
4. if A derives x, then all A′ ⊇ A derive x, and
5. if A is conflict-free but not admissible, then no superset of the assumptions not

defeated by A is admissible.

Proof. Item 1: the same self-attack is present in A′ ⊇ A as in A. For Item 2, suppose that
A is conflict-free but not stable, implying that there is an a ∈A \A that A does not attack.
Derivability is ⊆-monotone, implying that a is not attacked by any subset of A either.
The first part of Item 3 follows from the same observation for an A that does not derive
x. The second part follows from the fact that to increase what A derives, one needs to
apply additional default rules. Item 4: the same derivation for x exists from any A′ ⊇ A
than from A. Lastly, for Item 5 assume that A is conflict-free but not admissible, implying
that there is an attack from the set U of assumptions not defeated by A to A. Since A is
conflict-free, A ⊆U . ThusU is self-defeating and the claim follows from Item 1.

Refine(I) is defined as follows for the different cases of a candidate being discarded,
based on Proposition 2. HereU is the set of assumptions not defeated by IA .

Refinement Required Optional
A is not conflict-free

∨

Ma∈IA
¬Ma

Query not deriv. from A (cred.)
∨

Ma∈A \IA
Ma

∨

r∈D,
M(r)�I

∧

Mbi∈M(r)
Mbi

Query deriv. from A (skept.)
∨

Ma∈IA
¬Ma

A is not stable
∨

Ma∈A \IA
Ma

A is not admissible
∨

Ma∈A \IA
Ma∨ ∨

Ma∈IA
¬Ma

∨

Ma∈U
¬Ma

A is not complete
∨

Ma∈A \IA
Ma∨ ∨

Ma∈IA
¬Ma

The required clauses for admissible and complete simply rule out the current can-
didate. We also list optional clauses for a query not being derived from the candidate
for credulous reasoning and the candidate not being admissible. The optional clauses are
not neceessary for correctness, but are potentially useful for restricting the remaining
candidate space further towards earlier termination.
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Algorithm 5 Acceptance under grounded
Require: ABA framework F = (W,D) and query q ∈ Lp
Ensure: return YES if q is credulously justified in F under grounded, NO otherwise
1: S ← /0
2: while true do

3: C ← Concluded via Defaults(S)
4: U ← A \Attacked(A ,C)
5: C′ ← Concluded via Defaults(U)
6: defended ← A \Attacked(A \S,C′)
7: if defended is empty then break else S ← S∪defended
8: return ¬notDerivable(C,q)

3.3. The Special Case of Grounded Semantics

Algorithm 5 for grounded semantics differs from the other semantics. Here we rely on
the fact that DL-ABA frameworks are flat and that the grounded assumption set is the
least fixed point of FF(S) = {Mb ∈ A | {Mb} defended by S} for an S ⊆ A . In other
words, the grounded assumption set can be iteratively build in the set S, initially empty,
by iteratively adding to it all assumptions defended by it. More concretely, on Line 3 the
conclusions of rules applicable by A are identified, and on Line 4 the set of assumptions
U not defeated by S is identified. Similarly, on Lines 5 and 6 the conclusions of rules
applicable by U and assumptions defended by S are identified; any assumption that is
not attacked by U is defended by S, because S counters all attacks not originating from
U . If S defends no assumptions outside of itself, S is the least fixed point of the defense-
operator, and thus the grounded assumption set (Line 7). Finally, q is accepted under
grounded semantics if and only if it is derivable from S (Line 8).

3.4. Skeptical Reasoning and Enumeration

Algorithm 1 requires only minor modifications for deciding skeptical acceptance by
checking for the existence of a counterexample instead of set deriving the query. In par-
ticular, negate the entailment check in Algorithm 3 and invert the answer given by Algo-
rithm 1. Then the subroutine returns NO if the query is entailed byW ∧C, since then the
candidate derives the query and thus can not constitute a counterexample. To enumerate
all σ -assumption-sets, remove the entailment check of Algorithm 3 and when a solution
is found, instead of terminating collect the solution and continue by calling Refine(I).

To query for an assumption Mb instead of member of Lp, it suffices to initialize φ
with the assertion that Mb holds and omit the entailment check in Algorithm 3.

As there is guaranteed to be a unique grounded assumption set in a flat ABA frame-
work (including any DL-ABA framework), Algorithm 5 answers skeptical acceptance as
such. To enumerate (more precisely, return the single) grounded assumption set, S should
be returned on Line 8 instead of performing the entailment check.

4. Experiments

We provide first empirical results on the runtime performance of our SAT-based approach
to DL-ABA, focusing on credulous and skeptical reasoning. We implemented the algo-
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rithms (available at https://bitbucket.org/coreo-group/satfordl-aba) using
the PySAT Python interface [23] and Glucose 3 [24] as the SAT solver. We were unable
to run earlier systems [15,16,17,18] for finding extensions in DL (specifically for find-
ing stable extensions in DL-ABA) for a comparison due to unavailability and compila-
tion issues. The experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core 64-GB
machines with CentOS 7 under a per-instance 600-s time and 16-GB memory limit.

For benchmarks, we randomly sampled a set of 400 CNF formulas from a large set
of real-world SAT instances originally used for benchmarking iterative SAT-based algo-
rithms for the beyond-NP problem of backbone computation [25]. These CNF formulas
can be considered suitably challenging for the purpose of our evaluation. For each CNF
formula, we chose one literal uniformly at random from the set of positive and negative
instances of all variables occuring in the formula, and added default rules to obtain ABFs.
Specifically, for each CNF formula, we generated 12 ABFs for a total of 4800 instances,
with a ∈ {20,50,100,200} assumptions, each of whose content was randomly selected
from the literals in the CNF, and d ∈ {100,200,400} default rules per framework. Each
rule had one literal selected uniformly at random as its prerequisite and conclusion, re-
spectively, and from one to five assumptions as its justifications, with both the amount
and identities of the assumptions selected uniformly at random.

Table 1 gives the number of timeouts and mean runtimes over solved instances wrt.
the number of assumptions and rules for the different reasoning tasks for credulous rea-
soning under stable, admissible, complete and grounded semantics, and for skeptical
reasoning under stable semantics.2 Note that these results are obtained without using
the optional refinements for credulous reasoning and admissible semantics (recall Sec-
tion 3.2). Acceptance under grounded semantics appears the easiest to solve, likely due
to the fact that in this algorithm, unlike for the other semantics, we do not need to “guess”
assumption sets, but instead build the grounded set iteratively. Acceptance under stable
semantics appears harder to solve compared to the other second-level problems, which
fits the intuition that there are fewer stable sets, making it harder to find a suitable one.
Performance on skeptical acceptance under stable semantics is very similar to credulous
acceptance, and likewise for performance under admissible and complete semantics for
credulous reasoning. For the semantics other than grounded, there is a clear increase in
difficulty of the instances as the number of assumptions and defeasible rules, respec-
tively, increases. For example, for all parameters combinations with at least 100 assump-
tions, our current implementation timed out on over half of the instances, suggesting that
there would be room for further runtime improvements as well as for developing further
understanding on what makes individual instances hard to solve.

Figure 1 shows the impact of the number of assumptions on runtime performance
and (in the left side plot) the effect of the optional credulous reasoning refinement under
stable semantics. Interestingly, the optional refinement clauses appear to degrade run-
time performance, especially for instances with 50 assumptions. For a possible explana-
tion, note that while the number of candidates that do not derive the given query is much
lower when using the optional refinement, there are in turn more candidates that fail the
other criteria (conflict-freeness and stability). Hence the number of iterations may even
increase when using the optional refinements. On the other hand, the optional refinement

2Skeptical reasoning under admissible semantics is relatively easy as it reduces to checking if the empty
assumption set derives the query. Skeptical reasoning under complete semantics coincides with acceptance
under grounded semantics. Credulous reasoning under admissible and complete semantics also coincide.
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Table 1. Detailed runtime results. There are a total of 400 instances per each combination of |A | and |D|.

#timeouts (mean runtime over solved instances (s))

|A | |D| stb cred adm cred com cred grd accept stb skept

100 20 (55.5) 29 (50.8) 28 (52.6) 9 (11.0) 22 (54.6)
20 200 65 (67.9) 66 (55.1) 65 (59.4) 12 (15.7) 66 (62.2)

400 97 (77.9) 88 (66.3) 92 (60.2) 10 (15.9) 96 (71.3)

100 115 (113.0) 108 (83.5) 108 (84.1) 13 (14.7) 118 (117.3)
50 200 200 (107.8) 180 (57.2) 180 (58.6) 8 (17.0) 197 (111.4)

400 264 (48.8) 223 (26.9) 225 (21.6) 13 (19.5) 263 (56.5)

100 240 (101.6) 201 (51.7) 201 (55.4) 12 (16.4) 238 (108.8)
100 200 285 (61.2) 226 (27.5) 228 (24.4) 14 (18.8) 281 (61.9)

400 299 (32.3) 235 (15.3) 235 (16.9) 12 (24.1) 301 (32.2)

100 293 (45.3) 229 (25.4) 231 (24.2) 13 (21.5) 297 (37.6)
200 200 312 (8.4) 239 (7.0) 239 (7.9) 16 (20.7) 310 (24.8)

400 312 (13.5) 239 (11.0) 240 (12.9) 16 (20.9) 316 (16.7)

clauses for admissibility seem to slightly improve performance on admissible and com-
plete semantics, allowing for solving 1 and 3 more instances, respectively. Figure 1(right)
shows that instances with more default rules are generally harder to solve under complete
and stable semantics (we omit here admissible due to similar performance to complete
and grounded due to the relative easiness of the task).

5. Conclusions

We developed an algorithmic approach, based on iterative applications of Boolean sat-
isfiability (SAT) solvers, to reasoning in ABA instantiated with propositional default
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Figure 1. Left: credulous reasoning under stable semantics with and without the optional refinement clauses.
Right: credulous reasoning under complete and stable semantics. 1200 instances for each variant.
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logic (DL). We detailed instantiations of the approach for deciding acceptance and for
assumption-set enumeration in the DL-instantiation of ABA under several central argu-
mentation semantics. We also provided an implementation of the approach which to the
best of our understanding is the first system in its generality targeted at the DL instantia-
tion of ABA, and empirically evaluated its potential.
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Abstract. Autonomous agents are supposed to be able to finish tasks or achieve
goals that are assigned by their users through performing a sequence of actions.
Since there might exist multiple plans that an agent can follow and each plan might
promote or demote different values along each action, the agent should be able to
resolve the conflicts between them and evaluate which plan he should follow. In
this paper, we develop a logic-based framework that combines modal logic and
argumentation for value-based practical reasoning with plans. Modal logic is used
as a technique to represent and verify whether a plan with its local properties of
value promotion or demotion can be followed to achieve an agent’s goal. We then
propose an argumentation-based approach that allows an agent to reason about his
plans in the form of supporting or objecting to a plan using the verification results.

Keywords. Value, Practical Reasoning, Modal Logic, Argumentation

1. Introduction

Autonomous agents are supposed to be able to perform value-based ethical reasoning
based on their value systems in order to distinguish moral from immoral behavior. Ex-
isting work on value-based practical reasoning such as [1][2] [3] demonstrates how an
agent can reason about what he should do among alternative action options that are as-
sociated with value promotion or demotion. However, agents are supposed to be able to
finish tasks or achieve goals that are assigned by their users through performing a se-
quence of actions. Since there might exist multiple plans that an agent can follow and
each plan might promote or demote different values along each action, the agent should
be able to resolve the conflicts between them and evaluate which plan he should follow.
If the decision-making problem concerns choosing a plan instead of an action, then we
first need to know how an agent can see whether he can follow a plan to achieve his goal.
Verification approaches that are developed based on modal logic only allow us to ver-
ify whether a goal can be achieved under specific conditions such as norm compliance
assumptions [4][5][6], namely telling us whether a plan works or not, but cannot tell us
what we should do. For sure, we can collect the verification results regarding whether a
plan promotes or demotes a specific set of values and then compare different plans using

1Corresponding Author.

B

Computational Models of Argument
F. Toni et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220157

248



lifting approaches as what has been done in [7]. However, the order lifting problem is a
major challenge in many areas of AI and no approach is ultimately “correct”. Moreover,
the agent in our setting needs to lift the preference over values to the preference over
plans with respect to value promotion and demotion, which even complicates the prob-
lem. Therefore, we need a more natural and intuitive approach. It has been shown that
argumentation provides a useful mechanism to model and resolve conflicts [8], and par-
ticularly can be used for the decision-making of artificial intelligence and provides expla-
nation for that [9][10]. In this paper, we develop a logic-based framework that combines
modal logic and argumentation for value-based practical reasoning with plans. Modal
logic is used as a technique to represent and verify whether a plan with its local proper-
ties of value promotion or demotion can be followed to achieve an agent’s goal. Using
the verification results to construct arguments, we then propose an argumentation-based
approach that allows an agent to reason about his plans in the form of support and objec-
tion without using lifting approaches. We prove several formal properties to characterize
our approach, indicating it is consistent with our rationality of decision-making.

2. Logical Framework

The semantic structure of this paper is a transition system that represents the computa-
tional behavior of a system caused by an agent’s actions in the agent’s subjective view.
It is basically a directed graph where a set of vertexes S corresponds to possible states
of the system, and the relation →⊆ S×Act ×S represents the possible transitions of the
system. When a certain action α ∈ Act is performed, the system might progress from a
state s to a different state s′ in which different propositions hold. Formally,

Definition 1 (Transition Systems). Let Φ = {p,q, ...} be a finite set of atomic proposi-
tional variables, a transition system is a tuple T = (S,Act,→,V) over Φ, where

• S is a finite, non-empty set of states;
• Act is a finite, non-empty set of actions;
• →⊆ S×Act ×S is a transition relation between states with actions, which we refer

to as the transition relation labeled with an action; we require that for all s ∈ S
there exists an action a ∈ Act and a state s′ ∈ S such that (s,a,s′) ∈→; we restrict
actions to be deterministic, that is, if (s,a,s′) ∈→ and (s,a,s′′) ∈→, then s′ = s′′;
since the relation is partially functional, we write s[α] to denote the state s′ for
which it holds that (s,α,s′) ∈→; we also use s[α1, . . . ,αn] to denote the resulting
state for which a sequence of actions α1, . . . ,αn succinctly execute from state s;

• V is a propositional valuation V ∶ S→ 2Φ that assigns each state with a subset of
propositions which are true at state s; thus for each s ∈ S we have V(s) ⊆Φ.

Note that the model is deterministic: the same action performed in the same state
will always result in the same resulting state. A pointed transition system is a pair (T,s)
such that T is a transition system, and s ∈ S is a state from T . Adopted from [11][12], the
language L is propositional logic extended with action modality. Formally, its grammar
is defined below:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ϕ ∣Do(α)ϕ (p ∈Φ,α ∈ Act)
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Figure 1. Transition system T . Figure 2. A Value-based transition system V T .

Given a pointed transition system (T,s), we define the semantics with respect to the
satisfaction relation ⊧ inductively as follows:

• T,s ⊧ p iff p ∈V(s);
• T,s ⊧ ¬ϕ iff T,s /⊧ ϕ;
• T,s ⊧ ϕ ∨ψ iff T,s ⊧ ϕ or T,s ⊧ψ;
• T,s ⊧Do(α)ϕ iff s[α] ⊧ ϕ .

The remaining classical logic connectives are assumed to be defined as abbreviations in
terms of ¬ and ∨ in the conventional manner. Given a pointed transition system (T,s),
we say that a sequence of actions α1 . . .αn brings about a ϕ-state if and only if T,s ⊧
Do(α1) . . .Do(αn)ϕ . As standard, we write T ⊧ϕ if T,s⊧ϕ for all s ∈ S, and ⊧ϕ if T ⊧ϕ
for all T .

A transition system represents how a system progresses by an agent’s actions. Be-
sides, an agent in the system is assumed to have his own goal, which is a formula ex-
pressed in propositional logic Lprop. It is indeed possible for an agent to have multiple
goals and his preference over different goals. For example, a goal hierarchy is defined in
[4] to represent increasingly desired properties that the agent wishes to hold. However,
we find that the setting about whether the agent has a goal or multiple goals is in fact
not essential for our analysis, so we simply assume that the agent only has a goal for
simplifying our presentation.

Example 1. Consider the transition system T in Figure 1, which represents how an
agent can get to a pharmacy to buy medicine for his user. State s0 is the initial state,
representing staying at home, and proposition p, representing arriving at a pharmacy,
holds in state s4. The agent can perform actions α1 to α6 in order to get to state s4. From
this transition system, the following formulas hold:

T,s0 ⊧Do(α1)Do(α6)p,

T,s0 ⊧Do(α2)Do(α3)p,

T,s0 ⊧Do(α2)Do(α4)Do(α5)p,

which means that the agent can first perform action α1 and then action α6, or action
α2 followed by action α4, or action α2 followed by actions α4 and α5, to get to the
pharmacy.

It is important for an agent not only to achieve his goal, but also to think about how
to achieve his goal. As we can see from the running example, there are multiple ways for
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the agent to get to the pharmacy, and the agent needs to evaluate which one is the best
to choose. In this paper, agents are able to perform value-based practical reasoning in
terms of planning their actions to achieve their goals. We first assume that an agent has
a set of values. A value can be seen as an abstract standard according to which agents
have their preferences over options. For instance, if we have a value denoting equality,
we prefer the options where equal sharing or equal rewarding hold. Unlike [7] where a
value is interpreted as a state formula, we simply assume a value as a primitive structure
without considering how it is defined. We assume that agents can always compare any
two values, so we define an agent’s value system as a total pre-order (instead of a strict
total order) over a set of values, representing the degree of importance of something.

Definition 2 (Value System). A value system V = (Val,≾) is a tuple consisting of a finite
set of values Val = {v, ...,v′} together with a total pre-ordering ≾ over Val. When v ≾ v′,
we say that value v′ is at least as important as value v. As is standard, we define v ∼ v′ to
mean v ≾ v′ and v′ ≾ v, and v ≺ v′ to mean v ≾ v′ and v /∼ v′.

We label some of the transitions with the values promoted and demoted by moving
from a starting state to a ending state. Notice that not every transition can be labeled, as
some transitions may not be relevant to any value in an agent’s value system. Formally,
function δ ∶ {+,−}×Val→ 2→ is a valuation function which defines the status (promoted
(+) or demoted (-)) of a value v ∈ Val ascribed to a set of transitions. We then define a
value-based transition system V T as a transition system together with a value system V
and a function δ .

Definition 3 (Value-based Transition Systems). A value-based transition system is de-
fined by a triple V T = (T,V,δ), where T is a transition system, V is a value system and δ
is a valuation function that assigns value promotion or demotion to a set of transitions.

Given a sequence of actions with respect to a value-based transition system, we
then express whether the performance of the sequence in a state promotes or demotes
a specific value, which can be done by extending our language. Given a pointed value-
based transition system (V T,s) and a value v ∈Val, the satisfaction relation V T,s ⊧ψ is
extended with the following new semantics:

• V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ iff s[α1, . . . ,αn] ⊧ ϕ and there exists 1 ≤ m ≤ n
such that (s[α1, . . . ,αm−1],αm,s[α1, . . . ,αm]) ∈ δ(+,v);

• V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ iff s[α1, . . . ,αn] ⊧ ϕ and there exists 1 ≤ m ≤ n
such that (s[α1, . . . ,αm−1],αm,s[α1, . . . ,αm]) ∈ δ(−,v).

The formula V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ (resp. V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ)
should be intuitively read as ϕ is achieved after the performance of a sequence of actions
α1, . . . ,αn in state s and there exists an action that promotes (resp. demotes) value v in
the sequence. Notice that the formula only expresses the local property of a sequence of
actions in terms of value promotion or demotion by an action within the sequence. Thus,
it is possible that an action within the sequence promotes value v but it gets demoted by
another action within the sequence, meaning that both V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ
and V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ hold at the same time. Through checking the above
formulas, the agent is then aware of whether he can perform the sequence of actions to
achieve his goal and which value gets promoted or demoted along the sequence. We con-
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tinue our running example to illustrate how to use our logical language to express and
verify properties of sequences of actions.

Example 2. Suppose the ethical agent has privacy (pv), safety (s f ) and good conditions
(gc) as his values and a value system as pv ≺ gc ≺ s f . As in Figure 2, some of the tran-
sitions have been labeled with value promotion or demotion with respect to the agent’s
values. Taking action α1 in state s0 is interpreted as going through the neighbor’s garden
for taking shortcut, which demotes the value of privacy of the neighbor, conversely tak-
ing action α2 in state s0 is interpreted as stepping on a normal way, which promotes the
value of privacy of the neighbor. Taking action α3 means crossing the road without using
the crosswalk, which demotes the value of safety of the agent, and conversely taking ac-
tion α4 in state s2 promotes the value of safety of the agent. Finally, performing action α5
in state s3 means stepping into water. As the agent is a robot, which should avoid getting
wet, this choice will demote the value of maintaining good conditions of the agent. The
agent can verify whether he can achieve his goal while promoting or demoting a specific
value by performing a sequence of actions. The verification results are listed below:

V T,s0 ⊧−pv Do(α1)Do(α6)p

V T,s0 ⊧+pv Do(α2)Do(α3)p

V T,s0 ⊧−s f Do(α2)Do(α3)p

V T,s0 ⊧+pv Do(α2)Do(α4)Do(α5)p

V T,s0 ⊧+s f Do(α2)Do(α4)Do(α5)p

V T,s0 ⊧−gc Do(α2)Do(α4)Do(α5)p

3. Planning: an Argumentation-based Approach

Given a transition system and an agent’s goal, model checking and verification tech-
niques allow us to verify whether an agent can achieve his goal while promoting or de-
moting a specific value by performing a sequence of actions. Since following different
plans might promote or demote different sets of values, next question is how the agent
decides what to do given the verification results. In this paper, we propose to use argu-
mentation as a technique for an agent’s decision-making. Formal argumentation is a non-
monotonic formalism for representing and reasoning about conflicts based on the con-
struction and the evaluation of interacting arguments [8]. In particular, it has been used in
practical reasoning, which is concerned by reasoning about what agents should do, given
different alternatives and outcomes they bring about [2][10]. We first define the notion of
plans. A plan is defined as a finite sequence of actions that are enabled by our underlying
transition system. Formally,

Definition 4 (Plans). Given a pointed value-based transition system (V T,s) and a for-
mula p ∈ Lprop as an agent’s goal, a plan is defined as a finite sequence of actions over
Act, denoted as λ = (α1,α2, . . . ,αn), such that V T,s ⊧Do(α1)Do(α2) . . .Do(αn)p.

The definition is equivalent to saying that a plan is a sequence of actions, each of
which can be performed succinctly with respect to the pointed value-based transition
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system, to achieve the agent’s goal. The agent has to reason about the available plans
with respect to their goal achievement and value promotion or demotion. In order to do
that, it is intuitive to define an argument as a plan together with its local property of
value promotion or demotion. Based on the verification results, we define two types of
arguments.

Definition 5 (Ordinary Arguments and Blocking Arguments). Given a pointed value-
based transition system (V T,s), a formula p ∈ Lprop as an agent’s goal, a plan
λ = (α1,α2, . . . ,αn) and v ∈ Val, an ordinary argument is a pair ⟨+v,λ ⟩ such that
V T,s ⊧+v Do(α1)Do(α2) . . .Do(αn)p; a blocking argument is a pair ⟨−v,¬λ ⟩ such that
V T,s⊧−v Do(α1)Do(α2) . . .Do(αn)p; we useAo (resp.Ab) to denote the set of ordinary
arguments (resp. blocking arguments), and A=Ao∪Ab to denote the set of two types of
arguments.

Both an ordinary argument and a blocking argument correspond to a verification
result. An ordinary argument ⟨+v,λ ⟩ is interpreted as “the agent should follow plan λ to
achieve his goal because it promotes a value v”, which supports the performance of plan
λ , and a blocking argument ⟨−v,¬λ ⟩ is interpreted as “the agent should not follow plan
λ to achieve his goal because it demotes a value v”, which objects to the performance
of plan λ . Conventionally, we might represent an argument using an alphabet (a,b, . . .) if
we do not care about the internal structure of the argument.

Example 3. From the verification results listed in Example 2, the agent can con-
struct the following arguments: ⟨−pv,¬(α1,α6)⟩, ⟨+pv,(α2,α3)⟩, ⟨−s f ,¬(α2,α3)⟩,
⟨+pv,(α2,α4,α5)⟩, ⟨+s f ,(α2,α4,α5)⟩ and ⟨−gc,¬(α2,α4,α5)⟩.

When we get to choose a plan to follow, there are conflicts between the alternatives
as they cannot be followed all at the same time. The conflicts are interpreted as attacks
between two ordinary arguments supporting different plans and one ordinary argument
and one blocking argument supporting and objecting to the same plan respectively in this
paper.

Definition 6 (Attacks). Given a set of ordinary arguments Ao and a set of blocking
arguments Ab,

• for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ attacks
⟨+vb,λb⟩ iff λa /= λb;

• for any ordinary argument ⟨+va,λa⟩ ∈ Ao and any blocking argument ⟨−vb,¬λb⟩ ∈
Ab,

* ⟨+va,λa⟩ attacks ⟨−vb,¬λb⟩ iff λa = λb;
* ⟨−vb,¬λb⟩ attacks ⟨+va,λa⟩ iff λa = λb.

The set of attacks over A are denoted asR.

It is obvious that our attack relation is mutual. It should be noticed that there is
no attack between two blocking arguments, as a blocking argument only functions as
blocking the conclusion of an ordinary argument but does not make a conclusion by
itself.

The attack relation represents conflicts between plans. However, the notion of attack
may not be sufficient for modeling conflicts between arguments, as an agent has his
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preference over the values that are promoted or demoted by different plans. In structured
argumentation frameworks such as ASPIC+ [13], an argument a can be used as a counter-
argument to another argument b, if a successfully attacks, i.e. defeats, b. Whether an
attack from a to b (on its sub-argument b′) succeeds as a defeat, may depend on the
relative strengths of a and b, i.e. whether a is strictly stronger than, or strictly preferred
over b′. For this paper, recall that an agent has a value system, which was defined as
a total pre-order over a set of values. We can then determine the preference over two
arguments with respect to value promotion and demotion based on the value system. The
notion of defeats combines the notions of attack and preference.

Definition 7 (Defeats). Given a set of ordinary arguments Ao and a set of blocking
arguments Ab, a set of attacksR over A and a value system V ,

• for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ defeats
⟨+vb,λb⟩ iff ⟨+va,λa⟩ attacks ⟨+vb,λb⟩ and va /≺ vb;

• for any ordinary argument ⟨+va,λa⟩ ∈ Ao and any blocking argument ⟨−vb,¬λb⟩ ∈
Ab,

* ⟨+va,λa⟩ defeats ⟨−vb,¬λb⟩ iff ⟨+va,λa⟩ attacks ⟨−vb,¬λb⟩ and va /≺ vb;
* ⟨−vb,¬λb⟩ defeats ⟨+va,λa⟩ iff ⟨−vb,¬λb⟩ attacks ⟨+va,λa⟩ and vb /≺ va.

The set of defeats over A based on an attack relation and a value system are denoted as
D(R,V). We write D for short if it is clear from the context.

In words, given mutual attacks between two arguments, the attack from the argument
with less preferred value to the attack from the argument with a more preferred value
does not succeed as a defeat. One might ask whether it is more convenient to combine
the notions of attack relation and defeat relation. We argue that two notions represent the
relation between two arguments from different perspectives, one for the conflicts between
plans and the other for the preferences over values. Because of that, defining these two
notions separately can make our framework more clear, even though technically it is
possible to combine them. It is obvious to see that our defeat relation can form a two-
length cycle in which two arguments have equivalent or the same values.

Proposition 1. Given two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ and
⟨+vb,λb⟩ form a two-length cycle iff λa /= λb and (va = vb or va ∼ vb). Given an ordi-
nary argument ⟨+va,λa⟩ ∈ Ao and a blocking argument ⟨−vb,¬λb⟩ ∈ Ab, ⟨+va,λa⟩ and
⟨−vb,¬λb⟩ form a two-length cycle iff λa = λb and (va = vb or va ∼ vb).

Proof. Proof follows from Definition 7 directly.

However, we have the result that our defeat relation obeys the property of irreflexiv-
ity and never forms any odd cycle.

Proposition 2. Given a set of arguments A, a defeat relation D on A never forms any
odd cycle.

Proof. According to Definition 7, in order for an argument a to defeat another argument
b, the value va that belongs to amust be not less preferred than vb that belongs to b. Since
an agent’s value system is a total pre-order over a set of values, arguments can only form
a cycle in which any two arguments are mutually defeated with the values involved are
equivalent or the same. So D on A never forms any odd cycle.
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Figure 3. An argumentation framework.

Proposition 3. Given a set of arguments A, a defeat relation D on A is irreflexive.

Proof. It is a special case of Proposition 2 for the number of arguments in the odd cycle
being one.

We are now ready to construct a Dung-style abstract argumentation framework with
ordinary arguments, blocking arguments and the defeat relation on them.

Definition 8 (Plan-based Argumentation Frameworks). Given a pointed value-based
transition system (V T,s) and a formula p ∈ Lprop as an agent’s goal, a plan-based ar-
gumentation framework over (V T,s) and p is a pair PAF = (A,D), where A is a set of
arguments and D is a defeat relation on A.

Example 4. The running example has three ordinary arguments and three blocking ar-
guments, and any two ordinary arguments with different plans are mutually attacked, and
any ordinary argument and blocking argument with the same plan are mutually attacked.
Suppose the agent has a value system as pv ≺ gc ≺ s f , which means that safety is more
important than keeping good condition, and keeping good condition is more important
than privacy. We then can see some of the attacks do not succeed as defeats. For example,
argument ⟨+pv,(α2,α4,α5)⟩ and argument ⟨−gc,¬(α2,α4,α5)⟩ are mutually attacked,
but since pv is less preferred than gc, only the attack from argument ⟨−gc,¬(α2,α4,α5)⟩
to argument ⟨+pv,(α2,α4,α5)⟩ becomes a defeat. For arguments ⟨+pv,(α2,α4,α5)⟩ and
⟨+pv,(α2,α3)⟩, since pv = pv, the mutual attacks between them succeed as mutual de-
feats. For the space limitation, we do not analyze all the defeats, which is depicted in Fig-
ure 3. Interestingly, argument ⟨−pv,¬(α1,α6) does not receive any defeats or defeat any
arguments not because pv is the most preferred value, but because there is no ordinary
argument with plan (α1,α6).

Given a plan-based argumentation framework PAF , status of arguments is evalu-
ated, producing sets of arguments that are acceptable together, which are based on the
notions of conflict-freeness, acceptability and admissibility. The well-known argumen-
tation semantics are listed as follows, each of which provides a pre-defined criterion for
determining the acceptability of arguments in a PAF [8].
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Definition 9 (Conflict-freeness, Acceptability, Admissibility and Extensions). Given
PAF = (A,D) and E ⊆A,

• A set E of arguments is conflict-free iff there does not exist a,b ∈ E such that
(a,b) ∈ D.

• An argument a ∈A is acceptable w.r.t. a set E (a is defended by E), iff ∀(b,a) ∈D,
∃c ∈ E such that (c,b) ∈ D.

• A conflict-free set of arguments E is admissible iff each argument in E is accept-
able w.r.t. E.

• E is a complete extension of PAF iff E is admissible and each argument in A that
is acceptable w.r.t. E is in E.

• E is the grounded extension of PAF iff E is the minimal (w.r.t. set inclusion) com-
plete extension.

• E is the preferred extension of PAF iff E is a maximal (w.r.t. set inclusion) com-
plete extension.

• E is a stable extension of PAF iff E is conflict-free and ∀b ∈A/E, ∃a ∈E such that
(a,b) ∈ D.

We use sem ∈ {cmp, pr f ,grd,stb} to denote the complete, preferred, grounded and
stable semantics, respectively, and Esem(PAF) to denote the set of extensions of PAF
under a semantics in sem. The following propositions characterize our argumentation
framework in terms of Dung’s semantics.

Proposition 4. Given PAF = (A,D), Epr f (PAF) = Estb(PAF).

Proof. Since our defeat relation D never forms an odd cycle by Proposition 2, which
means that PAF is limited controversial, each preferred extension of PAF is stable. De-
tailed proof can be found in [8].

Proposition 5. Given PAF = (A,D), if there exists an ordinary argument ⟨+va,λa⟩ such
that for all ⟨+vb,λb⟩ ∈ Ao and ⟨−vb,¬λb⟩ ∈ Ab it is the case that vb ≾ va and ⟨+va,λa⟩ is
not in any cycle, then Epr f (PAF) = Egrd(PAF).

Proof. Because vb ≾ va and ⟨+va,λa⟩ is not in any cycle, argument ⟨+va,λa⟩ does not re-
ceive any defeats. So the grounded extension is not an empty set. Suppose Epr f (PAF) /=
Egrd(PAF), which means that there are more than one preferred extensions. Since
⟨+va,λa⟩ is contained in the grounded extension, it should also be contained in each pre-
ferred extension. However, each preferred extension indicates a distinct plan, which will
be later proved by Proposition 6 and its implication. Contradiction!

The justification of optimal plans is then defined under various semantics in Defi-
nition 9. Similarly to [14], we write concl(⟨+v,λ ⟩) for the conclusion λ of an ordinary
argument, and Oplans(PAF,sem) for the set of conclusions of ordinary arguments from
the extensions under a specific semantics.

Definition 10 (Optimal Plans). Given PAF = (A,D), a set of optimal plans, written as
Oplans(PAF,sem), are the conclusions of the ordinary arguments within extensions.

Oplans(PAF,sem) = {concl(⟨+v,λ ⟩) ∣ ⟨+v,λ ⟩ ∈ E and E ∈ Esem(PAF)}
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We show that the results of our approach are consistent with the rationality of
decision-making through the following propositions. Firstly, all the accepted arguments
within an extension indicate the same plan.

Proposition 6. Given a plan-based argumentation framework PAF = (A,D) and an
extension E of PAF under a specific semantics as defined in Definition 9,

1. for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈E, it is the case that λa =λb;
2. for any ordinary argument ⟨+va,λa⟩ ∈ E and any blocking argument ⟨−vb,¬λb⟩ ∈

E, λa /= λb.

Proof. For any extension E under a specific semantics, it is required that all the argu-
ments in E should be conflict-free. 1. By Definition 7, we can derive two cases: either
there is no attack between these two arguments, or one argument attacks the other but
does not succeed as a defeat due to the preference between two values from the argu-
ments. For the former case, two arguments contain the same plan. For the latter case,
since any attack between two arguments is mutual, if an attack from argument ⟨+va,λa⟩
to argument ⟨+vb,λb⟩ fails to be a defeat due to the preference between two values from
the arguments, the attack from argument ⟨+vb,λb⟩ to argument ⟨+va,λa⟩ will succeed
to be a defeat. That means that the second case is impossible and only the first case
holds. Hence, the two arguments have the same plan. 2. We can prove in a similar way
that for any ordinary argument ⟨+va,λa⟩ ∈ E and any blocking argument ⟨−vb,¬λb⟩ ∈ E,
λa /= λb,

From that we can see, if there are multiple preferred extensions, then each of them
indicates a distinct plan. Secondly, our argumentation-based approach always selects the
plan through which the most preferred value gets promoted and does not select the plan
through which the most preferred value gets demoted.

Proposition 7. Given a plan-based argumentation framework PAF = (A,D), let va ∈Val
be a value such that for all ⟨+vb,λb⟩ ∈ Ao and ⟨−vb,¬λb⟩ ∈ Ab it is the case that vb ≾ va,
then an argument with value va is in a preferred extension. Typically, if it is not in a cycle,
then it is in the grounded extension.

Proof. Because vb ≾ va, according to Definition 7, an argument with va only gets defeated
by an argument with va ∼ vb or va = vb. In such a case, the defeats are mutual so ⟨+va,λa⟩
is self-defended. Thus, it is contained in a preferred extension. If it is not in a cycle,
which means that it is not self-defended, then it is in the grounded extension.

Because of the above two propositions, the agent can conclude to follow an opti-
mal plan to achieve his goal. Besides, the notion of optimal plans is defined as the set
of conclusions of ordinary arguments from the extensions, so the set of optimal plans
becomes empty if an extension does not contain any ordinary arguments. The following
proposition indicates the conditions for which the set of optimal plans is not empty.

Proposition 8. Given a PAF = (A,D),Oplans(PAF,sem) /=∅ iff there exists an ordinary
argument ⟨+va,λa⟩ such that it is not defeated by a blocking argument ⟨−vb,¬λb⟩ with
va ≺ vb.
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Proof. Having Oplans(PAF,sem) /= ∅ means that there is at least one extension which
contains at least one ordinary argument. ⇒: Suppose there does not exists an ordinary
argument ⟨+va,λa⟩ such that it is not defeated by a blocking argument ⟨−vb,¬λb⟩ with
va ≺ vb, which means that all the ordinary arguments (if exist) are defeated by a blocking
argument and not self-defended against a blocking argument. In such a case, there exists
a blocking argument that does not receive any defeats, which makes all the ordinary
arguments rejected. Contradiction!⇐: If there exists an ordinary argument such that it is
not defeated by a blocking argument or self-defended against a blocking argument, then
(1) the ordinary argument does not receive any defeats and thus it should be contained
in the grounded extension, or (2) the ordinary argument is in a cycle with a blocking
argument and thus it should be contained in a preferred extension, or (3) the ordinary
argument receives defeats from other ordinary arguments and thus there is always an
ordinary argument accepted. Hence, Oplans(PAF,sem) is not an empty set.

Example 5. The plan-based argumentation framework PAF can be represented as Fig-
ure. 3. Because

Epr f (PAF) =Egrd(PAF) = Estb(PAF) =

{{⟨+pv,(α2,α4,α5)⟩,⟨+s f ,(α2,α4,α5)⟩,

⟨−pv,¬(α1,α6)⟩,⟨−s f ,¬(α2,α3)⟩}}

and thus Oplans(PAF,sem) = {(α2,α4,α5)}, the agent can follow plan (α2,α4,α5) to
get to a pharmacy.

4. Related Work

Our approach is closely related to the value-based argumentation framework (VAF)
[2][1]. The differences are as follows: firstly, their framework allows us to reason about
what we should do given all the available actions, while our framework allows us to rea-
son about what we should do given all the available plans each of which is a sequence of
actions; secondly, in their framework informal arguments are constructed through asking
critical questions associated with an argument scheme and a transition system, while in
our framework agents construct formal arguments through checking formulas with re-
spect to the underlying transition system; thirdly, the aim of VAF (having an audience as
an element) is to explain different agents’ choices based on their social values, while the
aim of our paper is to design an approach for agents’ planning. Existing work combines
modal logic and argumentation in different ways. Proietti and Yuste-Ginel combines both
techniques to reason about the knowledge of arguments in a debate and its dynamics
[15], and Bulling etc. combine both techniques to reason about the abilities of coalitions
of agents and the formation of coalitions [16]. Both use modal logic as meta-language to
argumentation, while we use argumentation as meta-language to modal logic.

5. Conclusions

In this paper, we developed a logic-based framework that combines modal logic and ar-
gumentation for value-based practical reasoning. Modal logic is used as a technique to
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represent and verify whether a plan with its local properties of value promotion or demo-
tion can be followed to achieve an agent’s goal. Seeing a verification result as an argu-
ment and defining a defeat relation based on an attack relation and preference over values,
we then proposed an argumentation-based approach that allows an agent to reason about
his plans using the verification results. Thus, our framework not only offers an approach
for value-based practical reasoning with plans, but also makes a bridge between modal
logic and argumentation in terms of argument construction. In the future, we would like
to extend our framework by allowing an agent to have multiple goals instead of one
goal as we assumed, or taking the actions of other agents into account in the context
of multi-agent systems. More interestingly, we can study how autonomous agents are
properly aligned with human values through adding constraints to the decision-making
mechanism presented in this paper.
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[4] Ågotnes T, van der Hoek W, Wooldridge M. Normative system games. In: Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems; 2007. p. 1-8.

[5] Knobbout M, Dastani M. Reasoning under compliance assumptions in normative multiagent systems.
In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1. International Foundation for Autonomous Agents and Multiagent Systems; 2012. p. 331-40.

[6] Alechina N, Dastani M, Logan B. Reasoning about Normative Update. In: Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence. IJCAI ’13. AAAI Press; 2013. p. 20–26.

[7] Luo J, Meyer JJ, Knobbout M. A formal framework for reasoning about opportunistic propensity in
multi-agent systems. Autonomous Agents and Multi-Agent Systems. 2019;33(4):457-79.

[8] Dung PM. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelligence. 1995;77(2):321-57.

[9] Prakken H. Combining sceptical epistemic reasoning with credulous practical reasoning. COMMA.
2006;144:311-22.

[10] Amgoud L, Prade H. Formalizing practical reasoning under uncertainty: An argumentation-based ap-
proach. In: 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’07).
IEEE; 2007. p. 189-95.

[11] Knobbout M, Dastani M, Meyer JJ. A dynamic logic of norm change. In: Proceedings of the Twenty-
second European Conference on Artificial Intelligence; 2016. p. 886-94.

[12] Knobbout M, Dastani M, Meyer JJC. Reasoning about dynamic normative systems. In: European
Workshop on Logics in Artificial Intelligence. Springer; 2014. p. 628-36.

[13] Modgil S, Prakken H. A general account of argumentation with preferences. Artificial Intelligence.
2013;195:361-97.

[14] Liao B, Oren N, van der Torre L, Villata S. Prioritized norms in formal argumentation. Journal of Logic
and Computation. 2019;29(2):215-40.

[15] Proietti C, Yuste-Ginel A. Dynamic epistemic logics for abstract argumentation. Synthese.
2021;199(3):8641-700.

[16] Bulling N, Dix J, Chesnevar CI. Modelling coalitions: ATL+ argumentation. In: AAMAS (2); 2008. p.
681-8.

J. Luo et al. / Value-Based Practical Reasoning: Modal Logic + Argumentation 259



On the Complexity of Determining Defeat
Relations Consistent with Abstract

Argumentation Semantics

Jack MUMFORD a,b, Isabel SASSOON c, Elizabeth BLACK b and Simon PARSONS d
aDepartment of Computer Science, University of Liverpool, UK

bDepartment of Informatics, King’s College London, UK
cDepartment of Computer Science, Brunel University London, UK

dSchool of Computer Science, University of Lincoln, UK

Abstract. Typically in abstract argumentation, one starts with arguments and a
defeat relation, and applies some semantics in order to determine the acceptabil-
ity status of the arguments. We consider the converse case where we have knowl-
edge of the acceptability status of arguments and want to identify a defeat rela-
tion that is consistent with the known acceptability data – the σ -consistency prob-
lem. Focusing on complete semantics as underpinning the majority of the major
semantic types, we show that the complexity of determining a defeat relation that
is consistent with some set of acceptability data is highly dependent on how the
data is labelled. The extension-based 2-valued σ -consistency problem for com-
plete semantics is revealed as NP-complete, whereas the labelling-based 3-valued
σ -consistency problem is solvable within polynomial time. We then present an in-
formal discussion on application to grounded, stable, and preferred semantics.

Keywords. Abstract argumentation, Complexity analysis, σ -consistency

1. Introduction

The typical argumentation problem takes arguments, a defeat relation, and a labelling
semantics as input and produces argument acceptability labellings as output. We instead
examine a converse argumentation problem, which takes arguments, labelling semantics,
and argument labellings as input and produces a defeat relation as output.

Argumentation is firmly established as a subject of importance for researchers in-
terested in symbolic representations of knowledge and defeasible reasoning [5]. Argu-
mentation frameworks (AFs) [10] offer a graph-based approach that determines logically
consistent positions through the interaction of arguments solely through a defeat relation.
Determining the presence, or absence, of defeats between arguments is fundamental to
the construction of any AF and is the problem that concerns this paper. Given a set of
arguments, and data on which arguments are acceptable, we examine the complexity of
establishing a set of defeats that is consistent with the data.

In certain contexts a defeat relation between arguments can be reliably and effi-
ciently inferred from the structure and content of the arguments themselves. However, if
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the structure and/or the content of the arguments cannot be relied upon, then we become
more dependent upon the remaining two components of an AF: the labelling semantics,
and the argument labellings. For example, enthymemes – arguments with missing struc-
ture – pose problems for inferring a defeat relation. Suppose if some argument a defeats
some argument b via an undermining attack on an unstated implicit premise of b, then
how is one to recognise the defeat exists? Perhaps knowledge of the contextual content
of the arguments fills in the gap of the missing premise, but perhaps not. However, if we
possess an argument labelling where a is accepted and b is rejected, then the defeat may
be inferred from this information alone.

In this paper we shall examine the σ -consistency problem, whereby we seek a so-
lution defeat relation that is wholly consistent with input acceptability data for a given
semantics. It is not assumed that the input data are exhaustive; other labellings that are
not present in the data set may also be consistent with the solution defeat relation. More-
over, the problem is general in that it accepts partial labellings where not every argument
in the overall argument set need be represented in a given labelling. That is, an arbitrary
labelling in the data set may pertain to a subgraph of arguments S where S ⊂ A, or it may
pertain to all of A.

Example 1. Legal domains are commonly modelled using stereotypical patterns of facts
known as factors, following the CATO approach for legal case-based reasoning [1]. A
case is decided by weighing up the balance of the factors from case precedents. This pro-
cess could be modelled by the creation of a representative AF model in accordance with
the σ -consistency problem. For example, in CATO’s domain, US Trade Secret’s Law, the
two factors related to the issue of confidentiality were F1 (DisclosureInNegotiations) and
F21 (KnewInfoConfidential). There is nothing explicit within the structure or content of
the factors that definitively reveals how the factors are appropriately balanced. However,
now suppose that we have a case history such that whenever F1 and F21 are argued (in-
deed F1 and/or F21 may not be argued in a case, but recall that the σ -consistency prob-
lem accepts partial labellings), we find F1 is rejected (labelled OUT) and F21 is accepted
(labelled IN), we have a way of establishing a defeat relation where (F21,F1) ∈ R, that
would be consistent with the precedents, thus presenting a method of balancing the fac-
tors. Conversely, if we then were presented with a new case in which both factors were
accepted (labelled IN) then no defeat relation exists that would be consistent with the
amended case history. But even a failure to produce a solution serves a purpose; indi-
cating that the existing factor-based model of the domain may be insufficient and require
broadening or narrowing. Note that in the actual CATO analysis such a converse case
never arose and (F21,F1) ∈ R was the appropriate conclusion.

Whilst many semantics are available for investigation, our primary attention is
placed on complete semantics due to the superset relation it forms with respect to the tra-
ditional major semantics as well as the intuition of it representing the range of reasonable
positions that are deterministic consequences of the defeat relation (which admissibil-
ity semantics does not guarantee). We will show that the complexity of a σ -consistency
problem with complete semantics (note from this point onward we shall refer to a ‘σ -
consistency with complete semantics’ simply as a ‘σ -consistency problem’) depends sig-
nificantly on the type of input acceptability data, where the extension-based 2-valued
problem (arguments labelled IN or NOTIN) is NP-complete and the 3-valued problem
(arguments labelled IN, UNDEC or OUT) can be solved within polynomial, specifically
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multi-variate quadratic, time complexity (although both are solvable within quadratic
space complexity). We believe this paper offers the following contributions:

• Introduces and defines the σ -consistency problem, which asks if a solution defeat re-
lation exists that is consistent with a set of argument acceptability labellings.

• Proves that the 2-valued σ -consistency problem is NP-complete and show its space
complexity to be within O(n2), where n is the number of arguments.

• Proves the 3-valued σ -consistency problem is solvable by algorithms with a time com-
plexity within O(n2|T |), where |T | is the number of labellings in the input, and space
complexity within O(n2).

• Provides informal complexity results for stable, preferred, and grounded semantics.
• Provides insight into the scaleability of algorithms designed to determine a defeat re-
lation from argument acceptability data, suggesting a preference for sourcing 3-valued
data to reduce the risk of solving high complexity problems.

2. Background

We draw upon the concept of argumentation underpinned by Dung’s seminal paper [10]
and the reinstatement principles advocated by Caminada [6] in developing our complex-
ity proofs for the 2-valued and 3-valued σ -consistency problems.

An argumentation framework is a pair AF = 〈A,R〉 where A is a set of arguments,
and R is a binary relation on A, i.e. R ⊆ A×A. We apply the notation for defeat from
[6]: Let a,b ∈ A, we define a+ as {b|a defeats b} and a− as {b|b defeats a}. A set S of
arguments is said to be conflict-free if there are no arguments a and b in S such that
a ∈ b−. A set of arguments S defeats an argument a iff ∃b ∈ S : b ∈ a−. An argument
a ∈ A is acceptable with respect to a set S iff for each argument b ∈ A : if b ∈ a− then
∃c ∈ S : b ∈ c+. A conflict-free set of arguments S is admissible iff each argument in S is
acceptable with respect to S. An admissible set S of arguments is a complete extension iff
each argument that is acceptable with respect to S belongs to S. In a 2-valued complete
labelling, all arguments in S are labelled IN, and all arguments in A\S are labelled NOTIN.

Def. 1 prescribes the implementation of the reinstatement labelling process to pro-
duce a 3-valued complete labelling, which coincides with complete extension semantics
[7]. The formulation has been adopted from [24] with some notation changed in order to
maintain consistency throughout this paper.

Definition 1. (3-valued complete labelling) Let L :A→{IN,UNDEC,OUT} be a labelling
of argumentation framework (A,R). We say that L is a complete labelling iff for each
argument b ∈ A it holds that:

1. (L(b) = IN)≡ (∀a ∈ A : (a ∈ b−)⇒ (L(a) = OUT));
2. (L(b) = OUT)≡ (∃a ∈ A : (a ∈ b−)∧ (L(a) = IN)); and
3. (L(b) = UNDEC) ≡ ((∃a ∈ A : (a ∈ b−)∧ (L(a) = UNDEC))∧ (∀c ∈ A : (c ∈ b−)⇒

(L(c) = IN)).

A signature Σσ ((A,R)) of a semantics σ , is the collection of all possible sets of
labellings from all subgraphs of AF = 〈A,R〉 under semantics σ [11]. We use the con-
cept of a signature for both the 2-valued and 3-valued σ -consistency problems, since
any solution defeat relation R would require all input acceptability labellings to be in
Σσ ((A,R)).
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Definition 2. (Signatures of argumentation semantics, adapted – with notation changes –
from Dunne et al. [11]) Let σ((S,R)) be the set of possible labellings given arguments S,
defeat relation R, and argumentation semantics σ . We can express the set of all possible
labellings over a set of input AFs as Σσ ((A,R)) such that:

Σσ ((A,R)) = {σ((S,R))|(S,R) is an AF and S ⊆ A}

3. Complexity of 2-valued σ -consistency

In order to formalise the 2-valued σ -consistency problem we must adapt the properties
governing complete extension semantics, rendering explicit the 2-valued labelling form
that the semantics prescribes: for each extension, an argument is labelled IN iff it is
within the extension, and NOTIN iff it is outside the extension. Def. 3 concisely presents
complete extension semantics according to the 2-valued labelling form. We then further
adapt this form to produce our complexity results. We add the OFF label to represent
those arguments that are unlabelled in a particular reinstatement labelling. The OFF label
is essential for when we formalise the 2-valued σ -consistency problem, since it allows
us to include partial labellings representing subgraphs of the wider AF.

Definition 3. (2-valued complete labelling) Let A be a set of arguments; let
L :A→{IN,NOTIN,OFF} be a labelling; let R⊆A×A be a defeat relation. L∈σ((S,R)),
where S = A\X, and where X is the set of arguments labelled OFF, iff each of the follow-
ing conditions hold ∀b ∈ S:

1. L(b) = IN ⇐⇒ ∀a ∈ S : ((L(a) = IN =⇒ (a,b) /∈ R)∧ (L(a) = NOTIN =⇒ (a,b) /∈
R∨∃c ∈ S : (L(c) = IN∧ (c,a) ∈ R))); and

2. L(b) = NOTIN ⇐⇒ ∃a ∈ S : ((L(a) = IN∧ (a,b) ∈ R)∨ (L(a) = NOTIN∧ (a,b) ∈
R∧∀c ∈ S : (L(c) = IN =⇒ (c,a) /∈ R))).

Def. 4 formally presents the 2-valued σ -consistency problem of finding a solu-
tion defeat relation set consistent with 2-valued input argument acceptability data. From
this definition we produce the principle complexity result in Theorem 2, that the σ -
consistency problem is NP-complete.

Definition 4. (2-valued σ -consistency problem)Given a set of arguments A, a semantics
σ , and a set of labellings T such that for each L ∈ T , L : A→{IN,NOTIN,OFF}, is there a
defeat relation R ⊆ A×A consistent with T such that ∀L : (L ∈ σ((S,R)) ∈ Σσ ((A,R))),
where S = A\X, and where X is the set of arguments labelled OFF?

It should be obvious that in general one should not assume there exists just one
solution defeat relation for an arbitrary 2-valued σ -consistency problem (e.g. an input
labelling of two arguments where one argument is labelled IN, and the other NOTIN
has more than one defeat relation that could produce this labelling). Before we move
on to the full complexity proof, we make the intermediate observation in Theorem 1
of the symmetry of defeat inconsistency – that for complete semantics if some defeat
(a,b) ∈ R is inconsistent with some labelling then (b,a) would also be inconsistent with
the labelling.
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Theorem 1. (Bidirectional defeat inconsistency for 2-valued labellings) Assuming
complete argumentation semantics, for any set of labellings T : ∀L ∈ T , L : A →
{IN,NOTIN,OFF}, we have ∃a,b∈A : ((a,b)∈R =⇒ L /∈σ((S,R)) ⇐⇒ (b,a)∈R =⇒
L /∈ σ((S,R))), where S = A\X, and X is the set of arguments labelled OFF.

Proof. Suppose we have σ as complete semantics, a and b are arbitrary arguments in A,
and S = A\X , and where X is the set of arguments labelled OFF.
(Forward implication) Suppose (a,b) ∈ R =⇒ L /∈ σ((S,R)). From Def. 3 we draw
expressions of the form L(a)∧L(b) =⇒ (a,b) /∈ R. We have three cases:
Case 1. ∀a,b ∈ S : (L(b) = IN∧L(a) = IN =⇒ (a,b) /∈ R). Suppose (b,a) ∈ R, then by
the first condition of Def. 3 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Case 2. ∀a,b ∈ S : ((L(b) = IN∧L(a) = NOTIN =⇒ (a,b) /∈ R) =⇒ �c ∈ S : (L(c) =
IN∧(c,a)∈R)). Suppose (b,a)∈R, then ∃c∈ S : (L(c) = IN∧(c,a)∈R). Contradiction!
Case 3. ∀a,b ∈ S : ((L(b) = NOTIN∧L(a) = IN =⇒ (a,b) /∈ R) =⇒ ∃c ∈ S : (L(c) =
NOTIN ∧ (b,c))∧ ∀d ∈ (S \ b) : (∀e ∈ S : (L(e) = IN =⇒ (e,d) /∈ R)∧ (d,c) /∈ R)).
Suppose (b,a)∈ R, then by the first condition of Def. 3 ∃ f ∈ S : (L( f ) = IN∧( f ,b)∈ R).
Contradiction!
Therefore if (a,b) ∈ R =⇒ L /∈ σ((S,R)) then (b,a) ∈ R =⇒ L /∈ σ((S,R)).
(Backward implication) Since a and b are arbitrary, the backward implication immedi-
ately follows from the permutation a ↔ b in the forward implication.
Therefore if (b,a) ∈ R =⇒ L /∈ σ((S,R)) then (a,b) ∈ R =⇒ L /∈ σ((S,R)).

We shall see later in the paper that the symmetry of inconsistency also holds for
the 3-valued σ -consistency problem. Hence the symmetry of defeat inconsistency with
acceptability data underpins any σ -consistency problem based on complete semantics.
It is essential to understand that Theorem 1 applies to asymmetric as well as symmetric
frameworks, but simply outlines that if an arbitrary defeat (a,b) is incompatible with a
labelling set, then (b,a) will also be incompatible.

Theorem 2. (2-valued σ -consistency problem as NP-complete) The 2-valued σ -
consistency problem as defined in Def. 4 is NP-complete.

Proof. Suppose there is a set of arguments A, labellings T , and complete semantics σ .
It is easy to show that the 2-valued σ -consistency problem is in NP. Given a solution
defeat relation R, from [8], the verification problem of confirming a given labelling L
is consistent with R and σ , is solvable in polynomial-time. Since T is a fixed set of
labellings, then the verification problem of confirming each labelling L ∈ T is consistent
with R and σ , is clearly also solvable within polynomial-time. Therefore the 2-valued
σ -consistency problem is within NP.
We must show that the NP-complete Monotone 3SAT problem [14] can be reduced by
function r to the 2-valued σ -consistency problem in polynomial-time. An arbitrary in-
stance of a Monotone 3SAT problem consists of a set of clausesC, where we require that
C is satisfied if and only if ∀L j ∈ r(C) : (L j ∈ σ((S,R))), where S = A\X , and where X
is the set of arguments labelled OFF.
Suppose an arbitrary Monotone 3SAT problem and some arguments ω,β ∈ A, where
ω = β . Suppose an arbitrary clause ci ∈ C, then a j ∈ ci ⇐⇒ (a j,ω) ∈ R and ¬a j ∈
ci ⇐⇒ (a j,ω) /∈ R, where a j is arbitrary. There exist two cases for an arbitrary clause
ci in an Monotone 3SAT problem; suppose we have r such that:
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Case 1. ci = (ai∨bi∨ci) and r(ci) = (S,L1i,L2i) where S = {ai,bi,ci,ω}, L1i = {L(ai) =
NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = NOTIN}, and L2i = {L(ω) = IN}, and
ai,bi,ci are arbitrary.
Case 2. ci = (¬ai ∨¬bi ∨¬ci) and r(ci) = (S,L3i,L4i), where S = {ai,bi,ci,ω,β} L3i =
{L(ai) = NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = IN,L(β ) = NOTIN}, and L4i =
{L(ω) = IN,L(β ) = IN}, and ai,bi,ci are arbitrary.
We show the forward and backward implications hold for the two possible cases for arbi-
trary ci via equivalence. In the reduction we use the shorthand (a,b) to indicate (a,b)∈R,
and ¬(a,b) to indicate (a,b) /∈ R.
(Case 1) Suppose arbitrary clause ck = (ai ∨ bi ∨ ci), from Def. 3 we have r(ck) =⇒∧

y∈S
(
∨

x∈S
(x,y))∧¬(ω,ω). Since ai,bi and ci are always labelled NOTIN in every labelling

L j ∈ r(C), they are all free to defeat themselves and one another. Hence we are left to
satisfy r(ck) =⇒ (ai,ω)∨ (bi,ω)∨ (ci,ω)≡ ck.
(Case 2) Suppose arbitrary clause cm = (¬ai∨¬bi∨¬ci), from Def. 3 we have r(cm) =⇒∧

y∈S\ω
((ω ,y)∨ ∨

x∈S\ω
((x,y)∧¬(ω,x)))∧¬(ω,ω)∧ ∧

z∈S\ω
((z,ω) =⇒ (ω,z))∧¬(ω,ω)∧

¬(ω,β )∧¬(β ,ω)∧¬(β ,β ). As outlined in the previous case, ai,bi and ci are free to
defeat themselves and one another, and this is also extended to β . Hence we are left to
satisfy r(cm) =⇒ ∨

x∈{ai,bi,ci}
(¬(ω,x))∧ ∧

y∈{ai,bi,ci}
((y,ω) =⇒ (ω,y)), which by modus

tollens further reduces to r(cm) =⇒ ¬(ai,ω)∨¬(bi,ω)∨¬(ci,ω)≡ cm.
It is clear that the reduction produces a permutation where ((ai,ω) ∈ R) ≡ (ai = �),
((ai,ω) /∈ R) ≡ (¬ai = �), ((bi,ω) ∈ R) ≡ (bi = �), ((bi,ω) /∈ R) ≡ (¬bi = �),
((ci,ω)∈ R)≡ (ci =�) and ((ci,ω) /∈ R)≡ (¬ci =�). Therefore for both cases of arbi-
trary clause ci ∈C, the reduction simply produces a permutation of the monotone 3SAT
problem and consequentlyC is satisfied if and only if ∀L j ∈ r(C) : (L j ∈ σ((S,R))).
It is clear that r : ci �→ {S,T}, where S ⊆ {ai,bi,ci,ω,β} and T ⊆ {L1i,L2i,L3i,L4i}, re-
quires constant number of operations to produce the elements in S and T for any arbitrary
clause ci ∈ C. Therefore for k clauses the reduction requires O(k) operations, which is
within polynomial-time.
Therefore the 2-valued σ -consistency problem is NP-complete.

Deriving the space complexity result is a much simpler affair. For an arbitrary 2-
valued σ -consistency problem a systematic search through a sorted argument power set
would only need to store the current node in order to know which node to examine next.
In which case, each node in the search would be of length n2. Hence O(n2) is an upper
bound for the space complexity for solving any 2-valued σ -consistency problem.

4. Complexity of 3-valued labellings

In order to formalise the 3-valued σ -consistency problem, we first directly translate the
argument-set-based form of Def. 1 to accommodate partial data sets, adding the OFF
label to represent those arguments in the wider data set that are unlabelled in a particular
reinstatement labelling. The OFF label is essential since it allows a defeat relation R to
be learned that is consistent with partial labellings. Def. 5 combines the reinstatement
approach adopted in [6] alongside the concept of a signature Σσ ((A,R)) from Def. 2.
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Definition 5. (3-valued form) Let A be a set of arguments; let
L : A → {IN,UNDEC,OUT,OFF} be a labelling; let R ⊆ A×A be a defeat relation. L ∈
σ((S,R)), where S = A\X, and where X is the set of arguments labelled OFF, iff each of
the following conditions hold ∀b ∈ S:

1. L(b) = IN ⇐⇒ ∀a ∈ S : (L(a) = OUT =⇒ (a,b) /∈ R);
2. L(b) = UNDEC ⇐⇒ ∀a ∈ S : (L(a) = IN =⇒ (a,b) /∈ R)∧∃c ∈ A : (L(c) = UNDEC∧

(c,b) ∈ R); and
3. L(b) = OUT ⇐⇒ ∃a ∈ S : (L(a) = IN∧ (a,b) ∈ R).

Def. 6 formally presents the 3-valued σ -consistency problem of finding a solution
defeat relation set consistent with input 3-valued argument acceptability data.

Definition 6. (3-valued σ -consistency problem)Given a set of arguments A, a semantics
σ , and a set of labellings T such that for each L ∈ T , L : A → {IN,UNDEC,OUT,OFF},
is there a defeat relation R ⊆ A×A consistent with T such that ∀L : (L ∈ σ((S,R)) ∈
Σσ ((S,R))), where S = A\X, and where X is the set of arguments labelled OFF?

We again note that no assumption of a single solution defeat relation can be made
in general (e.g. a labelling with two arguments labelled IN and one argument labelled
OUT could be satisfied by multiple distinct defeat relations) and we gain insight into
the complexity of the 3-valued problem by first observing the symmetry of inconsistent
defeats in Theorem 3. It is important to note that, as was the case when we considered the
ramifications of Theorem 1, Theorem 3 is not limited to symmetric AFs but also applies
to asymmetric AFs. Theorem 3 outlines that for complete semantics if an arbitrary defeat
(a,b) ∈ R is incompatible with a labelling set, then (b,a) ∈ R will also be incompatible.

Theorem 3. (Bidirectional defeat inconsistency for 3-valued labellings) Assuming
complete argumentation semantics, for any set of labellings T : ∀L ∈ T , L : A →
{IN,OUT,UNDEC,OFF}, we have ∃a,b ∈ A : ((a,b)∈ R =⇒ L /∈ σ((S,R)) ⇐⇒ (b,a)∈
R =⇒ L /∈ σ((S,R))), where S = A\X, and X is the set of arguments labelled OFF.

Proof. Suppose we have σ as complete semantics, a and b are arbitrary arguments in A,
and S = A\X , and where X is the set of arguments labelled OFF.
(Forward implication) Suppose (a,b) ∈ R =⇒ L /∈ σ((S,R)). From Def. 5 we draw
expressions of the form L(a)∧L(b) =⇒ (a,b) /∈ R. We have three cases:
Case 1. L(b) = IN ∧ L(a) = IN =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the first
condition of Def. 5 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Case 2. L(b) = IN ∧ L(a) = UNDEC =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the
second condition of Def. 5 L(a) = UNDEC =⇒ (b,a) /∈ R. Contradiction!
Case 3. L(b) = UNDEC∧L(a) = IN =⇒ (a,b) /∈ R. Suppose (b,a) ∈ R, then by the first
condition of Def. 5 L(a) = IN =⇒ (b,a) /∈ R. Contradiction!
Therefore if (a,b) ∈ R =⇒ L /∈ σ((S,R)) then (b,a) ∈ R =⇒ L /∈ σ((S,R)).
(Backward implication) Since a and b are arbitrary, the backward implication immedi-
ately follows from the permutation a ↔ b in the forward implication.
Therefore if (b,a) ∈ R =⇒ L /∈ σ((S,R)) then (a,b) ∈ R =⇒ L /∈ σ((S,R)).

We use Algorithm 1 to indicate an upper bound for complexity in solving the 3-
valued σ -consistency problem. The algorithm begins with a full initial defeat relation
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such that all arguments defeat all other arguments and then prunes the defeats that are
incompatible with the acceptability data. The algorithm involves two passes through the
data: one to remove defeats inconsistent with the labellings, and a second to check the
resulting defeat relation R is consistent with the labellings.

Algorithm 1 A pruning algorithm that returns a defeat relation R that is consistent with
a set of labellings T and argument set A or indicates that no such R is possible.

1: procedure DEFEAT PRUNING(A,T )
2: R ←{(a,b),∀a,b ∈ A}
3: for ∀L ∈ T do

4: for ∀a,b ∈ A do

5: if (L(b) = IN∧L(a) ∈ {IN,UNDEC}) ∨
(L(b) = UNDEC∧L(a) = IN) then

6: R ← R\ (a,b)
7: for ∀L ∈ T do

8: for ∀b ∈ A do

9: if L(b) = UNDEC then

10: if �a ∈ A : ((a,b) ∈ R)∧ (L(a) = UNDEC) then

11: return failure
12: if L(b) = OUT then

13: if �a ∈ A : ((a,b) ∈ R)∧ (L(a) = IN) then

14: return failure
15: return R

We stress that Algorithm 1 is not the only method, and we certainly do not suggest it
is optimal in terms of any performance metric, of addressing the 3-valued σ -consistency
problem but, as Theorem 4 indicates, it shows the problem is significantly less complex
to solve than its 2-valued peer. This result may appear unintuitive given the bijective
mapping of 2-valued and 3-valued labellings in forward argumentation. The simple rea-
son for the divergence in complexity between the two σ -consistency problems is due to
the ambiguity of the NOTIN label which can be either OUT or UNDEC in the 3-valued
approach. Theorem 3 shows that those defeats that are inconsistent with 3-valued data
are direct consequences of the labels themselves, whereas in Theorem 1 we see that the
labels of 2-valued data are insufficient to determine inconsistency and the existing de-
feat relation R must be examined also. This self-referential search process in finding a
solution defeat relation R for the 2-valued σ -consistency problem is the cause of the
additional complexity.

Theorem 4. (Defeat pruning for 3-valued σ -consistency problem) The 3-valued σ -
consistency problem can be solved by a defeat pruning algorithm with a time complexity
of O(n2|T |) and a space complexity of O(n2) where n is the number of arguments and
|T | is the number of labellings.

Proof. Let us define some R′ that is the defeat relation output by Algorithm 1 upon
receiving input T . There exist two cases for solving the 3-valued σ -consistency problem:
(Case 1 Forward implication) Suppose there ∃R that is consistent with T . Suppose R′ is
not consistent with T , then ∃L ∈ T : (L /∈ σ((S,R))). By the definition of R′ it cannot be
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that some inconsistent defeat is in R′ and so there must be some essential defeat missing
from R′. From Def. 5 it must be that (∃b1 ∈ S : (L(b1) = UNDEC)∧∀c ∈ S : (L(c) =
UNDEC =⇒ (c,b1) /∈R′))∨(∃b2 ∈ S : (L(b2)= OUT)∧∀a∈ S : (L(a)= IN =⇒ (a,b2) /∈
R′)). But since R exists then for any such L(b1) = UNDEC there is some appropriate
(c,b1) ∈ R\R′, or for any L(b2) = OUT there is some appropriate (a,b2) ∈ R\R′. But by
the definition of R′ it must be that R′ ⊇ R, contradiction! Therefore if there exists some
R that is consistent with T then R′ is also consistent with T .
(Case 2 Backward implication) Suppose there �R consistent with T . Then clearly R′ is
not consistent with T . Hence if �R consistent with T then R′ is also not consistent with
T . Therefore there ∃R that is consistent with T iff R′ is consistent with T .
To find R′ it is necessary in the worst case to check all n2 possible defeats for each L ∈ T .
From Theorem 3 it is clear that for any defeat (a,b) to be evaluated for consistency with
some L ∈ T it is sufficient to simply check L(a) and L(b). Hence there are required at
most 2n2|T | operations required to produce R′. Similarly, once R′ has been derived, there
will be at most 2n2|T | operations required to check that R′ is consistent with T . Therefore
the defeat pruning algorithm will find a solution defeat relation R′ or prove that none
exist in time complexity of O(2n2|T |+2n2|T |) = O(n2|T |).
Finally, for each step in the process we need to store the current defeat set R, of size n2.
It follows that the space complexity is within O(n2).

5. σ -consistency For Other Semantics

Throughout this paper the focus has been on complete argumentation semantics. How-
ever, turning our attention to the alternative semantics as originally presented in [10]
allows us to informally outline some relevant results.

For σ -consistency under stable semantics, we can quickly identify that both the 2-
valued and 3-valued problems reduce to a special case of the 3-valued problem where no
labelling contains UNDEC labelled arguments. Explicitly for the 2-valued problem this
means that all NOTIN labelled arguments are interpreted as labelled OUT. Therefore the
problem is solvable in O(n2|T |) time and O(n2) space complexity.

For σ -consistency under preferred semantics, we conjecture that the problem is not
in NP unless coNP = P. The verification of any solution defeat relation is achieved by
verifying each labelling in the data set. As outlined in [9,12], the verification of any
labelling under preferred semantics is coNP-complete. We observe the coNP-complete
result is derived from the special instance of verifying the empty set is a preferred ex-
tension, hence the result pertains to both the 2-valued and 3-valued variants. Further, as
discussed in [13], verification results for all the major semantics hold for both 2-valued
and 3-valued data. This means that solving σ -consistency is likely to be a hard problem.

For σ -consistency under grounded semantics, it is easy to see that for both 2-valued
and 3-valued acceptability data, the problem is within NP, since the verification of each
labelling in |T | is within P [12]. However, we strongly conjecture that both 2-valued and
3-valued σ -consistency problems under grounded semantics are in fact NP-complete.
There is not room to demonstrate a full proof in the confines of this paper. However,
a proof similar to that used for Theorem 2 can be constructed by reducing from the
Monotone 3SAT problem such that the two types of clauses are reduced by r thus:
Case 1: ci = (ai ∨ bi ∨ ci) and r(ci) = (S,L1i,L2i), where S = {ai,bi,ci,ω}, L1i =
{L(ω) = IN}, and for 2-valued (resp. 3-valued) σ -consistency we have L2i = {L(ai) =
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NOTIN,L(bi) = NOTIN,L(ci) = NOTIN,L(ω) = NOTIN} (resp. L2i = {L(ai) = UNDEC,
L(bi) = UNDEC,L(ci) = UNDEC,L(ω) = UNDEC});
Case 2: ci = (¬ai ∨ ¬bi ∨ ¬ci) and r(ci) = (S,L1i), where S = {ai,bi,ci,ω}, and
for 2-valued (resp. 3-valued) σ -consistency we have L1i = {L(ai) = NOTIN,L(bi) =
NOTIN,L(ci) = NOTIN,L(ω) = IN} (resp. L2i = {L(ai) = OUT,L(bi) = OUT,L(ci) =
OUT,L(ω) = IN}).

6. Related Work

Research on the topic of extension enforcement [2,3], is concerned with determining
what additions could be made to a defeat relation in order to accommodate new exten-
sions. However, there are notable departures from the direction pursued in this paper,
such as requiring monotonic growth of the defeat relation, whereas we also allow reduc-
tion when solving for σ -consistency.

Argumentation realizability [4,11,17,20], extends beyond extension enforcement by
removing the requirement of monotonic enlargement of the defeat relation R. Realizabil-
ity requires that there exists a defeat relation that can express precisely the given set of in-
terpretations (labellings or extensions), with no other interpretations expressible from the
defeat relation. This assumption of completeness of the input extension/labelling set can
be understood as a special case of σ -consistency where partial labellings pertaining to ar-
gument subgraphs are not permitted and the input labellings are exactly σ((A,R)). Inter-
estingly, research into argumentation realizability has thus far encountered difficulty in
determining a complexity class for complete semantics, remaining apparently unsolved
despite its importance as a foundation for other semantics as previously discussed. Note
that the complexity for realizability under complete semantics is conjectured to be NP-
hard due to the association with MaxSat algorithms in deriving a solution.

Argumentation synthesis [18,19] develops the concept of realizability by relaxing
the requirement for one-to-one mapping; the solution defeat set must satisfy a maximal
number of argument labels. The approach further differentiates itself from realizability
by accepting positive labels that are to be satisfied, but also negative labels that should
not be satisfied. Argumentation synthesis is posed as an optimization problem that can
accommodate noisy data sets, which will be in accordance with a wide set of real prob-
lems. Thus far in the literature, argumentation synthesis has only been applied to 2-
valued problems (i.e. extension-based) and ignored partial labellings, unlike the general
σ -consistency problems considered in this paper. As an optimization problem it requires
its own complexity analysis appropriate for a Max-Sat search. Similar to realizability,
complexity results for complete semantics have thus far been elusive albeit conjectured
to belong to the NP-hard class of problems [19].

An alternative to argumentation synthesis for handling noisy data are the probability-
based approaches [15,16,22] that do not overtly seek out minimising the number of mis-
classified errors as the singular goal. Whilst [15,16] use Bayesian inference and [22]
uses the more elementary Kolmogorov’s axioms, both focus on 2-valued argument ac-
ceptability data. It is notable that [15,16] suffer the problem of exponential complexity
when determining their Bayesian calculations, since power sets of extension argument
acceptabilities must be considered with a resulting combinatorial explosion. In contrast,
[22] does not suffer from this same problem but has an altogether different dilemma in
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identifying from where the prior probabilities that are assigned to the argument rules are
obtained, before these are mapped to the corresponding graph.

The most closely related research [21,23] examines the σ -consistency problem from
the 2-valued and 3-valued perspectives but under grounded semantics. The complexity
results from [21,23] claim that processing the 2-valued (resp. 3-valued) σ -consistency
problem under grounded semantics is solvable in O(n2|T |) (resp. O(n3|T |)) time (by
our notation). These findings clearly disagree with our conjecture from Section 5 that
both problems are NP-complete. We believe that the complexity results from [21,23]
are incorrect and the error stems from neglecting the subset minimality of grounded
semantics and the potential for the empty set to be the grounded labelling. A formal proof
is forthcoming.

7. Concluding Remarks

We examined the computational complexity of the σ -consistency problem (where ‘σ -
consistency’ refers to ‘σ -consistency under complete semantics’ throughout the paper)
that determines whether a solution defeat relation exists that is wholly consistent with a
set of argument acceptability labellings under the given semantics. The paper offers the
following contributions.

• Introduced and defined the σ -consistency problem, which asks if a solution defeat
relation exists that is consistent with a set of argument acceptability labellings.

• The 2-valued σ -consistency problem is proved to be NP-complete, and shown to have
a space complexity within O(n2).

• The 3-valued σ -consistency problem is proved to be solvable by algorithms with a time
complexity within O(n2|T |) and space complexity within O(n2).

• Provided informal complexity results for stable, preferred, and grounded semantics.

• The complexity results provide insight into the scaleability of algorithms designed to
determine a defeat relation from argument acceptability data, suggesting a preference
for sourcing 3-valued data to reduce the risk of solving high complexity problems.

Future work expanding the formal attention to other semantics, such as preferred
or semi-stable, as well as to more advanced forms of argumentation, such as weighted
or bipolar semantics, would also require rigorous complexity analysis of these forms in
order to locate the expectations for relevant algorithms. We would also identify, as a
fertile ground for exploration, the pursuit of theory underpinning the enumeration and/or
counting of solution defeat relations under σ -consistency, as well as related research into
the “quality” of solution defeat relations compared with the notion of a ground truth.
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Abstract. We explore the computational complexity of stability and relevance in
incomplete argumentation frameworks (IAFs), abstract argumentation frameworks
that encode qualitative uncertainty by distinguishing between certain and uncertain
arguments and attacks. IAFs can be specified by, e.g., making uncertain arguments
or attacks certain; the justification status of arguments in an IAF is determined on
the basis of the certain arguments and attacks. An argument is stable if its justifi-
cation status is the same in all specifications of the IAF. For arguments that are not
stable in an IAF, the relevance problem is of interest: which uncertain arguments
or attacks should be investigated for the argument to become stable? We redefine
stability and define relevance for IAFs and study their complexity.

Keywords. Incomplete argumentation frameworks, stability, relevance, complexity

1. Introduction

Computational argumentation is an important research field in artificial intelligence, con-
cerning reasoning with incomplete or inconsistent information [1]. A central concept
are argumentation frameworks (AFs): a set of arguments and an attack relation between
them [2]. Given an AF and so-called semantics, one can determine extensions: sets of ar-
guments that can collectively be considered to be acceptable. Based on these extensions,
each argument has at least one justification status (in terms of e.g. labels like IN, OUT
and UNDEC). However, in practice, argumentation is a dynamic process in which not all
arguments may be known in advance. Incomplete argumentation frameworks (IAFs) are
designed to handle this dynamic process by extending AFs to allow for both certain and
uncertain arguments and attacks [3,4,5,6]. In this paper, we study two problems in IAFs
and their complexity for various semantics: stability and relevance.

Detecting stability was initially introduced for the ASPIC+ framework in [7] and
subsequently studied for structured and abstract argumentation settings in [8,6]. Infor-
mally, an argument is stable if more information cannot change its justification status.
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Stability detection has practical applications, for instance as a termination criterion for
argumentative dialogue agents: in the agent architecture for inquiry proposed in [8], sta-
bility detection prevents the agent from asking unnecessary questions. In addition, [6]
proposes an application of stability detection in negotiating agents, to recognise situa-
tions in which an agent should stop negotiating and accept its opponent’s offer.

For situations in which the argument of interest is not stable in the given IAF, a
natural question would be: which uncertainties should we resolve in order to reach a
point where the argument is stable? In other words: which uncertain arguments or attacks
are still relevant for the justification status? Adding relevance to an inquiry/negotiation
process ensures that the questions that are asked contribute to reaching stability.

The contribution of this paper is the extensive study of both stability and relevance
in the context of IAFs. Specifically, first we (re)define stability on IAFs, considering
not only IN, but also OUT and UNDEC justification statuses. This results in a more fine-
grained notion of stability than an earlier definition in [6]. Second, we present precise
complexity results for stability of all these justification statuses in grounded, complete,
stable and preferred semantics, refining preliminary results in [6]. Third, we define a no-
tion of relevance in the context of reaching stability in IAFs. Finally, we present prelim-
inary complexity results for the introduced relevance detection problem.

The paper is structured as follows. In Section 2, we provide the necessary prelim-
inaries. In Section 3, we study the complexity of identifying the justification status of
an argument and use these results in our complexity analysis of the stability problem.
We then introduce the relevance problem for IAFs in Section 4 and provide complexity
results. Related work is discussed in Section 5; we conclude in Section 6.

2. Preliminaries

In this section, we recall the most important notions from abstract argumentation and
the considered semantics [2] as well as incomplete argumentation frameworks [3,4,5,6]
and their specifications. Finally, we give a brief introduction to the polynomial hierarchy,
which is required for our complexity study.

2.1. Argumentation frameworks and semantics

An argumentation framework 〈A,R〉 (AF) consists of a finite set A of arguments and a
binary attack relation R⊆A×A on them, where (A,B) ∈ R indicates that argument A
attacks argument B. The evaluation of arguments is done using the semantics of [2].

Definition 1 (Extension-based semantics). Let AF = 〈A,R〉 be an AF and S ⊆A. Then:

• S is conflict-free iff for each X ,Y ∈ S : (X ,Y ) �∈ R;
• X ∈ A is acceptable with respect to S iff for each Y ∈ A such that (Y,X) ∈ R,

there is a Z ∈ S such that (Z,Y ) ∈R;
• S is an admissible set iff S is conflict free and X ∈ S implies that X is acceptable

with respect to S;
• S is a complete extension (CP) iff S is admissible and for each X: if X ∈ A is

acceptable with respect to S then X ∈ S;
• S is a preferred extension (PR) iff it is the set inclusion maximal admissible set;
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• S is the grounded extension (GR) iff it is the set inclusion minimal complete ex-
tension; and

• S is a stable extension (ST) iff it is complete and attacks all the arguments in A\S.

2.2. Incomplete argumentation frameworks

Incomplete argumentation frameworks (IAFs) are an extension to AFs, initially proposed
as partial AFs in [3] and later studied as IAFs in e.g. [4,5,6]. In an IAF, the set of argu-
ments and attacks is split into two disjoint parts: a certain part (A and R) and an uncer-
tain part (A? and R?). For the uncertain elements, it is not known whether they are part
of the argumentation framework or not. They may be added in the future, for example
because more information is acquired in an inquiry dialogue, or removed, for example
because after investigation, this element turned out not to be present in the given setting.

Definition 2 (Incomplete argumentation framework). An incomplete argumentation
framework is a tuple I = 〈A,A?,R,R?〉, where A∩A? = /0, R∩R? = /0 and:

• A is the set of certain arguments;
• A? is the set of uncertain arguments;
• R⊆ (A∪A?)× (A∪A?) is the certain attack relation; and
• R? ⊆ (A∪A?)× (A∪A?) is the uncertain attack relation.

An IAF can be specified by obtaining more information about the uncertain part.

Definition 3 (Specification). Given an IAF I = 〈A,A?,R,R?〉, a specification is an IAF
I′ = 〈A′,A?′,R′,R?′〉, where:

• A⊆A′ ⊆ A∪A?;
• R⊆R′ ⊆R∪R?;
• A?′ ⊆ A?;
• R?′ ⊆ R?.

We denote all possible specifications for I by F(I). Note that A′ ∩A?′ = /0 and R′ ∩
R?′ = /0 because I′ is an IAF.

Since the semantics of [2] are defined on AFs, we define the certain projection of an
IAF, which is an AF consisting of only the IAF’s certain arguments and attacks.

Definition 4 (Certain projection). Given an IAF I = 〈A,A?,R,R?〉, the certain projec-
tion is the argumentation framework AF = 〈A,R∩ (A×A)〉.

Note that our definition of specification is similar to the notion of completion used in
related work on IAFs [4,5]. Intuitively, a completion is a certain projection of a specifi-
cation and is therefore not suitable for keeping track of the uncertain elements. Since the
development of uncertain elements is essential for defining and studying the relevance
problem (see Section 4), we use the notion of specification rather than completion.

2.3. The polynomial hierarchy

The polynomial hierarchy [9] is a hierarchy of complexity classes above NP defined
using oracle machines, i.e. Turing machines that are allowed to call a subroutine (oracle),
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deciding some fixed problem in constant time. For a class of decision problems C and a
class X defined by resource bounds, X C denotes the class of problems decidable on a
Turing machine with a resource bound given by X and an oracle for a problem in C.

Based on these notions, the sets Σp
k and Πp

k are defined as follows: Σp
0 = Πp

0 = Δp
0 =

P, Σp
k+1 = NPΣp

k and Πp
k+1 = CoNPΣp

k . The canonical complete problem for Σp
k is k-

QBF, which is the problem of deciding whether the quantified boolean formula with k
alternating quantifiers, starting with an existential quantifier, is true for a formulaΦ – for
example, deciding if ∃Xs.t. ∀Y : Φ[X ,Y ] = True is Σp

2 -complete. The complement of a
k-QBF problem, denoted by co-k-QBF, is complete for Πp

k .

3. Justification status and stability

In order to define and study stability and relevance, we need a definition of justification
status. Given an AF 〈A,R〉, an argument A and a semantics σ , A’s justification status
can be determined by either considering all σ -extensions (sceptical) or at least one σ -
extension of the AF (credulous). In this context, an argument can be IN (part of all/some
σ -extensions); OUT (attacked by all/some σ -extensions), or UNDEC (otherwise) [10].

Definition 5 (Argument justification status). Let AF = 〈A,R〉 be an argumentation
framework and σ some semantics in {GR,CP, PR, ST}. Let A be some argument in A.

• A is σ -sceptical-IN (resp. σ -credulous-IN) iff A belongs to each (resp. some) σ -
extension of AF;

• A is σ -sceptical-OUT (resp. σ -credulous-OUT) iff for each (resp. some) σ -
extension S of AF, A is attacked by some argument in S;

• A is σ -sceptical-UNDEC (resp. σ -credulous-UNDEC) iff for each (resp. some) σ -
extension of AF, A is not in S and not attacked by any argument in S.

The justification statuses that we consider in this paper are {GR,CP, PR, ST} ×
{sceptical,credulous}×{IN,OUT,UNDEC}. Based on these justification statuses, we can
now define stability:

Definition 6 (Stability on IAFs). Given an IAF I = 〈A,A?,R,R?〉, a certain argument
A ∈ A and some justification status j, A is stable- j w.r.t. I iff for each specification
I′ = 〈A′,A?′,R′,R?′〉 in F(I), A is j w.r.t. the certain projection of I′.

Note that whereas the sceptical stability variants are mutually exclusive, this does
not apply for the credulous stability variants, where an argument may have multiple
stability statuses at the same time. Consider the following example:

Example 1. Let I = 〈A,A?,R,R?〉 be an incomplete argumentation framework with
A= {A,B}, A? =R? = /0, R= {(A,B),(B,A)}; note that F(I) = {I}. Both A and B are
stable-CP-credulous-IN, stable-CP-credulous-OUT and stable-CP-credulous-UNDEC. For
σ ∈ {ST, PR}, both A and B are stable-σ -credulous-IN and stable-σ -credulous-OUT. On
the other hand, for semantics σ ∈ {CP, ST, PR}, A and B are not stable-σ -sceptical-IN,
-OUT or -UNDEC.
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An alternative definition of stability on IAFs has been proposed before in [6], but
this definition only takes the IN status of arguments into account. Since other justifica-
tion statuses are not studied, it is not possible to distinguish for example situations in
which the justification status of an argument is UNDEC in each certain projection from
situations where the justification status is always either OUT or UNDEC. Our definition
of stability on IAFs is more fine-grained as it also includes OUT- and UNDEC-stability.
In addition, we will provide precise complexity results, refining preliminary complexity
bounds from [6].

We formulate the identification of justification and stability statuses as decision
problems:

j-JUSTIFICATION
Given: An argumentation framework 〈A,R〉 and an argument A ∈ A
Question: Does A’s justification status in 〈A,R〉 equal j?

j-STABILITY
Given: An incomplete argumentation framework 〈A,A?,R,R?〉, a justification

status j and an argument A ∈ A
Question: Does A’s stability status w.r.t. 〈A,A?,R,R?〉 equal stable- j?

For some variants of the stability problem, we can directly use complexity results
from earlier work, in particular the results on necessary sceptical and credulous accep-
tance presented in [5]. Specifically, for a given semantics σ ∈ {GR,CP, PR, ST}, an ar-
gument is stable-σ -sceptical-IN iff it is necessary sceptically accepted w.r.t. the corre-
sponding IAF; similarly, the set of stable-σ -credulous-OUT arguments coincides with the
necessary credulously accepted arguments (see Section 5 for a discussion). See Table 1
for an overview of these results.

σ c/s status JUSTIFICATION STABILITY RELEVANCE

ST c IN/OUT NP-c [11,12] Πp
2 -c [5]

ST c UNDEC Trivial (no) Trivial (no)

ST s IN/OUT CoNP-c [11] CoNP-c (Πp
2 -c) [5]

ST s UNDEC CoNP-c [11] (Trivial (no)) CoNP-c (Trivial (no))

CP c IN/OUT NP-c [11,12] Πp
2 -c [5]

CP c UNDEC P-c CoNP-c

CP s IN/OUT P-c [2] CoNP-c [5] NP-c

CP s UNDEC CoNP-c CoNP-c

GR c IN/OUT P-c [2] CoNP-c [5] NP-c

GR c UNDEC P-c CoNP-c

GR s IN/OUT P-c [2] CoNP-c [5] NP-c

GR s UNDEC P-c CoNP-c

PR c IN/OUT NP-c [11,12] Πp
2 -c [5]

PR c UNDEC ΣΣΣppp
222 -c ΠΠΠppp

333 -c

PR s IN/OUT Πp
2 -c [13] Πp

2 -c [5]
PR s UNDEC CoNP-c CoNP-c

Table 1. Overview of all complexity results related to this paper. If a reference is specified, this complexity
result is trivial from an earlier result in the literature. New results are printed bold; their proofs can be found in
the appendix. Results for ST-sceptical-existence justification and stability are given in parentheses.
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The complexity of OUT-STABILITY has not been studied, but can be derived from
the complexity of identifying IN-STABILITY by a reduction from the corresponding IN-
JUSTIFICATION problems. In the following lemma, we show that these complexities are
the same for each of the semantics considered in this paper:2

Lemma 1. For any given σ ∈ {GR,CP, PR, ST} and c ∈ {sceptical,credulous}, the com-
plexity of σ -c-OUT-STABILITY equals the complexity of σ -c-IN-STABILITY.

A similar result exists for IN-JUSTIFICATION and OUT-JUSTIFICATION. The results
for UNDEC-JUSTIFICATION can be found in Table 1 and the appendix. The complexity
of UNDEC-STABILITY cannot be derived in a general way from e.g. IN-STABILITY: the
approach depends on the chosen semantics. We can however provide a general upper
bound based on the complexity of UNDEC-JUSTIFICATION:

Proposition 1 (Upper bound j-STABILITY). Given an IAF I = 〈A,A?,R,R?〉, a certain
argument A ∈ A and a justification status j, if the complexity of j-JUSTIFICATION in
〈A,R〉 is C, the j-STABILITY problem given A and I is in CoNPC .

Proof. In a negative instance (I,A) of j-STABILITY, there is some I′ ∈ F(I) such that
A is not j in the certain projection of I′. A polynomial-size certificate for this instance
would for example be a specification I′ = 〈A′, /0,R′, /0〉 in F(I) such that A is not j in
AF′ = 〈A′,R′ ∩ (A′×A′)〉. Verification that I′ ∈ F(I) can be done in polynomial time;
the j-justification status check of A in AF′ is done by calling a C oracle.

Note that the complexity of identifying the stability or justification status for UN-
DEC statuses may be higher or lower than the complexity of identifying the IN or
OUT status. For example, for ST semantics the credulous JUSTIFICATION and STABIL-
ITY identification of the UNDEC status is trivial: under ST semantics arguments are ei-
ther in the extension or attacked by the extension, but identifying the IN/OUT status is
NP (JUSTIFICATION) and even in Πp

2 (STABILITY). On the other hand, PR-credulous-
UNDEC-JUSTIFICATION is on a higher level in the polynomial hierarchy than PR-
credulous-IN-JUSTIFICATION: while PR-credulous-IN-JUSTIFICATION is in NP (since
verification of a positive instance can be done in polynomial time, given an admissi-
ble set containing the argument as a certificate), PR-credulous-UNDEC-JUSTIFICATION
is Σp

2 -hard as it can be reduced from 2-QBF.
For other semantics, the complexity of UNDEC-STABILITY does not differ from the

IN-STABILITY complexity. This is for example the case for GR semantics and CP seman-
tics for the sceptical justification status. In order to prove this, we next give a reduction
from UNSAT (co-1-QBF), which is based on the reduction from [5, Definition 14] and
illustrated in the black part of Figure 1.

Definition 7 (Reduction). Let (φ ,X) be an instance of 1-QBF or co-1-QBF and let φ =∧
i ci, where ci =

∨
j α j for each clause ci in φ and α j are the literals over X that occur

in clause ci. We define the corresponding IAF for this instance as 〈A,A?,R, /0〉, where:

• A= {xi,xi | xi ∈ X}∪{ci | ci ∈ φ}∪{φ ,φ};
• A? = {gi | xi ∈ X};

2Proofs of omitted results in the remainder of the paper can be found in the online appendix https://www.
uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs.

D. Odekerken et al. / Stability and Relevance in Incomplete Argumentation Frameworks 277

https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs
https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs
https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs
https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs


• R = {(gi,xi) | xi ∈ X}∪{(xi,xi) | xi ∈ X}∪{(xk,ci) | xk ∈ ci}∪{(xk,ci) | ¬xk ∈
ci}∪{(ci,φ) | ci ∈ φ}∪{(φ ,φ),(φ ,φ)}.

g1 g2 g3

x1 x2 x3x1 x2 x3

c1 c2

φφ χ χ

Figure 1. Visualisation of the IAF created for the clauses c1 = x1∨¬x2 and c2 = x2∨¬x3 using the reductions
of Definition 7, only the black parts of the figure and Definition 11, also including the gold/gray part. We use
this reduction for GR, CP and sceptical PR semantics.

The reduction is used in the proof of the following proposition.

Proposition 2. GR-sceptical-UNDEC-STABILITY, GR-credulous-UNDEC-STABILITY
and CP-credulous-UNDEC-STABILITY are CoNP-complete.

Proof sketch. Let (φ ,X) be a co-1-QBF (UNSAT) instance and let I = 〈A,A?,R,R?〉 be
the IAF according to Definition 7. As GR semantics results in a single extension, which
is the intersection of all CP extensions, the problems GR-sceptical-UNDEC-STABILITY,
GR-credulous-UNDEC-STABILITY and CP-credulous-UNDEC-STABILITY coincide. The
argument φ can only be stable-UNDEC if for each specification of I, the argument φ
is OUT, which can only be the case if there is at least one clause in φ such that the
corresponding argument for ci is IN. Thus the following items are equivalent:

1. (φ ,X) is a positive UNSAT instance;
2. the argument for φ is stable-GR-sceptical-UNDEC in I;
3. the argument for φ is stable-GR-credulous-UNDEC in I;
4. the argument for φ is stable-CP-credulous-UNDEC in I.
CoNP-hardness from UNDEC-STABILITY follows from CoNP-hardness of UNSAT.

From Proposition 1 and the fact that the corresponding JUSTIFICATION problems are in
P, we conclude CoNP-completeness.

In the following proposition, we consider the sceptical variants of the UNDEC-
STABILITY under CP and PR semantics.

Proposition 3. CP-sceptical-UNDEC-STABILITY and PR-sceptical-UNDEC-STABILITY
are CoNP-complete.

Proof sketch. CP-sceptical-UNDEC-STABILITY and PR-sceptical-UNDEC-STABILITY are
in CoNP, since negative instances (I,A) can be verified in polynomial time given a cer-
tificate (AF′,S) such that I′ ∈ F(I), AF′ is the certain projection of I′, A ∈A and S is an
admissible set of AF′ containing either A itself or an argument attacking A. For hardness,
note that the corresponding (CoNP-hard) JUSTIFICATION problems can be reduced to
these STABILITY problems, leaving the uncertain part empty.
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Proposition 4 states that the PR-credulous-UNDEC-STABILITY problem is on the
third level of the polynomial hierarchy. For the proof, we refer to the appendix.

Proposition 4. PR-credulous-UNDEC-STABILITY is Πp
3 -complete.

Finally, we consider UNDEC-STABILITY under ST semantics. Recall from Defini-
tion 1 that for each ST extension S of an AF, each argument in AF is either in S or attacked
by some argument in S. Consequently, an argument can only be stable-ST-sceptical-
UNDEC if the AF has no ST extension. We use this property in the following proposition:

Proposition 5. ST-sceptical-UNDEC-STABILITY is CoNP-complete.

Proof sketch. The problem is in CoNP, as a no-instance (I,A) can be verified in polyno-
mial time given a certificate (AF′,S) such that I′ ∈ F(I), AF′ is the certain projection of
I′ and S is a ST extension of AF′. If S is a ST extension then each argument in A is ei-
ther in S or attacked by S; therefore no argument can be stable-ST-sceptical-UNDEC w.r.t.
I. For hardness, we can reduce from the CoNP-complete problem ST-sceptical-UNDEC-
JUSTIFICATION.

This result for sceptical acceptance may feel counterintuitive. Therefore, we con-
sider an alternative version of justification and stability (based on [14]) for ST semantics,
in which it is assumed that a ST extension exists.

Definition 8 (Sceptical-existent justification). Given an argumentation framework AF =
〈A,R〉, argument A ∈A and label LAB ∈ {IN,OUT,UNDEC}, A is ST-sceptical-existent-
LAB w.r.t. AF iff AF has at least one ST extension and A is ST-sceptical-LAB in AF.

As no AF has a ST extension S in which some argument is neither in S, nor attacked
by any argument in S, ST-sceptical-existent-UNDEC-STABILITY is False for all inputs.
The same holds for ST-credulous-UNDEC-STABILITY, so these problems are trivial:

Proposition 6. ST-credulous-UNDEC-STABILITY and ST-sceptical-existent-UNDEC-
STABILITY are trivial.

4. Relevance

For IAFs in which a given argument is not stable, a natural follow-up question would
be which uncertainties should be resolved in order to reach a point where the argument
is stable: these uncertainties are relevant to investigate in the given IAF. In this section,
we will define the problem of relevance and study its complexity. First, we give some
intuition on the notion of relevance in the context of stability in the following example.

Example 2. Let I = 〈A,A?,R,R?〉 be the IAF illustrated in Figure 2, where only ar-
guments A and C are certain and let j be GR-sceptical-IN; suppose that we want to
know if argument A is j-stable. A is not j-stable in I, but it will become j-stable in
each I′ ∈ F(I) such that I′ = 〈A′,A?′,R′,R?′〉 and D /∈A′ ∪A?′ or E ∈A′. Therefore,
it would be relevant to investigate if D can be removed from the uncertain arguments
and/or if E can be added to the certain arguments. Note that investigation of B does not
contribute towards a stable situation and therefore would not be relevant.
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A

B C

D E

Figure 2. Visualisation of IAF 〈A,A?,R,R?〉 used to illustrate the definition of relevance. In this figure,
certain arguments in A are depicted as nodes with solid borders (i.e. A and C), while uncertain arguments in
A? have dashed borders (i.e. B, D and E). The arrows between them correspond to attacks inR.

Before proceeding to a formal definition of relevance that matches the intuitions in
the example above in Definition 10, we define the notion of minimal stable specifications.

Definition 9 (Minimal stable- j specification). Given an IAF I = 〈A,A?,R,R?〉, a cer-
tain argument A ∈ A and a justification status j, a minimal stable- j specification for A
w.r.t. I is a specification I′ in F(I) such that A is stable- j in I′ and there is no specifi-
cation I′′ in F(I) such that A is stable- j in I′′, I′′ �= I′ and I′ ∈ F(I′′).

Intuitively, the minimal stable- j specification for A is a specification in which A is
stable- j, while Awould not be stable- j in any specification with more uncertain elements.

Example 3. Reconsider the IAF I = 〈A,A?,R,R?〉 from Example 2:

• There are two minimal stable-GR-sceptical-IN specifications for A w.r.t. I. These
are 〈{A,C,E},{B,D},R,R?〉 and 〈{A,C},{B,E},R,R?〉;

• There are three specifications for A w.r.t. I for which A becomes stable-GR-
sceptical-OUT: I1 = 〈{A,C,D},{B},R,R?〉, I2 = 〈{A,C,D}, /0,R,R?〉 and I3 =
〈{A,B,C,D}, /0,R,R?〉. Only I1 is minimal, because both I2 and I3 are in F(I1);

• None of the specifications is minimal stable-GR-sceptical-UNDEC.

Using the notion of minimal stable-j specifications, we can now define j-RELEVANCE.

Definition 10 ( j-RELEVANCE). Given an IAF I = 〈A,A?,R,R?〉, an argument A ∈ A,
an uncertain argument or attack U ∈ A?∪R? and a justification status j,

• Addition of U is j-relevant for A w.r.t. I iff there is a minimal stable- j specification
I′ = 〈A′,A?′,R′,R?′〉 for A w.r.t. I such that U ∈ A′ ∪R′; and

• Removal of U is j-relevant for A w.r.t. I iff there is a minimal stable- j specification
I′ = 〈A′,A?′,R′,R?′〉 for A w.r.t. I such that U /∈ A′ ∪A?′ ∪R′ ∪R?′.

In other words, addition of an uncertain elementU is j-relevant if a minimal stable- j
specification can be reached by moving U from the certain to the uncertain part of the
IAF I; and removal of U is j-relevant if completely removing U from I, possibly in
combination with other actions, leads to a minimal stable- j specification.

Example 4. Recall from Example 3 that only I1 = 〈{A,C,D},{B},R,R?〉 is a minimal
stable-GR-sceptical-OUT specification for A w.r.t. I. Therefore, only addition of D and
removal of E are GR-sceptical-OUT-relevant for A w.r.t. I.

Like for justification and stability status, we formulate the identification of j-
RELEVANCE as a decision problem:
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j-RELEVANCE of action a

Given: An incomplete argumentation framework 〈A,A?,R,R?〉, a justification
status j, an action a ∈ {addition,removal}, an argument A ∈ A and an
uncertain argument or attackU ∈ A?∪R?.

Question: Is a ofU j-relevant for A w.r.t. 〈A,A?,R,R?〉?

The following lemma, proven in the appendix, shows that the relevance of adding
or removing an uncertain element can be validated by checking the justification status
of the certain projections of two particular future specifications. This property will be
useful for proving an upper bound on j-RELEVANCE.

Lemma 2. Given an IAF I = 〈A,A?,R,R?〉, a certain argument A ∈A and a justifica-
tion status j:

1. For each U ∈ A?, addition of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},R′, /0〉 ∈ F(I) such that A is not j in the certain projection of I′,
while A is j in the certain projection of 〈A′ ∪{U}, /0,R′, /0〉.

2. For each U ∈ R?, addition of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′, /0,R′,{U}〉 ∈ F(I) such that A is not j in the certain projection of I′,
while A is j in the certain projection of 〈A′, /0,R′ ∪{U}, /0〉.

3. For each U ∈ A?, removal of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},R′, /0〉 ∈ F(I) such that A is j in the certain projection of I′, while
A is not j in the certain projection of 〈A′ ∪{U}, /0,R′, /0〉.

4. For each U ∈ R?, removal of U is j-relevant for A w.r.t. I iff there exists some
I′ = 〈A′,{U},R′, /0〉 ∈ F(I) such that A is j in the certain projection of I′, while
A is not j in the certain projection of 〈A′, /0,R′ ∪{U}, /0〉.

In the following proposition, we use the results from Lemma 2 to prove a general
upper bound on the complexity of j-RELEVANCE.

Proposition 7 (Upper bound j-RELEVANCE). Given an IAF I = 〈A,A?,R,R?〉, a cer-
tain argument A ∈ A, an uncertain argument or attack U ∈ A? ∪R? and a justification
status j, if the complexity of deciding j’s justification status in 〈A,R〉 is C, then an upper
bound on the problem of deciding if addition and/or removal of U is j-relevant for A
w.r.t. I is NPC .

In order to prove a lower bound of j-RELEVANCE for GR and CP sceptical semantics,
we use the following reduction. This reduction is illustrated in Figure 1 in gold.

Definition 11 (Reduction relevance). Let (φ ,X) be an instance of 1-QBF or co-1-QBF
let φ =

∧
i ci and ci =

∨
j α j for each clause ci in φ , where α j are the literals over X that

occur in clause ci. Let 〈A,A?,R, /0〉 be the reduction from Definition 7 of this instance.
We define the corresponding IAF for this instance as 〈A′,A?′,R′, /0〉, where A′ = A∪
{χ}; A?′ =A?∪{χ}; and R′ =R∪{(χ,χ),(χ,φ)}.

Using the reduction above, we can now give tight complexity bounds for GR and CP
semantics for the sceptical justification status.

Proposition 8. GR-sceptical-IN-RELEVANCE, GR-credulous-IN-RELEVANCE and CP-
sceptical-IN-RELEVANCE are NP-complete.
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Proof sketch. Given an instance of 1-QBF (SAT), let I be the IAF constructed according
to Definition 11 where Y = /0. Addition of χ is GR-sceptical-IN-relevant for φ w.r.t. I iff
there is some I′ ∈ F(I) such that φ is GR-sceptical-IN, having χ in its certain arguments
iff the SAT instance is True. NP-completeness follows from Proposition 8 and the fact
that the corresponding JUSTIFICATION problems are in P.

5. Related work

The computational complexity of various problems defined on argumentation frame-
works is well-studied; see [15] for an overview. Most studies only identify IN arguments
and do not distinguish other justification statuses; notable exceptions are [16] and [17],
but neither of these works give complexity results for separate statuses, as we do.

Complexity studies on problems defined on IAFs emerged more recently. For exam-
ple, variants of the verification problem on IAFs are studied in [4]. The problems of sta-
bility and relevance differ from the verification problem as they are defined on arguments
rather than sets of arguments. More related is [5]: the authors study potential and neces-
sary credulous and sceptical acceptance in IAFs, where necessary sceptical acceptance
of a given argument A, for example, means that in each specification’s certain projection,
each extension (under a given semantics) contains A. The notions of necessary credulous
and sceptical acceptance are very similar to specific stability problems: in fact, we used
results regarding their complexity for proving the complexity of stable-IN statuses. Fi-
nally, the notion of stability, which was originally defined on structured argumentation
frameworks in [7], is transposed to the context of IAFs in [6] and preliminary complexity
results for stability under four semantics are provided. In our work, we define a more
fine-grained notion of stability and provide more precise complexity characterisations.

Our notion of relevance has not been introduced or studied before. It is related to
the notion of influenced sets in e.g. [18], which intuitively are sets of arguments whose
justification status may change after an update. This notion is however less strict than
relevance: there are situations in which some argument A would be in the influenced set
of adding an uncertain attack (B,C), while addition of (B,C) is not relevant for A.

6. Conclusion

We studied the complexity of detecting stability and relevance in incomplete argumen-
tation frameworks. First, we redefined stability [7,8,6] on IAFs. Our definition is a more
fine-grained notion than the existing definition on IAFs [6], since it distinguishes between
IN, OUT and UNDEC justification statuses. This distinction is appropriate in for example
applications in inquiry [7,8], where a dialogue discussing a given argument should be
terminated if more information cannot change the argument’s (exact) justification status.

As second main contribution of this paper, we introduced the notion of relevance,
which has not been studied before in the context of stability, and analysed its complexity.
Returning to the application in inquiry, the identification of relevant elements can be used
to select the next question, reaching a stable situation in an efficient way.

It is however unlikely that the stability and relevance problem itself can be solved
efficiently for all inputs: our complexity analysis revealed that the nontrivial variants
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of the relevance and stability problems have a complexity ranging from the first to the
third level of the polynomial hierarchy; see Table 1 for an overview. Interestingly, even
within the same semantics, there are differences in the complexity of UNDEC-STABILITY
problems and the corresponding IN-STABILITY problems – we consider this to be an
additional reason to study a fine-grained notion of stability and relevance.

In future work we will complete Table 1, by studying the computational complex-
ity of relevance for the other semantics and UNDEC status. In addition, to apply these
theoretical concepts in practice, we plan to develop algorithms for evaluating or estimat-
ing stability and relevance. Finally, we will study stability and relevance in structured
argumentation frameworks, such as a dynamic version of ASPIC+, for various semantics.

References

[1] Atkinson K, Baroni P, Giacomin M, Hunter A, Prakken H, Reed C, et al. Towards artificial argumenta-
tion. AI magazine. 2017;38(3):25-36. doi:10.1609/aimag.v38i3.2704.

[2] Dung PM. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence. 1995;77:321-57. doi:10.1016/0004-
3702(94)00041-X.

[3] Cayrol C, Devred C, Lagasquie-Schiex MC. Handling ignorance in argumentation: Semantics of partial
argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty. Springer; 2007. p. 259-70. doi:10.1007/978-3-540-75256-1 25.

[4] Baumeister D, Neugebauer D, Rothe J, Schadrack H. Verification in incomplete argumentation frame-
works. Artificial Intelligence. 2018;264:1-26. doi:10.1016/j.artint.2018.08.001.

[5] Baumeister D, Järvisalo M, Neugebauer D, Niskanen A, Rothe J. Acceptance in incomplete argumen-
tation frameworks. Artificial Intelligence. 2021;295:103470. doi:10.1016/j.artint.2021.103470.

[6] Mailly JG, Rossit J. Stability in Abstract Argumentation. In: NMR 2020 Workshop Notes; 2020. p.
93-9. doi:10.48550/arXiv.2012.12588.

[7] Testerink B, Odekerken D, Bex F. A Method for Efficient Argument-based Inquiry. In: Proceedings of
the 13th International Conference on Flexible Query Answering Systems. Springer International Pub-
lishing; 2019. p. 114-25. doi:10.1007/978-3-030-27629-4 13.

[8] Odekerken D, Borg A, Bex F. Estimating Stability for Efficient Argument-based Inquiry. In: Computa-
tional Models of Argument. Proceedings of COMMA 2020; 2020. p. 307-18. doi:10.3233/FAIA200514.

[9] Papadimitriou C. Computational Complexity. Addison-Wesley; 1994.
[10] Caminada M. On the issue of reinstatement in argumentation. In: European Workshop on Logics in

Artificial Intelligence. Springer; 2006. p. 111-23. doi:10.1007/11853886 11.
[11] Dimopoulos Y, Torres A. Graph theoretical structures in logic programs and default theories. Theoretical

Computer Science. 1996;170(1-2):209-44.
[12] Coste-Marquis S, Devred C, Marquis P. Symmetric argumentation frameworks. In: European Con-

ference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Springer; 2005. p.
317-28. doi:10.1007/11518655 28.

[13] Dunne PE, Bench-Capon TJ. Coherence in finite argument systems. Artificial Intelligence. 2002;141(1-
2):187-203. doi:10.1016/S0004-3702(02)00261-8.

[14] Dunne PE, Wooldridge M. Complexity of abstract argumentation. In: Argumentation in artificial intel-
ligence. Springer; 2009. p. 85-104. doi:978-0-387-98197-0 5.

[15] Dvorák W, Dunne PE. Computational problems in formal argumentation and their complexity. Hand-
book of formal argumentation. 2018:631-87.
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Abstract. In this paper we formalise a meta-argumentation framework as an
ASPIC+ extension which enables reasoning about conflicts between formulae of
the argumentation language. The result is a standard abstract argumentation frame-
work that can be evaluated via grounded semantics.
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1. Introduction

Meta-arguments support conclusions about other arguments, their interaction, their com-
position or their evaluation. For instance, a meta-argument may conclude that other ar-
guments are in conflict or that one of them is preferred over the other, or it may provide
new rules or facts that can be used in building arguments.

Meta-argumentation has received little attention thus far. As discussed in [1] there
are various approaches to generate argumentation frameworks (AFs) in terms of accounts
of the structure of arguments and their relations (e.g. ASPIC+, ABA, classical argumen-
tation, DeLP). However, most of these approaches regard rule sets, specifications of con-
flicts and preferences as given. In the reality of adversarial debate, these things can also
be argued about. Hence the importance of meta-argumentation.

In this paper we shall focus on a specific application of meta-argumentation to the
conflict function of an argumentation theory, namely, assessing whether there is a conflict
between two propositions in the argumentation language, i.e., whether the arguments
concerning those propositions are incompatible so that accepting one of them entails
rejecting the other.

Example 1 (Gender example) To ground the discussion on a practical example, let us
consider a legal example concerning a case of gender identity. Let us consider the case of
Sue. She wants to compete in the woman’s chess championship but the organisers argue
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that this would be impossible because legally she has been assigned the male gender,
as proven by her passport. However, Sue is bigender – i.e. she identifies as both male
and female simultaneously – and thinks that she should have the right to compete in the
championship. To decide the case we should first decide on the existence of a conflict
between the concepts of man and woman: are they in conflict – gender binarism discards
her claim of being both man and woman at the same time –, or can the two concepts
coexist according to the principle of self-determination? To encode the case at hand, the
argumentation model should allow conflicts to be formalised, i.e., a meta-argumentation
model is required.

It should now be more clear how the ability to include conflicts in the arguable con-
tent of a theory is fundamental in cases like the one we described above. The point of
this work is whether this can be done while maintaining the compatibility with tradi-
tional argumentation methods and models—namely, Dung’s semantics [2]. In this paper
we focus on grounded semantics. For one reason, grounded semantics allows efficient
use of the model in a real computational scenario—grounded semantics is the only one
having polynomial complexity. Moreover, the use of grounded semantics only, allowed
the authors – and hopefully the readers – to better focus on the fundamental ideas and
mechanisms behind the proposed model, without the need to deal with the complexity
of other semantics. For these reasons, the extension to other semantics is left to future
work.

The main idea behind this work is to start from a standard structured argumenta-
tion framework – like ASPIC+ [3] – and expand its definitions to deal with meta reason-
ing over conflicts. We address meta-argumentation by using the mechanism presented in
[4] for preferences and adapting it to conflicts, i.e., in representing attacks and conflicts
through arguments, which in their turn, may be subject to attack. In this way, we can
model meta-argumentation while preserving the semantics of standard abstract argumen-
tation [2].

The paper is organised as follows. Background notions are discussed in Section 2,
while Section 3 introduces the meta argumentation framework. Section 4 presents the
related work and conclusions are drawn in Section 5.

2. Abstract Argumentation and Argumentation Theories

In this section we introduce the standard definitions for argumentation frameworks based
on Dung’s semantics [2] and for ASPIC+.

Definition 1 (Argumentation framework) An argumentation framework AF is a tuple
< A,�>, where A is a set of arguments and� is a binary relation (attack relation) over
A×A. We write X � Y for (X ,Y ) ∈�.

The semantics for an argumentation framework is defined as follows.

Definition 2 (Semantics) Let < A ,�> be an AF and S ⊆ A . S is conflict free iff there
are no A,B ∈ S such that A� B. For any X ∈ A , X is acceptable with respect to S ⊆ A
iff ∀Y ∈ A , Y � X implies that ∃Z ∈ S s.t. Z� Y . Then:

• S is an admissible extension iff X ∈ S implies that X is acceptable w.r.t. S;
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• S is a complete extension iff X ∈ S iff X is acceptable w.r.t. S;
• S is the grounded extension iff S is the set-inclusion minimal complete extension.

Definition 3 (Argumentation system) An argumentation system is a quadruple AS=<
L,R,n,�> where:

• L is a logical language;
• R = Rs ∪Rd is a set of rules. Rd is a set of defeasible rules in the form φ0, ...,φn ⇒

φ , Rs is a set of strict rules in the form φ0, . . . ,φn → φ , where φ0, . . . ,φn,φ are
well-formed formulae in the L language;

• n is a naming function of the form n : R 	→ L
• � is a non-symmetrical conflict relation over L×L. We write φ�ψ for (φ ,ψ)∈�.

Definition 4 (Knowledge base) A knowledge base for an AS=< L,R,n,�> is a set K ⊆
L consisting of two disjoint subsets Ks (the axioms) and Kp (the ordinary premises).

Definition 5 (Argumentation theory) An argumentation theory is a tuple AT=<AS,K>
where AS is an argumentation system and K is a knowledge base in AS.

Given an argumentation theory, by chaining rules from the theory we can construct
arguments, as specified in the following definition; cf. [5,6,7].

Definition 6 (Argument) Starting from an argumentation theory AT=< AS,K >, an ar-
gument A is any structure obtained by applying the following steps a finite number of
times

1. φ if φ ∈ K with: Prem(A)={φ}; Conc(A)=φ ; Sub(A)={φ}; DefRules(A)= /0;
TopRule(A)=undefined.

2. A1, . . . ,An ⇒ψ if A1, . . . ,An are arguments s.t. ∃ a rule r = Conc(A1), . . . ,Conc(An)⇒
ψ ∈ Rd.

• Prem(A)=Prem(A1)∪ . . .∪Prem(An),
• Conc(A)=ψ ,
• Sub(A)=Sub(A1)∪ . . .∪Sub(An)∪{A},
• TopRule(A)=r,
• DefRules(A)=De f Rules(A1)∪ . . .∪De f Rules(An)∪{r}

3. A1, . . . ,An →ψ if A1, . . . ,An are arguments s.t. ∃ a rule r = Conc(A1), . . . ,Conc(An)→
ψ ∈ Rs.

• Prem(A)=Prem(A1)∪ . . .∪Prem(An),
• Conc(A)=ψ ,
• Sub(A)=Sub(A1)∪ . . .∪Sub(An)∪{A},
• TopRule(A)=r,
• DefRules(A)=De f Rules(A1)∪ . . .∪De f Rules(An)

Given an argument A we write:

• Prem(A), for the set of premises from K used in the argument;
• Conc(A), for the conclusion of the argument;
• Sub(A), for the set of subarguments of A;
• De f Rules(A), for the set of rules in Rd used to build the argument;
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• TopRule(A), for the rule from R used in A’s last inference step.

The first condition deals with arguments generated using the knowledge base K.
Using the second and third ones we can recursively apply rules from R on the generated
arguments to generate new arguments.

We can produce attacks starting from arguments using the notion of conflict for an
argumentation language L:

Definition 7 (Direct attack) An argument A directly attacks an argument B iff A directly
undercuts, directly undermines or directly rebuts B where:

• A directly undercuts B iff Conc(A)�n(TopRule(B)) and TopRule(B) ∈ Rd;
• A directly rebuts argument B iff Conc(A)�Conc(B) and TopRule(B) ∈ Rd;
• A directly undermines argument B iff B ∈ Kp and Conc(A)�B

Definition 8 (Attack) We say that argument A attacks argument B if A directly attacks
B′ ∈ Sub(B).

Then we can build an abstract argumentation framework as:

Definition 9 (Abstract argumentation framework) Let AT be an argumentation the-
ory <AS,K >. An abstract argumentation framework defined by AT , is a tuple <A ,�>
where:

• A is the set of all arguments constructed from AT according to Definition 6;
• for any arguments X and Y ∈ A , X � Y iff X attacks Y

In the following sections, we will extend this model to base the � relation and con-
sequently the � relation on the content of the argumentation theory—i.e., shape the
applicable conflicts inside the framework that we are evaluating.

The desiderata as a result is a standard abstract argumentation framework, thus pre-
serving the possibility to evaluate it through the semantics given in Definition 2.

3. Reasoning with conflicts

According to Definition 3, the conflict relation is a fixed part of the argumentation system
and attacks between arguments are determined by conflicts between the conclusion of the
attacking argument and a premise, rule name, or conclusion of the directly attacked ar-
gument. The main idea underpinning the extension for dealing with meta-argumentation
is to make the conflict relation dynamic, allowing arguments to argue for or against the
existence of conflicts. In such a way we define an abstract argumentation framework that
– once evaluated according to a standard Dung’s semantics – produces admissible exten-
sions containing both the arguments arguing on conflicts and arguments whose admissi-
bility is influenced by these conflicts.

Let us start providing definitions for an argumentation language L enabling conflicts
between elements of L to be stated, i.e., enabling reasoning with conflicts. We do that by
introducing in the language a binary predicate – conf – putting in relation arbitrary for-
mulae from the language itself. The introduced predicate will provide a way to express
the content of the conflict relation � and use it in the argumentation process. Further-
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more, we introduces wff’s att(A) for any argument constructible with any possible set of
rules over the new language.

Definition 10 (Conflict-based argumentation language) Given an argumentation lan-
guage L we define a argumentation language for reasoning with conflicts Lc as the small-
est argumentation language Lc = L∪{con f (ψ,φ)|ψ,φ ∈ Lc}∪{attA | A is constructible
with any set of rules over Lc}.

Now let us consider Lc a language as in Definition 10.We can build an argumentation
system AS=< Lc,R,n, /0 > and consequently an argumentation theory AT=< AS,K >,
and use them to build an abstract argumentation framework AF=< A ,�> using Defi-
nition 9. Note that, since �= /0, the attack set� in AF will be empty as well.

Now, let us extend the AF framework so defined to introduce attacks derived from
the conflicts reified in the Lc language. In such a way the status of an attack is bound to
the status of the argument claiming the conflict that generated it.

First, let us define an argument for each potential attack deriving from con f predi-
cates. Accordingly, attacks could be evaluated w.r.t. the semantics applied to the frame-
work.

Definition 11 (Conflict-based direct attack argument) A conflict-based direct attack
argument X stating that argument W, based on conflict argument W ′, attacks argument
Z, has the form W,W ′ ⇒ att(Z) where:

• Conc(W ) = φ , Conc(W ′) = con f (φ ,ψ) and

* n(TopRule(Z)) = ψ and TopRule(Z) ∈ Rd, or
* Conc(Z) = ψ and TopRule(Z) ∈ Rd or
* Conc(Z) = ψ and Z ∈ Kp

We define:

• Conc(X) = att(Z)
• Sub(X) = Sub(W )∪Sub(W ′)∪{X}

Let us write DirectAttack(X) to indicate that X is a direct attack argument.

Thus to construct a direct attack argument W,W ′ ⇒ att(Z) against Z it must be the
case that two arguments are available, argumentW , and argumentW ′, the latter claiming
that the conclusion of W is in conflict with the relevant element of Z (i.e., the name of
Z’s top rule or Z’s conclusion). The status of the direct attack arguments will depend on
the status of bothW andW ′.

We leverage direct attack arguments to build the actual attack set of the meta argu-
mentation framework.

Definition 12 (Conflict-based attack) A direct attack argument W,W ′ ⇒ att(Z) attacks
any argument Z′ such that Z ∈ Sub(Z′).

Thus, a direct attack argument W,W ′ ⇒ att(Z) attacks not only its direct target Z,
but also any argument Z′ of which Z is a subargument. The success of the attack will
depend not only on the status ofW , but also on the status ofW ′ which asserts thatW and
Z are in conflict.

These elements are merged together in a Conflict-based Argumentation Framework.
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Definition 13 (Conflict-based Argumentation Framework) Given an argumentation
theory AT=<< Lc,R,n, /0>,K > with Lc being a conflict-based argumentation language,
the conflict-based argumentation framework of AT is the tuple < A1∪A2,�> where:

• A1 is the set of all arguments constructed from AT according to Definition 6;
• A2 is the set of all direct attack arguments constructed from AT and A1 according

to definition 11;
• X � Z iff X attacks Z according to definition 12

Conflict freeness, acceptability, admissible, complete, grounded extension are de-
fined as in Definition 2.

The set A2 contains all attack arguments that can be generated by using the argu-
ments in A1, according to definition 13. For an attack argument W,W ′ ⇒ att(Z) to be
established according to an argumentation semantics, it is necessary that also W ′ is ac-
ceptable, i.e., that it is established that an acceptable conflict between W and Z exists.
Only in this caseW will bring an attack against Z.

Let us now provide some examples for our framework, in accordance the legal ex-
ample introduced in Example 1. We use the following abbreviations:

• Champ = Sue can compete in the women’s chess championship
• FWoman = Sue is bigender and identifies herself also as a woman
• PMan = Sue’s passport identifies her as a man
• Aut = Every person has the right to self-determine their gender
• GBin = Every person’s gender is determined by their birth sex, either male or
female

Example 2 (Gender example: formalization) Let us consider the theory where Rd = {
r1 : Gbin ⇒ con f (Man,Woman); r2 : Gbin ⇒ con f (Woman,Man); r3 : PMan ⇒ Man;
r4 : FWoman ⇒ Woman; r5 : Woman ⇒ Champ } with the following facts Kp = {
FWoman, PMan, GBin, con f (Aut,Gbin) }, Ks = /0, Rs = /0. Accordingly to the above
definitions, we can then build the following arguments:

The attacks are MA0� A7, MA0� A8, MA1� A6, MA0�MA1, MA1�MA0.
If we apply Dung’s grounded semantics to the framework we obtain the extension
{A0,A1,A2,A3,A4,A5}—i.e. the incompatibility between Sue’s official gender and her
other perceived identity (A4,A5) prevents her to compete in the championship.
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Sue is not happy with the final decision and decides to appeal claiming that her right
to self-determination has not been taken into due consideration. The case is evaluated
again with the new information: K′

p = {Aut}∪Kp. Two new arguments are obtained:

A9 : Aut
MA2 : A9 , A3 ⇒ a t t ( A2 )

The new attacks are MA2� A2, MA2� A4, MA2� A5, MA2� MA0, MA2�
MA1. Applying again Dung’s grounded semantics to the framework we obtain the ex-
tension {A0,A1,A3,A6,A7,A8,A9,MA2}—i.e. the problem on Sue’s identity is resolved
discarding the binary view on genders (A2, A4, A5), according to the principle of self-
determination (A9). Consequently, Sue’s perceived genders are both present in the ex-
tension, and she is free to compete in the championship. Indeed, the CAF was able to
integrate the new knowledge and use it to revise the status of the propositional conflicts
in the argumentation theory as expected. Both the original argumentation graph and the
revised one are presented in Figure 1.

Figure 1. Conflict-based Argumentation frameworks from Example 2

3.1. Properties

We now proceed to demonstrate two important properties of the constructed framework.
Intuitively, we would expect that a conflict that has been proven to exist at the meta-level
– i.e. via the conflict-based framework –, indeed exists at the object level, leading to the
same set of attacks and, consecutively, to the same extension. In other words, what is true
according to the conflict-based framework should remain true when the verified conflicts
are applied a priori as in the original ASPIC+ model. To demonstrate this important
property, let us introduce the notion of an Equivalent Standard AF.

To start, we define a way to construct a standard argumentation framework on the
basis of a conflict-based argumentation framework. The basic idea is that starting with
a conflict-based argumentation framework and an extension of it, we construct a stan-
dard argumentation framework having a corresponding extension according to the same
semantics.

Let us consider a conflict-based argumentation framework CAF=<A ,�> and one
of its extensions E. To construct the equivalent argumentation framework EAF , we first
remove from A (a) all attack arguments that are supported by those conflict arguments
that are in the extension, and (b) all attack arguments that are supported by a conflict-
ing argument that is attacked by the extension. Only attack arguments that are neither
included in E nor attacked by it are left in the EAF’s arguments set. Accordingly, the
EAF’s attack relation is constructed using those conflicts claimed by the arguments in E.
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Definition 14 (Equivalent Standard AF) Given a conflict based argumentation frame-
work CAF=< A ,�> having an extension E according to semantics σ , we define an
equivalent standard argumentation framework EAF=< A ′,�′> where:

1. A ′ = A \B∪C where:

(a) B = {a ∈A | ∃b ∈ E such that Conc(b) = conf (φ ,ψ) and a is a direct attack
argument of the form W,b ⇒ Z};

(b) C = {a ∈ A | ∃b ∈ A such that Conc(b) = conf (φ ,ψ) and b is attacked by
E and a is a direct attack argument of the form W,b ⇒ Z}.

2. �′=�|A ′×A ′ ∪ {(a,b) | a,b ∈ A ′ and ∃c ∈ E such that Conc(c) = conf (φ ,ψ)
and ∃ b′ ∈ Sub(b) s.t. a directly attacks b′ (Definition 7) according to the conflict
φ �ψ}.

Proposition 1 Consider a finitary CAF=< A ,�> and its corresponding EAF=<
A ′,�′> built on the grounded extension E and having grounded extension E ′. Then
E ∩A ′ = E ′.

Proof 1 Let’s consider an argumentation framework CAF =<A ,�>. We call the char-
acteristic function of CAF the function F : 2A → 2A such that F(Args) = {X |∀Y such
that Y �X, then ∃Z ∈Args such that Z�Y} where Args⊆A . Let us consider grounded
extension as the minimal conflict-free fixed point of the characteristic function F—i.e. the
union of a sequence E0, . . . ,En obtained by iterative application of the F function on the
empty set, and where E0 = /0. We prove that E ∩A ′ = E ′.

We first prove that E∩A ′ ⊆E ′. Suppose a∈E∩A ′. We prove that a∈E ′ as follows.
Base case: a has no attackers in A according to� so a ∈ E1∩A ′. Then there can

only be attackers of a in A ′ according to�′ if there is a relevant conflict argument b in
E that says that the conclusion of some argument x ∈ A conflicts with a’s conclusion.
But then there exists a direct attack argument x,b ⇒ att(a) in A , which contradicts that
a has no attackers in A . So x �∈ A ′, so a has no attackers in A ′, so a ∈ E ′.

Induction step: Assume that all arguments in Ei−1 ∩A ′ are in E ′. Consider any
a ∈ Ei. Any b ∈ A ′ such that b�′ a is such that b� a or b �� a. First, any such b
such that b� a is attacked by Ei−1 according to�. Then by the induction hypothesis, if
b ∈ A ′, then b is also attacked by E ′. Next, consider any such b such that b �� a. Then
there is a direct attack argument m ∈ A of the form b,X ′ ⇒ att(a′) with a′ ∈ Sub(a).
Then m� a so there exists an m′ ∈ Ei−1 such that m′�m. Note that m is a direct attack
argument, so m is of the form c,Z ⇒ att(b′) with b′ ∈ Sub(b). By closure of E under
subarguments (an easy adaptation of the same result on standard ASPIC+), c and Z are
also in Ei−1. But then by the induction hypothesis c ∈ E ′ and c�′ b. So a ∈ E ′.

We next prove that E ′ ⊆ E ∩A ′. Suppose a ∈ E ′. We prove that a ∈ E as follows.
Base case: a has no attackers in A ′ so a ∈ E ′

1. Consider any b ∈ A such that
b� a. Then b is a direct attack argument of the form c,X ⇒ att(a), with X a conflict
argument that says that the conclusion of argument c ∈ A conflicts with a’s conclusion.
But since a has no attackers in A ′, we have that b �∈A ′ because of either condition (1a)
or condition (1b) of Definition 14. In the case of (1b), b is attacked according to� on X
by an argument in E. In the case of (1a), we have X ∈ E, so, according to condition (2)
of Definition 14, we have that c�′ a. But this contradicts that a has no attackers in A ′.
The two cases together prove that a ∈ E.
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Induction step: Assume that all arguments in E ′
i−1 are in E. Consider any a ∈ E ′

i .
Then all b ∈ A ′ such that b�′ a are attacked by E ′

i−1 according to �′. Then b could
be either a regular argument or a direct attack argument of the form c,X ⇒ att(a′) with
a′ ∈ Sub(a). In the latter case, since b ∈ A then, by the induction hypothesis, b is also
attacked by E according to �. In the first case, since b�′ a, there must exist a direct
attack argument m ∈ A of the form b,X ⇒ att(a′) with a′ ∈ Sub(a) such that m� a.
But, by induction hypotheses, b and m are both attacked according to� by E. The two
cases together prove that a ∈ E.

Since E ∩A ′ ⊆ E ′ and E ′ ⊆ E ∩A ′ then E ′ = E ∩A ′.

The second property we want to demonstrate builds on top of what we have just
proven. We have seen that it is possible to move the conflicts in the grounded extension at
the object level without altering the results. However, the resulting Equivalent Standard
AF still contains the meta-level attack arguments that are not in the extension or attacked
by a member of it. The question is whether there are cases in which the conflict frame-
work can be completely transformed into a regular argumentation framework. The im-
plication of this finding would be straightforward: the Conflict-based framework would
be a generalisation of a regular abstract argumentation framework. This is a fundamental
property for every model trying to provide a conservative extension like ours.

The next proposition shows that a Conflict-based Argumentation Framework is a
generalisation of a standard abstract argumentation framework.

Proposition 2 Consider a CAF=< A ,�> and its corresponding equivalent EAF=<
A ′,�′> built on the σ extension E. If ∀x ∈ {a ∈ A |Conc(a) = con f (φ ,ψ)} we have
that either x ∈ E or ∃(d,x) ∈� s.t. d ∈ E, then EAF is a regular argumentation frame-
work as in Definition 9.

Proof 2 By Definition 14 if all the conflict arguments are either in the extension or at-
tacked by a member of it, then all the Direct Attack Arguments can be discarded leaving
only the arguments produced using Definition 6. The attack set would then be given by
the set of conflicts claimed by the argument in the extension using Definition 7. Conse-
quently, the result is a regular argumentation framework as in Definition 9.

Example 3 (Gender Example: propositions) To ground Proposition 1 and 2 let us con-
sider again the framework in Example 2.First, we have to build the Equivalent Standard
AF using the results of Dung’s grounded semantics. All the conflict arguments are either
in the extension (A3) or attacked by a member of the extension (A4, A5). Accordingly, we
can delete from the set of arguments the linked attack arguments (MA0, MA1, MA2), and
use the conflict claimed by A3 to build the new attack set. We have only three attacks,
A9� A2, A9� A4 and A9� A5, as shown in Figure 2.

Figure 2. Equivalent Standard AF from Example 3
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If we apply the grounded semantics to the framework then we obtain the extension
{A0,A1,A3,A6,A7,A8,A9}—the same as in the Conflict-based AF but without attack ar-
guments, as claimed by Property 1. It is worth noting that we obtained a regular frame-
work as result: all the conflicts are known a priori and the same framework could have
been built using the standard ASPIC+ definitions.

In the general case, however, we cannot have a complete equivalency between a
CAF and a regular framework. Indeed, if an argument for con f (ψ,φ) is undecided –
neither in the extension nor attacked by one of its members –, then the uncertainty can
be propagated to the attack argument and then to the attacked argument, thus preventing
them to be part of the extension. We could not obtain the same result without considering
the Direct Attack Argument, because the absence of the conflict would potentially allow
the attacked argument to be accepted without considering the potential uncertainty in
the state of the conflict. In other words, a CAF framework is capable of conveying more
information on the state of an attack w.r.t. a standard argumentation framework, thus
making the transformation to a regular framework impossible in the general case.

Example 4 (Partial Transformation) Let us consider the theory where Kp = {p,q,r,−r}
and Ks = {con f (r,−r),con f (−r,r)} and Rd = {r => con f (p,q)}. Starting from this
theory we can build the Conflict-based framework and then the Equivalent one as shown
in Figure 3.

Figure 3. Conflict-based Argumentation framework from Example 4 on the left, Equivalent framework on the
right.

If we apply Dung’s grounded semantics to the frameworks, in both cases we obtain
the extension {A0,A5,A6}. It can be noticed that the Equivalent framework still contains
an attack argument (A7) due to the uncertainty in A3’s evaluation. Indeed, without know-
ing if A3 is in the extension or definitely rejected – i.e. attacked by a member of the ex-
tension –, it is impossible to decide whether A0 should attack A1 or not in the Equivalent
Standard AF. Consequently, every alteration of the Equivalent attack set on the basis of
this conflict would lead to a possible modification in the semantics results—i.e. the attack
argument A7 with the connected attacks must be preserved in the Equivalent AF.
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4. Related Research

Modgil & Bench-Capon [8] introduce the notion of meta-level argumentation frame-
works. The arguments of meta-level argumentation frameworks make claims about
object-level abstract argumentation frameworks according to the theory of such frame-
works, for example, “A is in a preferred extension of AF” or “argument A in AF defeats
argument B in AF”. Constraints are formulated on the attacks of the meta-level frame-
work to ensure that such statements are correct with respect to the object level. For exam-
ple, “y defeats x” attacks “x is justified”. This allows the formalisation of Dung’s theory
of abstract argumentation frameworks in meta-level argumentation frameworks that have
the same semantics as Dung’s original frameworks. Moreover, Modgil & Bench-Capon
show that the same approach can be used to formalise variants of Dung-style argumenta-
tion frameworks, such as preference- and value based AFs and extended AFs. In a similar
way, Boella & al. [9] develop a general methodology for instantiating Dung’s original
argumentation frameworks starting from extended argumentation frameworks through a
flattening technique—comparably to what is done in [10]. The resulting framework oper-
ates on meta-arguments, for example in the form “argument A is accepted” while remain-
ing in the formal framework of Dung’s argumentation theory. While these approaches
are theoretically very interesting, they do not specify the structure of arguments at the
object level and therefore seem less suitable for knowledge representation.

Moving beyond abstract argumentation, [11] introduces a variant of defeasible logic,
Defeasible Meta-Logic, to represent defeasible meta-theories, by proposing algorithms
to compute the (meta-)extensions of such theories, and by proving their computational
complexity.

Wooldridge & al. [12] develop a completely different approach for dealing with the
meta-argumentative nature of argument systems. The work proposes a hierarchical first-
order meta-logic, producing a three tiers argument system. Level 0 contains statements
on the object domain, level 1 introduces the notion of arguments and acceptability, while
level 2 is used to reason on the structure of arguments and their relations. This formalism
– because of the required hierarchical representation –, although enabling a clear separa-
tion between meta- and object- level concepts, could result in decreased flexibility in the
formalisation of the knowledge in the system.

A limited kind of meta-argumentation can be found in argumentation frameworks
that allow for arguments about preferences. In [13] conflicts between mutually rebutting
arguments are decided by preferences, which are established by arguments included in
the same argumentation framework. A fix-point semantics is used to compute extensions
including preference arguments. Reasoning about preferences has been recently mod-
elled by introducing a new kind of attack, namely, a preference-based attack against at-
tacks [14]. Dung & al. [4] expands this idea, by having a framework that includes at-
tack arguments, as well as preference attack arguments against attacks. In this way, the
framework obtained can be evaluated by using standard Dung semantics.

5. Conclusions

Our paper has presented a meta-argumentation framework for reasoning over conflicts.
In particular, we have provided an ASPIC+ extension allowing the encoding of conflicts
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between formulae in the argumentation language. The conflicts – on which can be argued
in the framework – are exploited to build meta-arguments representing attacks between
arguments. The result is a framework in which the set of valid attacks is dynamically
connected to the acceptability status of the conflicts used to derive them. In this way, we
have modelled meta-argumentation while preserving the semantics of standard abstract
argumentation introduced by [2].

At the moment, this work is limited to grounded semantics only. A natural direc-
tion for a future extension is to also provide formal proofs of the framework soundness
for other Dung’s semantics—i.e. complete, stable, preferred. Future work will also be
devoted to comparing with alternative approaches, e.g. [12] as applied in [15], and ex-
tending the model so as to include other meta-components in the framework—e.g. con-
ditional preferences [4] and nested meta-rules [11].
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Abstract. This paper formally studies a notion of dialectical argument strength in
terms of the number of ways in which an argument can be successfully attacked
in expansions of an abstract argumentation framework. The proposed model is ab-
stract but its design is motivated by the wish to avoid overly limiting assumptions
that may not hold in particular dialogue contexts or in particular structured accounts
of argumentation. It is shown that most principles for gradual argument accept-
ability proposed in the literature fail to hold for the proposed notion of dialectical
strength, which clarifies their rational foundations and highlights the importance of
distinguishing between logical, dialectical and rhetorical argument strength.

Keywords. Dialectical argument strength, Structure of arguments, Nature of attack

1. Introduction

A recent trend in the formal study of argumentation is the development of gradual notions
of argument acceptability, as alternatives to extension-based notions defined on top of
the theory of abstract [9] or bipolar [7] argumentation frameworks. In [14] we argued
that such work should make explicit which kind of argument strength or acceptability is
modelled, since different kinds of strength may have different properties. In particular,
we distinguished between logical, rhetorical and dialectical argument strength.

Logical argument strength in turn divides into two aspects. Inferential argument
strength is about how well an argument’s premises support its conclusion considering
only the argument itself. For example, deductive arguments are stronger than defeasible
arguments. Contextual argument strength is about how well the conclusion of an argu-
ment is supported in the context of all given arguments. Formal frameworks like Dung’s
theory of abstract argumentation frameworks, assumption-based argumentation, ASPIC+

and defeasible logic programming formalise this kind of argument strength [10].
Rhetorical argument strength looks at how capable an argument is to persuade other

participants in a discussion or an audience. Persuasiveness essentially is a psychological
notion; although principles of persuasion may be formalised, their validation as princi-
ples of successful persuasion is ultimately psychological.

Finally, dialectical argument strength looks at how challengeable an argument is in
the context of a critical discussion. In [15, pp. 657] this is formulated as
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(. . . ) the (un)availability of participant moves that constrain further interlocutor
moves. Minimally, argument strength thus is a function of the (un)availability of
non-losing future participant moves. In this sense, the strongest proponent-argument
leaves no further opponent-move except concession (i.e., retraction of either a stand-
point or of critical doubt), and the weakest proponent argument constrains no
opponent-move, given the “move-space”.

Thus conceived, an important aspect of dialectical strength is the degree of attackability
of an argument, that is, how many attacks are allowed in a given state that decrease the
argument’s contextual status. This reflects an intuition that many decision makers are
aware of, namely, to justify one’s decisions as sparsely as possible, in order to minimise
the chance of successful appeal. It is this notion of dialectical strength that is the focus
of the present paper.

We first propose a refined version of the notion of a normal expansion [3] of an
abstract argumentation framework, designed so as to avoid overly limiting assumptions
about the nature of arguments and their relations and the dialogical context. We then for-
malise dialectical argument strength in terms of teh number of ways to expand an argu-
mentation framework such that the argument’s contextual status decreases. We define this
notion in two equivalent ways (ranking-based and weighted) and we investigate some
of its formal properties. Among other things, we show that most principles for gradual
argument acceptability proposed in the literature fail to hold for our notion of dialectical
strength, which says something about the rational foundations of these principles.

2. Formal Preliminaries

An abstract argumentation framework (AF ) [9] is a pair (AAF , CAF ), where AAF is a
set of arguments and CAF ⊆ AAF × AAF is a relation of attack. We write A ∈ AF
as shorthand for A ∈ AAF and we will omit the subscripts if there is no danger for
confusion. We will sometimes in text present anAF asA ← B ↔ C, to denote thatA =
{A,B,C} and C = {(B,A), (B,C), (C,B)}. Argument A is an attacker of argument
B if (A,B) ∈ C, andA is a direct defender ofB if for some attacker C ofB it holds that
(A,C) ∈ C. An attack branch, respectively, defense branch of an argument A1 is a finite
sequence A1, . . . , An such that n is even, respectively, odd, and in both cases An has no
attackers and for each i < n it holds that Ai+1 attacks Ai. Argument Bi is a defender of
argument A1 iff Bi is in an attack or defense branch of A1 and i > 1 and i is odd.

The semantics of AFs [9,2] identifies sets of arguments (called extensions) which
are internally conflict-free (no member attacks a member) and defend themselves against
all attackers. In this paper we use the labelling way to define semantics for AFs. A
labelling of a set A of a set of arguments in an AF = (A, C) is any triple of non-
overlapping subsets (in,out,und) of A that satisfies the following constraints:

1. an argument is in iff all arguments attacking it are out;
2. an argument is out iff it is attacked by an argument that is in;
3. an argument is und (for ‘undecided’) iff it is neither in nor out.

In this paper we focus on grounded semantics, leaving generalisation to other semantics
for future research. The grounded labelling of anAF minimises the set of arguments that
are labelled in and is always unique. A set S ⊂ A is called the grounded extension of
AF iff S is the set of all arguments labelled in in the grounded labelling.
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3. Dialectical Argument Strength: ranking-Based Semantics

In this section we define a ranking-based semantics of dialectical strength of arguments
in the form of a preorder on the set of arguments. Dialectical argument strength has both
static and dynamic aspects. A static aspect is whether an argument has been successfully
defended in a terminated dialogue, which is a matter of applying a notion of contextual
strength at termination. Dynamic aspects concern how challengeable an argument is in a
given non-final state of the dialogue. Taking the formulation of [15] quoted above in the
introduction literally, it should be modelled by considering all possible ways to terminate
the dialogue but in general this is infeasible sicne it will often be impossible to foresee
which information is available to construct arguments, how they will be evaluated, and
which procedural decisions (such as on admissibility of evidence) will be taken.

For these reasons, we propose the following approach. Imagine a dialogue partici-
pant who can extend a given AF and who wants to make a given argument F (the focus
argument) dialectically as strong as possible. The participant will consider all procedu-
rally allowed expansions AF ′ of AF and determine in which of these expansions F is
the strongest. So in general we have to compare arguments that are in different AFs.
Moreover, our notion of strength will not boil down to applying a notion of contextual
strength to all these expansions, since we also want to determine how vulnerable F is to
attack in all these expansions. To this end we will define a notion of ‘attack points’ of an
argument, which are minimal sets of arguments that, if attacked in an allowed expansion,
make the contextual status of the focus argument decrease.

To model these ideas, we let dialectical strength be determined by a combination
of the ‘current’ contextual strength of an argument and its number of attack points as
follows. To start with, we assume a ranking of contextual argument statuses, which in
the present paper will be that being labelled in is better than being labelled undecided,
which is better than being labelled out. In notation: in >c und >c out. (In future research
this could be extended to alternative semantics, even to gradual ones, but in this paper
we prefer to keep things simple to focus on the essence.) Then, given the set of allowed
expansions {AF ′, AF ′′, . . .} of a given AF , we say that if argument AAF ′ is contextu-
ally better than argument BAF ′′ then it is also dialectically better than argument BAF ′′ ,
while ifAAF ′ andBAF ′′ are contextually equally strong, thenAAF ′ is better thanBAF ′′

if AAF ′ has fewer attack points thanBAF ′′ . So this notion of dialectical strength presup-
poses and is a refinement of the notion of contextual strength. The primacy of contextual
strength is justified by our intended application scenario, where a proponent of a focus
argument F wants to move to a state where F is contextually as strong as possible. More-
over, if contextual strength has primacy, then for terminated disputes dialectical strength
reduces as desired to how well an argument is defended at termination.

Consider an example AF = A ← B and let A be the focus argument. Assume the
proponent of A can expand AF with either C, resulting in AF ′ = A ← B ← C, or
withD, resulting in AF ′′ = A ← B ← D. In both expansions A is in so contextually of
the same strength. However, assume that C is attackable while D is unattackable. Then
A has two attack points in AF ′, namely, {A} and {C}, while A has only one attack
point in AF ′′, namely, {A}. So A is dialectically stronger in AF ′′ than in AF ′, so the
dialectically better choice for the proponent is to expand AF to AF ′′ by moving D.

An attack point must be defined as a set of arguments. Consider Figure 1. Attacking
just C or just D is not enough to lower the status of A, so one attack point must in this
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Figure 1. Multiple attack points

case be defined as {C,D}. Note, furthermore, that attacking F also lowers the status of
A, so {F} is also an attack point of A, so an argument can have multiple attack points.

To define attack points, we now first define the notion of an allowed expansion of an
AF , which is a refinement of [3]’s notion of a normal expansion. The first refinement is
to make expansions relative to a given background universal argumentation framework
UAF = (Au, Cu). An important reason for doing so is to avoid implicit assumptions at
the abstract level that are not always satisfied by instantiations, such as that all arguments
are attackable or that all attacks are independent from each other.

Definition 1 Given a universal argumentation framework UAF = (Au, Cu), an argu-
mentation framework in UAF is any AF = (A, C) such that A ⊆ Au and C ⊆ Cu

|A×A.

That C is not required to equal Cu
|A×A is to allow for instantiations like ASPIC+ that use

preferences to resolve attacks into defeat relations and let C stand for defeat.
We must also distinguish between allowed and not allowed expansions. One reason

is that the dialogical protocol may impose constraints, such as admissibility of premises
or of types of arguments (for example, in some systems of criminal law analogical ap-
plications of criminal provisions are not allowed). The problem context may also impose
restrictions. For example, investigation procedures in which information gathering is in-
terchanged with argument construction may have a constraint that all and only relevant
arguments constructible from the gathered information are included. Finally, underly-
ing structured accounts of argumentation may impose such constraints, for example, a
closure constraint on the set A′ of new arguments in that other arguments that can be
constructed with information introduced by arguments in A′ must also be in A′.

We now define (allowed) expansions relative to a given UAF as follows.

Definition 2 [Expansions given a universal argumentation framework] Let AF =
(A, C) and AF ′ be two abstract argumentation frameworks in UAF . Then AF ′ is an
expansion of AF given UAF if AF ′ = (A∪A′, C ∪ C′) for some nonempty A′ disjoint
from A, such that for all A,B: if (A,B) ∈ C′ then A ∈ A′ or B ∈ A′.

Let UAF e be the set of all expansions of some AF given UAF . Then aUAF e ⊆
UAF e is the set of allowed expansions given UAF .

A further refinement is needed. Imagine two attackable but unattacked arguments A and
B such that for both of them expansions exist that lower their status. Then they both have
one attack point, namely, {A}, respectively, {B}. However, if A has just one attackable
premise while B has two, or A uses one defeasible rule while B uses two, then A should
still be dialectically stronger than B. Accordingly, we assume that each argument A in a
UAF comes with a finite set t(A) of attack targets and we assume that each argumentB
attacking A attacks A on at least one of A’s attack targets. Given a set S of arguments,
we write St for the set of all pairs (A, t) such that A ∈ S and t ∈ t(A).
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Finally, we need a notion of relevance of a set of defenders to the status of the
defended argument. It adapts the dialogical notion of relevance proposed in [13] toAFs.

Definition 3 For any AF = (A, C) with A ∈ A, a set S ⊆ A is relevant to A in AF
iff S is a minimal set such that the contextual status of A is lower in AF ′ = (A′, C′)
than in AF , where A′ = (A ∪ {X}) for some X not in A and not attacked by A, and
C′ = C ∪ {(X,B) | B ∈ S}.

So S is relevant to A in AF iff AF can be expanded with an unattacked attacker of all
members of S such that A’s contextual status is lowered. Note that this notion is not
defined relative to a UAF . If S is relevant to A then all arguments in S are defenders of
A but it can happen that a defender of A is in no set relevant to A. In Figure 2, C and G
are defenders of A but attacking either of them does not lower the status of A; this only
happens if either A or D is attacked, so the only sets relevant to A are {A} and {D}.

Figure 2. Relevant sets

We are now in the position to define the notion of an attack point of an argument.

Definition 4 [Attack points] Given an abstract argumentation framework AF = (A, C)
in UAF , an attack point of an argument A ∈ A is any minimal set S ⊆ At relevant to A
such that an allowed expansion AF ′ = (A∪A′, C ∪ C′) of AF given UAF exists with

1. for all (B, t) ∈ S there exists an argument C ∈ A′ such that C attacks B on t;
2. the contextual status of A is lower in AF ′ than in AF .

The set of attack points of A given AF is denoted by apAF (A).

It is not required that all arguments in A′ attack some argument in S, since including
an attacker of S in A′ might require putting other arguments in A′ as well, such as
A’s subarguments in systems in which arguments have subarguments. Also, Definition 4
allows for ‘side effects’ in that the new attackers may also attack arguments outside S
or arguments in A but outside S may attack them. For example, an argument attacking
another argument on its premise may also attack all other arguments using that premise.

We can now give our definition of dialectical argument strength, by combining the
notion of contextual strength with the number of attack points of arguments. Several def-
initions are still possible and the ones given by us are not meant to be the final answer but
instead to initiate the discussion about what are good definitions. First, we give primacy
to the current contextual evaluation in that being contextually stronger implies being di-
alectically stronger. If two arguments are contextually equally strong, then we refine this
ordering by comparing their sets of attack points.

Definition 5 [Dialectical strength] LetAF = (A, C) andAF ′ = (A′, C′) be two abstract
argumentation frameworks in a given UAF and let A ∈ A and B ∈ A′ where the
contextual status of A in AF is s and the contextual status of B in AF ′ is s′. We say that
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AAF ≥c BAF ′ iff either s = in, or s = und and s′ 	= in, or s = s′ = out. Moreover, we
say that AAF ≥d BAF ′ iff

1. AAF ≥c BAF ′ ; and
2. if BAF ′ ≥c AAF then |apAF (A)| ≤ |apAF ′(B)|.

Below we will leave the subscripts of the arguments implicit if there is no danger of
confusion. As usual, B ≤ A stands for A ≥ B while A > B stands for A ≥ B and
B 	≥ A, and A ≈ B stands for A ≥ B and B ≥ A.

The condition that an attack point of A is relevant to A is to exclude examples like
an AF with unattacked A and B which are both attacked by the same argument C from
UAF : without the relevance condition and if expanding AF with C is allowed, then
{(B, t)} would (for a given t) be an attack point of A, which is undesirable.

We now illustrate the definition with the AFs in Figure 3. Many current gradual

Figure 3. The reinstatement pattern

accounts regard AAF1 as stronger than AAF2 based on the intuition that having no at-
tackers is better than having attackers (the principle of Void Precedence discussed in the
next section). In our approach, this depends on several things. Suppose first that all of A,
B and C have attackers in UAF , that A and C have one attack target, respectively, t and
t′, that A has other unattacked attackers in UAF besides B, and that all expansions are
allowed. Then AAF1 has just one attack point, namely, {(A, t)}, while AAF2 has two
attack points, namely, {(A, t), (C, t′)}. So in this case having no attackers is better.

However, assume now that A has no other attackers in UAF besides B, or that A
does have other attackers in UAF but that no expansion with these other attackers is
allowed, perhaps for efficiency reasons. In both cases AAF1 still has the single attack
point {(A, t)} but AAF2 now also has just one attack point, namely, {(C, t′)}. So here
having no attackers is not better than having attackers.

Finally, suppose we change this variation by letting C have no attackers in UAF .
Then AAF2 has no attack points, so we have a case where an argument that has attackers
in one AF is better than an argument that has no attackers in another AF . In conclusion,
whether having no attackers is better than having attackers depends on the nature of the
arguments and their relations and on the context in which they are evaluated.

4. Properties of Dialectical Argument Strength

We now investigate some properties of our definition of dialectical argument strength.
First, ≥d is a total preorder, that is, transitive and reflexive.

Proposition 1 For all arguments A,B,C and argumentation frameworks AF , AF ′ and
AF ′′ in a given UAF :

1. AAF ≤d AAF

2. If AAF ≤d BAF ′ and BAF ′ ≤d CAF ′′ then AAF ≤d CAF ′′
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PROOF. (Sketch:) (1) is immediate, while (2) follows from the facts that both ≤c and a
cardinality ordering on sets are total and that ifAAF ≈c BAF ′ , then a further comparison
is made in terms of the cardinality of sets. QED

Definition 6 A UAF satisfies the attack property iff for all arguments A, B and C in
UAF and all attack targets t that are shared by A and B it holds that C attacks A on t iff
C attacks B on t.

The attack property is, for instance, satisfied by assumption-based argumentation in gen-
eral and by ASPIC+ for the case with so-called reasonable argument orderings.

Proposition 2 Consider any UAF satisfying the attack property and let AF be an ar-
gumentation framework in UAF containing arguments A and B. Then if t(A) ⊆ t(B)
then AAF ≥d BAF .

PROOF. Suppose for contradiction that A <d B and suppose first that A <c B. If B is
in but A is not in then there exists an attacker C of A that is not out. But then C also
attacks B so B is not in. If B is undecided and A is out then there exists an attacker C
of A that is in. But then C also attacks B so B is out. Contradiction.

Suppose next that A ≈c B and suppose for contradiction that there exists an attack
point of A that is not also an attack point of B. This implies that A is not out in AF .

Suppose first that A is in. Then there exists an allowed expansion AF ′ of AF where
some attackers of A in AF are not out and which make that A is not in in AF ′. By the
attack property, these attackers are also attackers of B, so B is not in in AF ′, so the
attack point of A is also an attack point of B. Contradiction.

Suppose next that A is und. Then there exists an allowed expansion AF ′ of AF
were some attackers of A are in and make that A is out in AF ′. By the attack property,
these attackers are also attackers of B, so B is out in AF ′, so the attack point of A also
is an attack point of B. Contradiction.

QED

Proposition 2 is what one would expect from dialectical strength as degree of attackabil-
ity. Its more general version where A and B can be from different AFs does not hold. A
counterexample is displayed in Figure 4. Here {(A, t)} is (for a given t) an attack point

Figure 4. Counterexample to general version of Proposition 2

of A in AF1 but not in AF2 since B protects A in AF2 against an expansion with C.
This illustrates that for dialectical strength the dynamic context is important.

Technically our proposal is in the class of ranking-based semantics. We therefore
next investigate principles proposed in the literature on ranking-based semantics, basing
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ourselves on [5]. However, we should first discuss the possible objection that these prin-
ciples were never intended for dialectical strength, so that investigating them would for
present purposes be irrelevant. Against this, it should first be noted that authors are gener-
ally not explicit about the kind of strength for which their principles are intended. More-
over, some principles compare different AFs, just as our notion of dialectical strength
does, so their underlying intuitions might involve dialectical elements. For these reasons
it still makes sense to investigate whether the principles proposed in the literature are
suitable for notions of dialectical argument strength. For cases where the underlying in-
tuitions of the proposed principles are not made explicit, our investigation will reveal to
which extent they can be based on intuitions concerning dialectical strength.

For reasons of space we have to present the principles discussed in [5] semiformally
and we cannot (fully) discuss all of them. When giving counterexamples, we can assume
that all considered expansions are allowed.

Proposition 3 Of all principles discussed by [5], Definition 5 only satisfies Attack vs
Full Defense and Total.

PROOF. Total says that ≤d is a total ordering. This is stated by Proposition 1. Attack vs

Full Defense says for acyclic AFs that an argument without any attack branch is ranked
higher than an argument only attacked by one non-attacked argument. This holds since
any argument of the former kind is in while any argument of the latter kind is out. QED

For reasons of space we can only give counterexamples to some of the other properties.
Abstraction says that different AFs of the same form should evaluate arguments

having the same structural relations in the AFs equally. For a counterexample, consider
AF1 with justA and having one attack target andAF2 with justB and having two attack
targets, where UAF contains additional arguments making that all three attack targets
induce the corresponding singleton set attack point. Abstraction says that A and B are
of the same rank but we have A >d B. Even if all arguments have the same number
of attack targets, there are counterexamples. Assume that both A and B have one attack
target and thatUAF contains an attacker ofB but not ofA. Then we again haveA >d B.

Void precedence says that a non-attacked argument is ranked strictly higher than
any attacked argument in the same AF . One counterexample was given Section 3. An-
other counterexample is figure 5,which depicts a UAF with an AF in UAF contained

Figure 5. Counterexample to Void Precedence

in the dotted box. Assume all arguments have a single attack target. Then A has attack
point {(A, t)} but A′ has no attack points, since B protects A′ against expanding AF
with D attacking A.
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For two principles that do not hold in general we have identified a special case in
which they hold. The Quality Preference principle says that if there exists an attacker
C of B such that for all attackersD of A it holds that C >d D, then A >d B. It holds in
the following special case, since then we have A >d B so A >c B.

Proposition 4 Def. 5 satisfies Quality Preference if C >d D for all D attacking A.

A weak version holds of Defence Precedence, which we call Weak Defense Prece-

dence, saying that if AAF and BAF have the same number of attackers in AF but AAF

has direct defenders while BAF has no direct defender, then AAF 	<c BAF . This holds
since an attacked argument with no defenders is always out.

Proposition 5 Definition 5 satisfies Weak Defence Precedence.

Why do most principles fail to hold? This is for two main reasons. They fail since they
just consider the topology of an AF while dialectical strength also depends on the dy-
namic context in which an AF can evolve, and/or they fail since they make implicit as-
sumptions on the nature of arguments and their relations that do not hold in general, such
as that all arguments have an equal number of attack targets.

5. Dialectical Argument Strength: semantics for weighted AFs

We next adapt our approach to so-called weighted argumentation frameworks [1].

Definition 7 Aweighted argumentation framework wAF is a triple (AwAF, wwAF ,CwAF)

where AwAF and CwAF are defined as for AFs and wwAF is a function from AwAF

into [0, 1]. A semantics for a wAF is another function swAF from A into [0, 1].

As above, we omit the subscripts if they are clear from the context. Now a weighted
universal argumentation framework wUAF is a triple (Au, wu, Cu), and anAF inUAF
is any wAF = (A, w, C) such that A ⊆ Au and w = wu

|A and C ⊆ Cu
|A×A. The other of

the above definitions for AF s then also apply to wAFs by ignoring w.
We define an argument’s weight in a wUAF in terms of its number of attack targets:

wwUAF (A) =
1

1+ | t(A) |

Note that all weights are between 0 and 1 and that an argument without attack targets has
weight 1. We next redefine dialectical argument strength for wAFs as follows.

Definition 8 [Dialectical argument strength with weights] An argument’s attack point
degree is defined as dwAF (A) =

1
1+|apwAFA| . Then swAF (A) is defined as follows:

• if A is in then swAF (A) = dwAF (A)
2 + 0.5;

• if A is und then swAF (A) =
dwAF (A)

2 ;
• if A is out then swAF (A) = 0.

It can be shown that Definition 8 induces the same ranking on arguments as Definition 5.
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Lemma 6 For anywAF and any argumentA ∈ wAF it holds thatA is in iff swAF (a) >
0.5; A is und iff 0 < swAF (a) ≤ 0.5; and A is out iff swAF (a) = 0.

Lemma 7 Let AF and AF ′ be equal to wAF and wAF ′ but without weight functions.
Then if AAF ≈c BAF ′ then |apAF (A)| ≤ |apAF ′(B)| iff swAF (A) ≤ swAF ′(B).

Proposition 8 Let wAF and wAF ′ be wAFs, A ∈ wAF and B ∈ wAF ′ and let AF
and AF ′ be equal to wwAF and wwAF ′ but without weight functions. Then A ≤d B iff
swAF (A) ≤ swAF ′(B).

PROOF. For the only-if part assume A ≤d B. Two cases must be considered. If A <c B
then swAF (A) < swAF ′(B) by Lemma 6. If A ≈c B then |apAF (A)| ≤ |apAF (B)| so
swAF (A) ≤ swAF ′(B) by Lemma 7.

For the if-part assume swAF (A) ≤ swAF ′(B). Two cases must be considered. If
A <c B then A <d B so A ≤d B. If A ≈c B then by Lemma 7 we have |apAF (A)| ≤
|apAF ′(B)| so A ≤d B. QED

We next investigate the principles proposed in the literature for semantics of weighted
AFs, basing ourselves on [1]. As for ranking-based semantics, for space limitations we
cannot discuss all principles while their presentation has to be semiformal.

Proposition 9 Of all principles discussed by [1], Definition 8 only satisfies Weakening
Soundness and Compensation.

PROOF. Weakening soundness says that for any wAF and any A ∈ wAF , if
swAF (A) < wwAF (A) then there exists an attacker B ∈ wAF such that swAF (B) > 0.
We prove this by contraposition. If there exists no suchB, then all attackers ofA are out.
But then A is in in wAF . Then |apwAF (A) ≤ t(A)|, so dwAF (A) 	< wwAF (A). But
then swAF (A) 	< wwAF (A).

Compensation says that there exist wAF in which more weak attackers compen-
sate for fewer stronger attackers. The proof has to specify just one such wAF . Figure 6

Figure 6. Proof of Compensation

displays a wAF with the number of attack targets of each argument indicated. Assume
that all attack targets are an attack point since they have an attacker in UAF (not shown).
Note that all arguments are und. Then swAF (C) = swAF (D) = 1

6 and swAF (E) = 1
4 .

So A has more attackers with nonzero strength than B while B has an attacker that is
stronger than all attackers of A. Moreover, swAF (A) = swAF (B) = 1

4 > 0. QED

Counterexamples to the other principles can be constructed as for Definition 5 by consid-
ering the context of wAF as defined by wUAF or by considering arguments with sets
of attack points of different cardinality. Consider Monotony, which says that, for any
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Figure 7. Counterexample to Monotony

A,B ∈ wAF , if wwAF (A) = wwAF (B) and all attackers of A in wAF are attackers
of B in wAF , then swAF (A) ≥ swAF (B). A counterexample is displayed in Figure 7.
Here {(A, t)} is an attack point of A since expanding AF with E makes A out but no
expansion makes B out. However, monotony does hold for a special case:

Proposition 10 Monotony holds if all attackers of A in wUAF are attackers of B in
wUAF and wUAF satisfies the attack property.

6. Related Research

We do not know of earlier formal work that explicitly addresses dialectical argument
strength. Arguably, work on enforcing, preserving or realising a particular argument sta-
tus [3,8,4], does so implicitly. Compared to this work, we are interested in how the ac-
ceptability status of an argument can decrease. A recent structured approach in ASPIC+

is [12] (abstracted to AFs in [11]), who study whether argument and conclusion statuses
can change under expansions of the knowledge base, to find out whether searching for
further information makes sense. It would be interesting to investigate how all this work
on argument dynamics can be combined with studies of dialectical argument strength.

As noted above, most work on gradual acceptability does not indicate which as-
pect(s) of argument strength is or are modelled. A recent exception is [6], who model
two aspects of “persuasiveness’,’ i.e., of rhetorical strength. The first is procatalepsis,
the attempt of a speaker to strengthen their argument by dealing with possible counter-
arguments before the audience can raise them. The second aspect is fading, the phe-
nomenon that long lines of argumentation are less persuasive. Bonzon et al. claim that
“current ranking-based semantics are poorly equipped to be used in a context of persua-
sion”. Among other things, they show that procatalepsis violates the Void Precedence
principle. While we agree with their observation, we note that in the end they do not give
a separate model of persuasiveness but combine these two aspects with existing strength
principles into an overall measure of argument strength, thereby still conflating the three
kinds of argument strength. We instead prefer to separately study different notions of
argument strength, since these notions may serve different purposes and may therefore
evaluate the same arguments differently.

7. Conclusion

In this paper we presented the first formal study of dialectical argument strength, mod-
elled as the number of ways in which an argument can be successfully attacked in ex-
pansions of an argumentation framework. We showed that most principles for gradual
argument acceptability proposed in the literature fail to hold for the new notion, which
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reveals something about the possible rational foundations of these principles and high-
lights the importance of distinguishing between kinds of argument strength. Our model
is abstract but its design is motivated by the wish to avoid overly limiting assumptions
on dialogue contexts or the structure of arguments and their relations.

Are our partly negative results on satisfaction of the principles bad for our approach
or for the principles? There is no easy answer to this question but we note that in the
literature most principles are based on intuitions instead of on philosophical insights.
Therefore it is not obvious why they should hold; it may just as well be that if a semantics
based on philosophical insights and arguably reflecting good properties does not satisfy
some principle, then this indicates that the principle may not be suitable for the modelled
notion. Our semantics is based on [15] and arguably satisfies desirable properties. In
particular, we believe that Proposition 2 and the satisfaction of Weakening Soundness
and the special case of Monotony indicate that our semantics captures the ideas of [15]
and the intuition that justifying a decision more sparsely is better.

In future research we want to extend our abstract model with support relations be-
tween arguments and to study structured instantiations of our model and applications to
particular dialogue contexts. We also want to extend our approach to semantics other
than grounded semantics, including gradual semantics.
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Ordinal Conditional Functions for
Abstract Argumentation

Kenneth SKIBA and Matthias THIMM
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Abstract. We interpret and formalise ordinal conditional functions (OCFs) in ab-
stract argumentation frameworks based on ideas and concepts defined for condi-
tional logics. There, these functions are used to rank interpretations, and we adapt
them to rank extensions instead. Using conflict-freeness and admissibility as two
essential principles to define the semantics of OCFs, we obtain a framework that
allows to rank sets of arguments wrt. their plausibility. We analyse the properties
of this framework in-depth, and in doing so we establish a formal bridge between
the approaches of abstract argumentation and conditional logics.

Keywords. Abstract Argumentation, Ranking Functions

1. Introduction

Abstract argumentation frameworks (AF) [1] have gathered research interest as a model
for rational decision-making in presence of conflicting information. Using AFs, argu-
ments and attacks can be represented as nodes and edges, respectively, of a directed
graph. In order to reason over AFs extension semanticswere defined, which are functions
such that a set of arguments can be considered jointly acceptable. Recently Skiba et al.
[2] generalised this reasoning process to rank sets of arguments based on their plausibil-
ity. Another used reasoning formalism is conditional logic, which studies conditionals
like “if A then B” written as (B | A). So given the information that A is true it is more
“believable” that B is true, than B being not true. In order to define a value of believabil-
ity, ordinal conditional functions (OCF) (also known as ranking functions) were defined
[3]. These functions can be used to rank possible worlds according to their plausibility.
One example of an OCF is the System Z ranking function [4], which exhibits particularly
good reasoning properties.

In recent years, the relationship between argumentation and conditional logic was
investigated in [5,6,7,8] and by Weydert [9,10]. While abstract argumentation usually
only provides a criterion to determine whether a set of arguments is jointly accepted or
not, OCFs on the other hand can rank possible worlds according to their plausibility.
In this paper, we want to use these ideas from conditional logic to reason in abstract
argumentation. Our goal is to rank sets of arguments according to their plausibility, i. e.,
we can state not only whether a set of arguments is accepted or not, but also state that a
set is more plausible than another one. In particular, we can rank sets of arguments, which
are not jointly acceptable w.r.t. extension semantics, for example, we can say that out of
two conflicting sets one of them is more plausible. One potential application of such a
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ranking is decision-making in presence of constraints, where a solution (represented as a
set of arguments) satisfies constraints that cannot be satisfied by a set of arguments under
extension semantics. One possible way to still make a decision would be to select the
most plausible sets of arguments, which are satisfying the constraints.

To achieve such a ranking of sets of arguments, we will use the guiding principles
of admissible reasoning for abstract argumentation frameworks namely conflict-freeness
and admissibility to develop ordinal conditional functions for abstract argumentation. In
order to connect abstract argumentation and conditional logics we interpret the set of
attacks as a set conditionals. Since there can be a number of functions satisfying the
defined principles, we develop a model-based reasoning technique inspired by System
Z. This System Z ranking function allows us to model plausibility values for each set of
arguments I being in while a different set O is out. These plausibility values can be used
to rank sets of arguments, and therefore continue recent work about extension-ranking
semantics started in [2].

This paper is structured as follows. We recall all necessary preliminaries about ab-
stract argumentation and conditional logics in Section 2. Section 3 introduces OCFs for
abstract argumentation. In Section 4, we look at OCFs based on System Z. A extension-
ranking semantics is introduced in Section 5 as well as an in-depth investigation of the
properties of that semantics is presented. We conclude this paper in Section 6 with a
discussion about related work.

2. Preliminaries

In this section, we recall all necessary definitions of abstract argumentation and condi-
tional logics.

2.1. Abstract Argumentation

Argumentation frameworks [1] are a formalism that allows the representation of conflicts
between pieces of information using arguments and attacks between arguments.

Definition 1. An abstract argumentation framework (AF) is a directed graph AF =
(A,R) where A is a finite set of arguments and R is an attack relation R⊆ A×A.

An argument a is said to attack an argument b if (a,b) ∈ R. We say that an argument
a is defended by a set S ⊆ A if every argument b ∈ A that attacks a is attacked by some
c ∈ S. For a ∈ A define a− = {b | (b,a) ∈ R} and a+ = {b | (a,b) ∈ R}, so the set of
attackers of a and the set of arguments attacked by a. For a set of arguments S ⊆ A we
extend these definitions to S+ and S− via S+ =

⋃
a∈S a+ and S− =

⋃
a∈S a−, respectively.

For two graphs AF= (A,R) and AF′ = (A′,R′), we define AF∪AF′ = (A∪A′,R∪R′).
To reason with abstract argumentation frameworks a number of different semantical

notions have been developed, like the extension-based or the labelling-based approaches,
for an overview see [11]. Both these approaches are handling sets of arguments, which
can be considered jointly acceptable. The extension-based semantics are relying on two
basic concepts: conflict-freeness and defence.

Definition 2. Given AF= (A,R), a set E ⊆ A is:
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a b c d

Figure 1. Abstract argumentation framework AF from Example 1.

• conflict-free iff ∀a,b ∈ E, (a,b) �∈ R;
• admissible iff it is conflict-free, and it defends its elements.

We use cf(AF) and ad(AF) for denoting the sets of conflict-free and admissible sets
of an argumentation framework AF, respectively. The semantics proposed by Dung [1]
are then defined as follows.

Definition 3. Given AF= (A,R), an admissible set E ⊆A is a complete extension (co) iff
it contains every argument that it defends; a preferred extension (pr) iff it is a⊆-maximal
complete extension; the unique grounded extension (gr) iff it is the ⊆-minimal complete
extension; a stable extension (st) iff E+ = A\E.

The sets of extensions of an argumentation framework AF, for these four semantics,
are denoted (respectively) co(AF), pr(AF), gr(AF) and st(AF). Based on these seman-
tics, we can define the status of any (set of) argument(s), namely skeptically accepted
(belonging to each σ -extension), credulously accepted (belonging to some σ -extension)
and rejected (belonging to no σ -extension). Given an argumentation framework AF and
an extension semantics σ , we use (respectively) skσ (AF), crσ (AF) and rejσ (AF) to de-
note these sets of arguments.

Example 1. Consider the argumentation framework AF= (A,R) depicted as a directed
graph in Figure 1, with the nodes corresponding to the arguments A= {a,b,c,d}, and the
edges corresponding to the attacks R= {(a,b),(b,c),(c,d),(d,c)}. The sets {a}, {a,c}
and {a,d} are complete extensions of AF, while only {a,c} and {a,d} are stable.

For more details about these semantics (and other ones defined in the literature), we
refer the interested reader to [1,11].

2.2. Conditional Logics

In order to define the usual propositional language L (At) over At we use a set of atoms
At and connectives ∧ (and), ∨ (or) and ¬ (negation). The function ω : At → {T,F}
defines an interpretation (or possible world) ω for L (At). Ω(At) denotes the set of all
interpretations. An interpretation ω satisfies an atom a ∈ At (ω |= a), iff ω(a) = T . As a
conditional we consider structures like (ψ | φ), which can be read as “if φ then (usually)
ψ”. Informally speaking, an interpretation ω verifies a conditional (ψ | φ) iff it satisfies
both antecedent (φ ) and conclusion (ψ) ((ψ | φ)(ω) = 1); it falsifies iff it satisfies the
antecedent but not the conclusion ((ψ | φ)(ω) = 0); otherwise the conditional is not
applicable. A conditional is satisfied by ω if it does not falsify it.

We use ordinal conditional functions (OCFs) (also called ranking functions) [3],
κ :Ω(At)→N∪{∞} to denote a plausibility degree of interpretations and define κ(φ) :=
min{κ(ω) | ω |= φ}. An OCF κ satisfies a set Δ of conditionals, if for each (ψ | φ) ∈ Δ,
κ(φ ∧ψ) < κ(φ ∧¬ψ), i. e., verifying a conditional is more plausible than falsifying
it. Since the set of all satisfying OCFs may be difficult to handle, one usually relies
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on model-based inference for reasoning. In this paper, we will focus on the System Z
ranking function [4] as an example for model-based inference.

Definition 4. A conditional (ψ | φ) is tolerated by a finite set of conditionals Δ if there
is a possible world ω , which verifies (ψ | φ) and does not falsify any conditional (ψ ′ |
φ ′) ∈ Δ. The Z-Partitioning (Δ0, ...,Δn) of Δ is defined as:

• Δ0 = {δ ∈ Δ | Δ tolerates δ}
• Δ1, ...,Δn is the Z-Partitioning of Δ\Δ0

For δ ∈ Δ : ZΔ(δ ) = i iff δ ∈ Δi and (δ0, ...,δn) is the Z-Partitioning of Δ. We define a
ranking function κZ

Δ via κZ
Δ (ω) = max{ZΔ(δ ) | δ (ω) = 0,δ ∈ Δ}+1, with max /0=−1.

Example 2 ([4]). Consider the following set of conditionals Δ about the flying ability of
penguins.

δ1: “birds fly” ( f | b) δ2: “penguins are birds” (b | p)
δ3: “penguins do not fly” (¬ f | p)

The Z-Partitioning of Δ is Δ0 = {δ1} and Δ1 = {δ2,δ3}, because Δ0 can be toler-
ated by all conditionals, while δ2 and δ3 cannot be tolerated by Δ. We can calculate the
plausibility value of interpretations ω . For example, a flying penguin (ω(p) = ω(b) =
ω( f ) = T ) receives a value of κZ

Δ (ω) = 1.

3. Ordinal Conditional Functions for Abstract Argumentation

In this section we define OCFs for abstract argumentation. We define a function κ with
two parameters (I and O) to calculate a numerical plausibility value. These parameter are
sets of arguments where the first set I is considered in, and the second set is considered
out. So κ(I,O) = 0 means that the set I being in and the set O being out is not surprising.
Note that our OCF need two parameters instead of only one, like in conditional logics,
since abstract argumentation is missing the notion of negation.

Definition 5. Let AF= (A,R) be an AF. A OCF for AF is a function κ : 2A → N∪{∞}
with κ−1(0) �= /0.

For sets I,O ⊆ A we abbreviate

κ(I,O) = min{κ(S)|I ⊆ S,S∩O = /0}
κ(I,O) = ∞ if I ∩O �= /0

Example 3. Consider AF2= ({a,b},{(a,b)}). One exemplary OCF κC(I,O) returns the
number of conflicts in I, i. e., for {a,b} κC({a,b}, /0) = 1. For any other set S ⊂ {a,b}
like S = {a} we have κC(S, /0) = κC(S,{b}) = 0 and κC(S,S) = ∞.

The following definitions are inspired by OCFs in conditional logic. However, while
conditional logic semantics follow a single principle regarding conditional acceptance
(“a conditional is accepted if its verification is more plausible than its violation”), for
admissible reasoning in abstract argumentation we have two guiding principles:

• An argument should not be accepted if one of its attackers is accepted.
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i κ−1(i)
3 ({a,b}, /0)
2 ( /0,{a}), ( /0,{b}), ( /0,{a,b})
1 ( /0, /0), ({b},{a}), ({b}, /0)
0 ({a}, /0), ({a},{b})

Table 1. Example OCF for Example 4. Note κ is only partially defined.

• An argument should be accepted if all its attackers are not accepted.

The first principle is also called conflict-freeness, i. e., a set does not contain two ar-
guments, which share an attack. So conflicting sets are less plausible than conflict-free
sets. The second principle is admissibility, so a set, which defends itself from all possi-
ble attackers, is at least as plausible as set not defending itself. Implementing these two
principles for OCFs gives us:

Definition 6. Let AF= (A,R) be an AF and a,b ∈ A.

• An OCF κ accepts an attack (a,b) with a �= b if κ({a},{b})< κ({a,b}, /0).
• An OCF κ possibly reinstates an argument a ∈ A if κ(S∪{a},a−) ≤ κ(S,{a}∪

a−) for all S ⊆ A with S∩ (a− ∪a+) = /0.

Intuitively, for an OCF to accept an attack (a,b) means that it is more plausible that
argument a is in and b is out, than both a and b being in at the same time. For an OCF to
possibly reinstate an argument a means that if all attackers of a are out, then it is at least
as plausible that a is in than out.

Next we want to denote when an AF is satisfied by an OCF, i.e. when we can define
an OCF satisfying all principles defined above for an AF.

Definition 7. An OCF κ satisfies an argumentation framework AF= (A,R) if it accepts
all attacks in R and possibly reinstates all arguments in A.

Example 4. Consider AF2 = ({a,b},{(a,b)}). So the following statements have to
hold:

1. κ({a},{b})< κ({a,b}, /0)
2. κ({a}, /0)≤ κ( /0,{a})
3. κ({b},{a})≤ κ( /0,{a,b})

Table 1 depicts an OCF that satisfies AF2.

Note that if an AF contains a self-attacking argument a, then there is no OCF that
satisfies it. Because to accept attack (a,a) it has to hold that κ({a},{a}) < κ({a}, /0),
which is impossible, since κ({a},{a}) = ∞.

4. The System Z Ranking Function for Abstract Argumentation

In this section, we want to define an OCF inspired by System Z. The basic idea of System
Z is that a conditional (B | A) is tolerated by a set of conditionals, if it is confirmed by
a world ω and no other conditional is refuted. In our setting of abstract argumentation
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we interpret an attack from argument a to argument b as the conditional relationship
“if a is acceptable then b should not be acceptable”. So the whole attack relation can
be interpreted as a set of conditionals. To tolerate an attack, we have to find a set of
arguments, which verifies an attack while not violating any other attack. In addition, we
use a similar idea to the admissible semantics from Dung. Recall, a set is admissible iff
all arguments contained in the set are defended by the set. We add another condition for
a set S to tolerate an attack, namely attack admissibility, which states that if all attackers
of an argument are not in S, then this argument should be included in S.

We begin with defining, when an attack is satisfied by a set S.

Definition 8. Let AF= (A,R) be an argumentation framework.

• A set S ⊆ A verifies an attack (a,b) iff a ∈ S and b /∈ S.
• A set S ⊆ A violates an attack (a,b) iff a ∈ S and b ∈ S.
• A set S ⊆ A satisfies an attack (a,b) iff it does not violate it.

Intuitively speaking, a set satisfies an attack if this set does not contain any two
conflicting arguments. So for an AF AF3 = ({a,b,c},{(a,b),(b,c)}), we can observe,
that the set S1 = {a} verifies the attack (a,b) and does not violate the attack (b,c), while
the set S2 = {a,b} verifies the attack (b,c), however S2 violates attack (a,b).

To satisfy attack admissibility of an argument, we know that, if all the attackers of
the argument are out, then the argument itself should be in.

Definition 9. Let AF= (A,R) be an argumentation framework.

• A set S ⊆ A verifies attack admissibility of a ∈ A iff a ∈ S and b /∈ S for all b ∈ a−.
• A set S ⊆A violates attack admissibility of a ∈A iff a /∈ S and b /∈ S for all b ∈ a−.
• A set S ⊆ A satisfies attack admissibility of a ∈ A iff it does not violate it.

We recall AF3 = ({a,b,c},{(a,b),(b,c)}), we see that the set S3 = {a,c} verifies
attack admissibility of argument c, because the only attacker of c, b is not part of S3 and
one of b’s attackers is contained in S3.

Now we combine both these definitions and define when an attack can be tolerated.

Definition 10. Let AF = (A,R) be an argumentation framework. A set P ⊆ R tolerates
an attack (a,b) iff there is a set S ⊆ A that

1. verifies (a,b),
2. satisfies each attack in P, and
3. satisfies attack admissibility of each c ∈ A

So in order to tolerate an attack, we need to find a set of arguments S s.t. S is
conflict-free and every argument contained in S has to be defended. Recall AF3 =
({a,b,c},{(a,b),(b,c)}), then the attack (b,c) is not tolerated by {(a,b),(b,c)}. Be-
cause, for (b,c) to be verified for any set S, it has to hold that b ∈ S. Then to not violate
(a,b) a is not allowed to be contained in S. However, then we have the problem that S
does not contain any attackers of a, meaning that attack admissibility of a is violated.

With these definitions, we can define the OCF κZ for an AF AF.

Definition 11. Let AF = (A,R) be an argumentation framework. Then the Z-attack-
Partitioning (R0, . . . ,Rn) with R0∪ . . .∪Rn ⊆ R is defined as
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i κ−1(i)
2 ({b,c},X),({a,b,c},X),({b,c,d},X),({a,b,c,d},X)

1 ({a,b},X),({c,d},X),({a,b,d},X),({a,c,d},X)

0 ( /0,X),({a},X),({b},X),({c},X),({d},X),({a,c},X),({b,d},X),({a,d},X)

Table 2. The OCF κZ , where for every pair (I,X) X ⊆ A is any set s.t. I ∩X = /0.

• R0 = {r ∈ R | R tolerates r}
• (R1, . . . ,Rn) is the Z-attack-Partitioning of R\R0
For r ∈ R define ZR(r) = i if r ∈ Ri and

κZ(S,X) =max{Z(r) | S violates r}+1

where X ⊆ A is any set s.t. S∩X = /0.

So all attacks in R0 are tolerated by the set of attacks of AF, while attacks in R1
are only tolerated if we remove all attacks from R0. Now we can state when a set of
arguments is more plausible than another one, i. e., if the first set violates either no attacks
or only attacks which are in lower levels. In a sense these levels represent the impact of
each attack in an AF. Hence, it is more important to satisfy a single highly ranked attack
than to satisfy multiple lowly ranked attacks.

Example 5. Consider Example 1 again. The Z-attack-Partitioning of R is (R0,R1) with

R0 = {(a,b),(c,d),(d,c)}
R1 = {(b,c)}

Table 2 depicts κZ
AF for AF from Example 1.

Next, we want to prove, that the function κZ satisfies an AF if κZ is defined.

Theorem 1. If κZ is defined, then κZ satisfies AF.

Proof. Let AF = (A,R) be an AF. In order to show that κZ satisfies AF, we need to
prove, that κZ satisfies both principles of an OCF, i. e. acceptance of attacks and possibly
reinstating an argument.

Case: accept attack. Let (a,b) ∈ R with a �= b an attack, it has to hold that
κZ({a},{b}) < κZ({a,b}, /0). We know that κZ({a},{b}) = 0, because {a} can only
violate the attack (a,a), which can not exist. Hence, it is enough to show, that
κZ({a,b}, /0)> 0. Since, (a,b) exists, we know that {a,b} violates this attack, and there-
fore κZ({a,b}, /0)> 0.

Case: argument possibly reinstated. Let a ∈ A be an argument. Assume κZ(S ∪
a,a−) > κZ(S,a∪ a−) for some S ⊆ A with S∩ (a− ∪ a+) = /0. This is only possible,
if S∪{a} violates an attack r ∈ R and S does not violate r. So, there is one argument
b ∈ S s.t. r = (a,b) or r = (b,a) and a �= b. Hence, b ∈ a− ∪ a+. However, because of
S∩(a−∪a+)= /0 we know that, there can not be such an argument b∈ Swith b∈ a−∪a+.
Therefore κZ(S∪a,a−)> κZ(S,a∪a−) is impossible.
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Besides being undefined for AF with self-attacks, κZ is also undefined for AFs with-
out a stable extension. Let AF4 = ({a,b,c},{(a,b),(b,c),(c,a)}) be an AF. If we try to
tolerate (a,b) by {(a,b),(b,c),(c,a)}, then we know that, we need to verify (a,b) so
a ∈ S. However, this also means that b,c /∈ S, which entails that attack admissibility of c
is violated. Similar we can show, that (b,c) and (c,a) cannot be tolerated either. So, we
cannot define a Z-attack-Partitioning for AF4. Next, we show that in general it holds that
if an AF does not have a stable extension, then κZ is undefined.

Theorem 2. κZ is undefined for AF if st(AF) = /0.

Proof. Let AF = (A,R) be an AF. We will show the contraposition, so if κZ is defined
for AF, then st(AF) �= /0. Let κZ be defined. So we can find a Z-attack-Partitioning
(R0, ...,Rn). For every attack r in R0 we know that there is a set S s.t. r is verified, every
attack is satisfied and attack admissibility of every argument a ∈ A is satisfied. We show
that S is stable. First, S has to be conflict-free, otherwise there is an attack, which is vio-
lated. Next we show that S∪S+ = A, so we need to show, that every argument not in S is
attacked by S. Let b /∈ S, then because attack admissibility of b is satisfied we know that
there is an argument c ∈ b− with c ∈ S, hence we have found an attacker of b which is
part of S.

Looking at the levels of a Z-attack-Partitioning in detail, we observe, that if an attack
(a,b) is in R0, then a is credulously admissible accepted in AF.

Theorem 3. For any AF AF = (A,R) and Z-attack-Partitioning (R0, ...,Rn). If (a,b) ∈
R0, then a is credulous accepted wrt. admissible semantics.

Proof. LetAF=(A,R) be an AF, (R0, ...,Rn) a Z-attack-Partitioning ofR and (a,b)∈R0,
then (a,b) is tolerated by R, meaning that there is an S ⊆ A s.t. (a,b) is verified, each
attack in R is satisfied by S and attack admissibility of each argument c ∈ A is satisfied.
In order to verify (a,b), we know that a ∈ S and b /∈ S. Also it has to hold for all c ∈ a−
that c /∈ S. So all attackers of a are out. Next, we will show that S is admissible. S is
conflict-free, otherwise, one attack would be violated. We know for every d ∈ S that no
attacker of d is in S. In order to not violate attack admissibility, we know for every e /∈ S
that at least one attacker of e has to be in S, meaning that S attacks every argument not
contained in S. Hence, for every attacker b of an argument a ∈ S we have an argument
d ∈ S s.t. d attacks b. So S is admissible, and therefore a is part of some admissible
extension of AF making a credulous accepted w.r.t. admissible semantics.

5. Extension-ranking Semantics based on System Z

First, we recall the definitions from [2] for extension-ranking semantics.

5.1. Extension-Ranking Semantics

Extension-ranking semantics defined in [2] are a generalisation of extension-based se-
mantics. Using them, we can state not only that a set of arguments is jointly accepted or
not, but also we can say whether a set E1 is more plausible than a set E2.
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/0∼=κZ

AF {a} ∼=κZ

AF {b} ∼=κZ

AF {c} ∼=κZ

AF {d} ∼=κZ

AF {a,c} ∼=κZ

AF {b,d} ∼=κZ

AF {a,d}
�κZ

AF {a,b} ∼=κZ

AF {c,d} ∼=κZ

AF {a,b,d} ∼=κZ

AF {a,c,d}
�κZ

AF {b,c} ∼=κZ

AF {a,b,c} ∼=κZ

AF {b,c,d} ∼=κZ

AF {a,b,c,d}
Table 3. The ranking for AF based on �κZ

AF.

Definition 12. An extension ranking onAF is a preorder1 over the powerset of arguments
2A. An extension-ranking semantics τ is a function that maps each AF to an extension
ranking �τ

AF on AF.

For an extension-ranking semantics τ , an extension ranking �τ
AF, E,E

′ ⊆ A, and for
E �τ

AF E ′ we say that E is at least as plausible as E ′ by τ in AF.
Using the OCF κZ , we can define an extension-ranking semantics. So we can state

that a set of arguments E is more plausible than another one E ′, if the OCF κZ returns a
lower value for E than for E ′.

Definition 13. Let AF= (A,R) be an AF and E,E ′ ⊆ A. Define the System Z extension-
ranking semantics �κZ

AF via

E �κZ

AF E ′ iff κZ(E,A\E)≤ κZ(E ′,A\E ′)

So E is at least as plausible as E ′, if E being considered in and all arguments not in
E being out, is more plausible than E ′ being considered in and all arguments not in E ′
being out.

Example 6. Consider again AF from Example 1. Then Table 3 depicts the ranking cor-
responding to �κZ

AF. We see, that all conflict-free sets are part of the most plausible sets,
while sets with conflicts are ranked worse. Also, the number of conflicts is not as impor-
tant as for the approaches of [2]. In their approaches, it always holds that {b,c} is ranked
strictly better than {b,c,d}. While for κZ these two sets are ranked equally.

5.2. Study of the System Z Extension-ranking Semantics

Next, we want to evaluate �κZ

AF based on principles defined by [2].
We begin with σ -generalisation, which states that sets of arguments, which satisfies

extension semantics σ should also be ranked best by an extension-ranking semantics
and every set not satisfying σ should be ranked worse. In Example 6, we can see that
�κZ

AF violates σ -generalisation for σ ∈ {ad,co,pr,gr,st}, because the set {b,d} is not
admissible, however, it is ranked as a most plausible set. Therefore �κZ

AF cannot satisfy
σ -generalisation for any admissible based semantics σ .

The next properties (composition and decomposition) states that unconnected argu-
ments should not influence a ranking.

Theorem 4. �κZ

AF satisfies composition. Where τ satisfies composition if for every AF
such that AF= (A1,R1)∪ (A2,R2) and E,E ′ ⊆ A1∪A2:

1A preorder is a (binary) relation that is reflexive (E � E for all E) and transitive (E1 � E2 and E2 � E3
implies E1 � E3)
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if
{

E ∩A1 �τ
AF1

E ′ ∩A1
E ∩A2 �τ

AF2
E ′ ∩A2

}
then E �τ

AF E ′.

Proof. Let AF= (A1,R1)∪ (A2,R2) be an AF and E,E ′ ⊆ A1∪A2. For composition we
need to show that, if κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′) and κZ(E ∩A2,A2 \E)≤
κZ(E ′ ∩A2,A2\E ′) then κZ(E,A\E)≤ κZ(E ′,A\E ′). By definition of κZ we know that
κZ(E,A \E) is the maximal value between κZ(E ∩A1,A1 \E) and κZ(E ∩A2,A2 \E),
because if an attack r1 is violated by E, then r1 is also violated by either E∩A1 or E∩A2.
Similar holds for κZ(E ′,A\E ′). So we have to check four possible cases formax(κZ(E∩
A1,A1 \E),κZ(E ∩A2,A2 \E))≤ max(κZ(E ′ ∩A1,A1 \E ′),κZ(E ′ ∩A2,A2 \E ′)).

1. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′)
2. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
3. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
4. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A1,A1 \E ′)

Case 1 and 2 are clear via definition. For case 3 we know that κZ(E ∩A1,A1 \E) ≥
κZ(E ∩A2,A2 \E) and κZ(E ′ ∩A1,A1 \E ′) ≤ κZ(E ′ ∩A2,A2 \E ′), but we also know
that κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′), which proves case 3. Case 4 is similar to
case 3.

For decomposition, we see that�κZ

AF violates it. Recall that τ satisfies decomposition
if for every AF such that AF= (A1,R1)∪ (A2,R2) and E,E ′ ⊆ A1∪A2:

if E �τ
AF E ′ then

{
E ∩A1 �τ

AF1
E ′ ∩A1

E ∩A2 �τ
AF2

E ′ ∩A2

}
.

Example 7. Let AF5 = ({a,b,c,d,e},{(a,b),(b,c),(d,e)}) be an AF. This AF can be
split into two disjoint AFsAF5.1=({a,b,c},{(a,b),(b,c)}) andAF5.2=({d,e},{(d,e)}).
The Z-attack-Partitioning of R5 is R5 0 = {(a,b),(d,e)} and R5 1 = {(b,c)}. Let
E = {a,b,d,e} and E ′ = {b,c,d}, then κZ(E,A5 \E) = 1 and κZ(E ′,A5 \E ′) = 2. How-
ever, we have κZ(E ∩A5.2,A5.2 \E) = 1 and κZ(E ′ ∩A5.2,A5.2 \E ′) = 0. This shows,
that decomposition is violated.

Decomposition is violated, because �κZ

AF focuses on a global view. Violating (b,c)
is worse, than violating any other attack. However, �κZ

AF satisfies a weak version of de-
composition, where instead of satisfying E ∩A1 �τ

AF1
E ′ ∩A1 for both disjoint AFs, it is

enough if κZ
AF satisfy this for one AF.

Definition 14 (Weak Decomposition). Let τ be an extension-ranking semantics. τ sat-
isfies weak decomposition if for every AF such that AF = (A1,R1) ∪ (A2,R2) and
E,E ′ ⊆ A1∪A2: if E �τ

AF E ′ then E ∩A1 �τ
AF1

E ′ ∩A1 or E ∩A2 �τ
AF2

E ′ ∩A2.

Theorem 5. �κZ

AF satisfies weak decomposition.

Proof. Let AF = (A1,R1)∪ (A2,R2) be an AF and E,E ′ ⊆ A1 ∪A2. In order to prove
weak decomposition we have to show, that if κZ(E,A\E)≤ κZ(E ′,A\E ′) then κZ(E ∩
A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′) or κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′). By def-
inition we know that κZ(E,A \E) = max(κZ(E ∩A1,A1 \E),κZ(E ∩A2,A2 \E)) and
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similar for E ′. So, we have max(κZ(E ∩A1,A1 \E),κZ(E ∩A2,A2 \E))≤ max(κZ(E ′ ∩
A1,A1 \E ′),κZ(E ′ ∩A2,A2 \E ′)). Hence, we have four cases to check.

1. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′)
2. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
3. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
4. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A1,A1 \E ′)

Case 1 and 2 are clear via definition. For case 3 we know that κZ(E ∩A2,A2 \E) ≤
κZ(E ∩A1,A1 \E) and therefore also κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′). Hence,
weak decomposition is satisfied. Case 4 can be proven similar to case 3.

The final properties we want to recall are the reinstatement ones, which state that
if an argument is defended and does not add conflicts into a set, then the addition of
this argument into a set should not lower the plausibility, respectively should raise the
plausibility of the set.

Theorem 6. �κZ

AF satisfies weak reinstatement. Where τ satisfies weak reinstatement iff
a ∈ FAF(E), a /∈ E and a /∈ (E− ∪E+) implies E ∪{a} �τ

AF E.

Proof. Let AF= (A,R) be an AF and E ⊆A. Assume a /∈ E and a /∈ (E−∪E+). We have
to show that κZ(E ∪{a},A\E ∪{a})≤ κZ(E,A\E). We know that E ∪{a} violates the
same attacks as E, because E and {a} are not in a conflict with each other. This means
that κZ(E ∪{a},A\E ∪{a}) can not be greater than κZ(E,A\E).

For strong reinstatement i. e., adding an argument into an AF, which is defended
by a set and does not create more conflicts, should raise the plausibility, we can look at
Example 6. We see, that {c} is equally ranked to {a,c} despite it holds that a∈ FAF({c}),
a /∈ {c} and a /∈ ({c}− ∪{c}+). So strong reinstatement is violated.

Even though a number of properties are violated by �κZ

AF this does no lower the
impact of this semantics, since �κZ

AF focuses on a global view. The semantics identifies
important attacks in the AF and ensures, that these attacks are satisfied. So it is worse
to not satisfy a single highly ranked attacked, than not satisfying multiple lower ranked
attacks. Another difference of this semantics to the semantics of Skiba et al. [2] is the
fact, that the number of conflicts a set contains in not important just the fact, that the set
is not conflict-free is significant.

6. Discussion

In this work, we continue the research of investigating the relationship of conditional
logics and abstract argumentation, by using concepts for conditional logics to reason in
abstract argumentation. In particular, we defined a formalism of OCFs to rank sets of
arguments. It turns out that these preorders are in line with current work about extension-
ranking semantics and produce a ranking for the powerset of arguments for an argumen-
tation framework.

One use of conditional logics is belief change. Where preorders are used to up-
date beliefs with information inconsistent with them. There are a number of different
works investigating belief change involving preorders over extensions of an argumen-
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tation framework [12,13,14]. However, all these works tackle a different problem. To
summarise, given an AF and an extension semantics σ , the AF will be changed using a
preorder to satisfy new information. This paper talks about using OCFs to reason over
sets of argument, while not changing AFs. Weydert [9] investigates a different idea to
define extension rankings using conditionals, his definitions could be used to define an
extension-ranking semantics similar to Section 5. However, his semantics cannot differ-
entiate conflicting sets. All conflicting sets have the same rank of infinity. A full investi-
gation of the properties of the resulting extension-ranking semantics will be done in fu-
ture work. A noteworthy mention is that System Z and rational closure by Lehmann and
Magidor [15] use the same construction. So our work also allows us to draw connections
between argumentation and non-monotonic inference. Additionally OCFs with natural
numbers and an infinity level are really close to possibilistic logics [16].

As there are more possible OCFs satisfying our proposed principles, we can define
more extension-rankings semantics, like for example an extension-ranking semantics
based on c-representations [17].
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Abstract. Computational argumentation is primed to strengthen the current hot
research field of Explainable Artificial Intelligence (XAI), e.g., by dialectical ap-
proaches. In this paper, we extend and discuss a recently proposed approach of so-
called strong acceptance on abstract argumentation that aims to support explaining
argumentative acceptance. Our goal is to push these results into the realm of struc-
tured argumentation. In this setting, a knowledge base induces an abstract argu-
mentation framework (AF) via instantiation. We investigate how and under which
conditions it is possible to transfer results regarding strong acceptance between the
given knowledge base and the induced AF. To this end we consider generic func-
tions formalizing the interaction of the AF and the knowledge base. This approach
helps us to infer rather general results making basic assumptions rather than dealing
with the technical details of several structured argumentation formalisms. Along
the way, we apply our techniques to the concrete approach of assumption-based ar-
gumentation (ABA) which constitutes one of the primal structured argumentation
formalisms.

Keywords. Structured argumentation, Assumption-based argumentation, Strong
acceptance

1. Introduction

Computational argumentation is a thriving research area within the broader field of
knowledge representation and reasoning and the landscape of AI research [1]. With ap-
plication avenues in, e.g., legal and medical research [2], a key contribution of computa-
tional argumentation are ways of specifying argument structures and argumentative ac-
ceptance forming the basis for, e.g., automated argumentative reasoning. Central to these
formalizations are prescribed workflows: from a knowledge base argument structures are
instantiated, together with inter-argument relations, upon which argumentation seman-
tics define criteria of acceptance [3,4,5,6]. Importantly it was shown that after instantia-
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Figure 1. Arguments {A3,A5} are strongly accepting p on the AF side. On the KB side,
{(d ← c,e),(p ← e),e} is strongly accepting p.

tion, an abstract view of arguments and their relations suffices for deriving acceptance of
arguments for several use cases.

Computational argumentation is actively contributing to the area of explainable ar-
tificial intelligence (XAI) [7], e.g., by providing dialectical grounds of acceptance or re-
jection of arguments and claims. Several approaches that support explainability arising
from argumentation have been proposed and studied. We focus here on ways of support-
ing explanations by investigating what arguments, or parts of the knowledge base, are
sufficient to show acceptance of a target conclusion or argument.

In monotonic formalisms, a common way of looking at parts that entail acceptance
is to look at minimal parts (of a knowledge base) that entail the result. In non-monotonic
approaches, such as virtually all approaches to argumentation, an adapted notion was
presented in order to account for the fact that parts of a knowledge base might entail a
certain claim, but as a whole it does not. Formally, given some set B, we can only be sure
that a subset B′ suffices to entail a certain piece of information, whenever this is the case
for each B′′ with B′ ⊆ B′′ ⊆ B.

Recently, these approaches were extended to the field of abstract argumenta-
tion [8,9,10]. However, as observed from various other aspects [11,12], connecting re-
sults from abstract to the non-abstract view is not always immediate. Consider a simple
example in the structured argumentation formalism called assumption-based argumenta-
tion (ABA) [4], where, briefly put, arguments are derivations starting off from assump-
tions via a given set of derivation rules. A (possibly asymmetric) contrary relation de-
cides conflicts between arguments. Altogether arguments and directed conflicts (attacks)
are referred to as argumentation frameworks (AFs) [13].

Example 1. Consider an ABA framework consisting of five assumptions {a, b, c, d, e}
and three rules: (p ← e), (e ← c,d), and (d ← c). That is, from assumption e we can
derive p, from assumptions c and d we can derive e, and from assumption c we can
derive d. As for (asymmetric) contraries, let d be the contrary of d, e be the contrary
of e, b be the contrary of c, and finally a the contrary of b. These ingredients lead to
eight different arguments that can be instantiated from this ABA framework. All of these
directly correspond to derivations based on the assumptions via the rules. Figure 1 shows
all eight arguments and their directed conflicts. For instance, argument A3 attacks A4
because the former concludes d, the contrary of d, which is an assumption in A4.

Let us consider ways of argumentative acceptance of atom p and the prominent ap-
proach of admissibility and credulous acceptance. Reasoning on ABA frameworks can
be defined via arguments: finding a set of non-conflicting arguments that defends itself
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against counterarguments and concludes p. It holds that {A1,A3,A5} constitutes an ad-
missible set that concludes p, e.g., the attack from A2 onto A3 is countered by A1.

Following recent work [8,9,10], one can look at so-called strongly accepting sub-
frameworks that show parts that are sufficient for acceptance. This notion is defined on
the level of arguments. For instance here {A3,A5} is a strongly accepting subframework
for p. Let us look at the subframework consisting only of these two arguments: there
are no conflicts and p can be concluded. “Re-adding” A4 leads to a conflict with A5
(the argument we need to defend), but it holds that A3 defends A5 against A4. Adding A2
leads to the case that A2 defends A5 against A4 (again making up an admissible set in
the subframework concluding p). Adding further arguments again leads to the overall
picture: if one commits to A3 and A5 we can safely find admissible sets concluding p in
the subframeworks in-between the one with only these two arguments and all arguments.

On the other hand, when looking at the structured ingredients needed to conclude
p, we find that assumption e and two rules (d ← c) and (p ← e) are sufficient: with
these components we can only instantiate argument A5 (for all others some components
are missing), and adding any further rules or assumptions leads to cases where we still
find an admissible set concluding p. For instance, re-adding components to instantiate
A4 requires assumption c, with which, together with (d ← c), leads to the case that A3
can be instantiated, again leading to the case that A3 defends A5 against A4. However,
here we see a mismatch: considering all arguments that can be instantiated from the
strongly accepting assumption e and the two rules leads to the set {A5} of arguments.
This set does not constitute a strongly accepting subframework when looking only at the
argument-level, since we can add A4 (and no other argument), which defeats A5.

We address strongly accepting subframeworks in terms of parts of knowledge bases
and AFs, and provide the following main contributions.

• We introduce strongly accepting sub-bases both for a general notion of structured
knowledge bases, and for the concrete example of ABA.

• We show that strongly accepting subframeworks of a corresponding AF induce
a strongly accepting sub-base on the side of the knowledge base, for a generic
structured argumentation approach.

• At the same time, as exemplified above, we show that the converse does not hold in
general, and point out that by considering “closed” AFs (containing all arguments
and attacks from base), and an adaption of strong acceptance on AFs addresses
this issue.

• We show that under mild assumptions, a strongly accepting subframework can
be bound polynomially on the argument-level in terms of the original knowledge
base. This indicates that even though AFs corresponding to a knowledge base
might be large (exponentially-sized), a “witness” for acceptability can be bound
polynomially in size.

2. Preliminaries

Abstract Argumentation. We fix a non-finite background set U . An argumentation
framework (AF) [13] is a directed graph F = (A,R) where A ⊆ U represents a set of
arguments and R ⊆ A×A models attacks between them. Let F be the set of all AFs over
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U . For two arguments x,y ∈ A, if (x,y) ∈ R we say that x attacks y as well as x attacks
(the set) E given that y ∈ E ⊆ A. A set E ⊆ A attacks a ∈ A if ∃b ∈ E with (b,a) ∈ R. We
let E+

F = {x ∈ A | E attacks x} for a set E ⊆ A. For two AFs F = (A,R) and G = (B,S)
we define the ⊆ relation component-wise, i.e. F ⊆ G if A ⊆ B and R ⊆ S.

A set E ⊆ A is conflict-free in F iff for no x,y ∈ E, (x,y) ∈ R. We say E defends
an argument x if E attacks each attacker of x. A conflict-free set E is admissible in F
(E ∈ ad(F)) iff it defends all its elements. Given an AF F = (A,R) a semantics σ returns
a set of subsets of A. These subsets are called σ -extensions. In this paper we consider
so-called complete, grounded, preferred, and stable semantics (abbr. co, gr, pr, stb).

Definition 1. Let F = (A,R) be an AF and E ∈ ad(F).

• E ∈ co(F) iff E contains all arguments it defends;
• E ∈ gr(F) iff E is ⊆-minimal in co(F);
• E ∈ pr(F) iff E is ⊆-maximal in co(F);
• E ∈ stb(F) iff E+ = A\E.

Assumption-based Argumentation. We assume a deductive system (L ,R), where L
is a formal language, i.e. a set of sentences, and R is a set of inference rules over L .
A rule r ∈ R has the form a0 ← a1, . . . ,an with ai ∈ L . We denote the head of r by
head(r) = a0 and the (possibly empty) body of r with body(r) = {a1, . . . ,an}.
Definition 2. An ABA framework is a tuple (L ,R,A , ), where (L ,R) is a deductive
system, A ⊆ L a non-empty set of assumptions, and a contrary function :A → L .

Assumption 1. In this work, we focus on ABA frameworks which are flat, i.e., for each
rule r ∈ R, head(r) /∈ A (no assumption can be derived), and finite, i.e., L , R, A are
finite; moreover, each rule is stated explicitly (given as input).

Given an ABA framework D = (L ,R,A , ), a tree-based argument is a finite la-
beled rooted tree t, also denoted by A �R′ p with A ⊆A , R′ ⊆R, and p ∈L , s.t. the root
is labeled with p. Moreover, each leaf is labeled by an assumption a ∈ A or a dedicated
symbol 	 /∈ L . The set of all labels of leaves is A, and each internal node is labeled
with the head of a rule r ∈ R′ s.t. the set of labels of children of this node is equal to the
body of r or 	 if the body is empty. For each r ∈ R′ there must be such a corresponding
internal node. We write A � p if there is some R′ ⊆ R s.t. A �R′ p. An ABA framework
induces an AF as follows.

Definition 3. The associated AF FD = (A,R) of an ABA D = (L ,R,A , ) is given by
A = {S � p | ∃R′ ⊆ R : S �R′ p} and attack relation (S � p,S′ � p′) ∈ R iff p ∈ S′.

Semantics of ABA frameworks can then be direct taken as σ -extensions of the as-
sociated AFs.

Notion of Credulous Acceptance As for acceptance, we consider credulous acceptance.
Given an ABA framework and a semantics σ , an atom p ∈ L is (credulously) accepted
under σ if there is a σ -extension on the associated AF with an argument A � p in the
extension. When looking only at the argument-level, an atom is, likewise, (credulously)
accepted if there is a σ -extension concluding the atom. Formally, we let crdσ (F) =⋃

E∈σ(F) conc(E) for a semantics σ and AF F , and with conc(E)= {p | (A� p)∈E} (i.e.,
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collecting all conclusions of arguments). For an ABA framework D and its associated
AF FD, we let crdσ (D) = crdσ (FD), i.e. the semantics of ABA frameworks is defined via
AF instantiation.

3. A General View on Structured Argumentation

Before delving into defining the notion of strongly accepting subframeworks on ABA, we
first define a general view on structured argumentation in order to broaden our scope. We
consider a general approach to structured argumentation formalisms in line with ABA.
For our purposes, three ingredients are important:

• a definition of structured knowledge bases,
• a translation to AFs,
• a function extracting components of the knowledge base from an instantiated AF.

Formally, a knowledge base is an (abstract) structure B which we simply define as
a set for ease of presentation. That is, B can be seen as a set composed of ingredients
making up the knowledge base. By definition of sets, we arrive at sub-bases by referring
to the ⊆ relation. For instance, /0 is the empty knowledge base. Given a knowledge base,
we need a function that instantiates the knowledge base as an AF. We denote this func-
tion as af . We also consider a function extracting a knowledge base (back) from an AF,
denoted by kb. These mappings af and kb were used in a similar fashion before [12], but
not presented in the same depth and not connected to strong acceptance.

Definition 4. A knowledge base is a set B. Define the mapping af : 2B → F. We define
FB = {F | F ⊆ af (B)} as the set of sub-frameworks of the AF instantiated from B.

In order to apply our general definitions to ABA frameworks D, we identify D =
(L ,R,A , )with the setR∪A of rules and assumptions. Recall that each ABA frame-
work D induces an associated AF FD as defined above. We can thus apply our general
proposal to ABA in a naturally way by letting af ABA(D) :=FD. Given a fixed ABA frame-
work D, the mapping af ABA : 2

D → F formalizes all conceivable possibilities to instanti-
ateD using only a subset of the rules and assumptions. Thereby, we will sometimes work
with a technically different ABA framework containing fewer assumptions. With a little
notational abuse, we always assume that the contrary function is suitably restricted to
the considered set of assumptions.

Example 2. In this example, we extend the ABA framework from our motivating example
D = (L ,R,A , ), i.e. we have A = {a,b,c,d,e}, c = b as well as a = b and rules

p ← e. e ← c,d. d ← c. p ← r.

where “p ← r.” is a novel rule which is not applicable. For brevity, we use d and e to
mean fresh symbols without explicating them. The mapping af ABA applied to D returns
the argumentation framework depicted in Figure 1. If we restrict R to the set of rules
{(p ← e.), (d ← c.)} and A to {c,d,e}, then the corresponding AF is the sub-graph
consisting of A3, A5, A6, A7, and A8:
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For the usual instantiation procedures known from the literature, not every AF F ∈
FB corresponds directly to some subset of the knowledge base. Consider e.g. our running
example. There is no subset of R ∪A resulting in the AF containing the argument A5
only since constructing A5 requires assumption e which would induce A8 as well.

Moving from a knowledge base to an induced AF is a standard procedure in struc-
tured argumentation formalisms. For our investigation, we need to connect AFs and
structured bases in both directions. Therefore, we require a formal tool to extract (parts
of) the given knowledge base from (parts of) the instantiated AF.

Definition 5. Let B be a knowledge base. Define the mapping kb : FB → 2B.

That is, for a knowledge base B, each sub-framework F ∈ FB is mapped to some
subset kb(F) = B′ ⊆ B of the original knowledge base. Intuitively, one may e.g. think
of those parts of the knowledge base which are necessary to construct the arguments
occurring in F .

As we already mentioned, not every AF F ∈ FB is induced by some B′ ⊆ B. There-
fore, it holds that af and kb are in general not inverse to each other. However, for some of
our technical results we require the two mappings to correspond to each other in a certain
sense. As already mentioned, the intuitive idea is that when considering a sub-framework
F ∈ F, in kb(F) we collect all components of the knowledge base which are necessary to
construct F . If we then apply af again obtaining af (kb(F)), we expect F (and potentially
further arguments) to be constructible again, for otherwise our selected components in
kb(F) would not suffice for our intended purpose.

Definition 6. Let B be a knowledge base. We call af and kbwell-behaved if for all F ∈FB
it holds that F ⊆ af (kb(F)).

An illustration of this notion is depicted in Figure 2. Inspecting the relationship F ⊆
af (kb(F)) reveals that if this inclusion is proper, i.e., F � af (kb(F)), we find a kind of
(apparent) “closure” operator, i.e. the composition of af and kb. Intuitively, if af (kb(F))
contains more arguments than F itself, then further arguments can be constructed without
the necessity to make use of additional components of the knowledge base.

Definition 7. Let B be a knowledge base. We call an AF F closed if there is some B′ ⊆ B
s.t. F = af (B′). We call af and kb strictly well-behaved if they are well behaved and in
addition F = af (kb(F)) holds for all closed AFs F.

Let us now demonstrate how we can define a natural mapping kb in the context of
ABA. The attentive reader may realize that for kb to be reasonably defined we need to
be able to extract the knowledge base from the given instantiated AF. This is possible
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Figure 2. For a given knowledge base B, function af (B) results in the associated AF of B. For an AF F that is
a sub AF of af (B), inspecting its components (kb(F)) leads to a sub part of B (potentially proper). Applying
af on the sub part may lead to a potential super framework of F (namely af (kb(F))). The composite function
af (kb(·)) can be interpreted as a closure operation.

for ABA as long as we can be sure the knowledge base D does not contain any hidden
information which is not reflected in FD.

The following notion suffices to ensure that all information included in the ABA
framework are made explicit in the selection of all arguments. It simply states that for
each atom p ∈ L , there is at least one tree-based argument inferring it.

Definition 8. We call an ABA framework D = (L ,R,A , ) trim if L = ThD(A ).

Interestingly, assuming that D is trim already suffices to rebuild the whole ABA
framework by inspecting the constructed arguments. From a technical point of view, we
want to emphasize however that in our definition of an argument, the whole tree is stored.

Proposition 1. Let D = (L ,R,A , ) be a trim ABA framework and let FD = (A,R) be
the associated AF. Then

• L is the union of all labels of roots occurring in A,
• A is the union of all labels of leaves except 	 occurring in A,
• a0 ← a1, . . . ,an ∈ R iff there is some t ∈ A s.t. a0 is a label of a node in t and its

children are labeled a1, . . . ,an.

Proof. (L ) We have
⋃

t∈A root(t)= ThD(A )=L where the first “=” holds by definition
and the second since D is trim.

(A ) We show
⋃

t∈A leaves(t) \ {	} = A . The inclusion ⊆ is clear. For the other
direction note that each assumption a ∈ A induces a tree-based argument {a} � a.

(R) The (⇐)-direction follow from the way argument trees are constructed. Re-
garding (⇒) let r = a0← a1, . . . ,an ∈R. Since D is trim, there are tree-based arguments
t1, . . . , tn ∈ A with root(ti) = ai for 1≤ i ≤ n. Therefore, there is a tree-based argument t
stemming from t1, . . . , tn and the rule r, i.e. t ∈ A s.t. root(t) = a0 and the children of the
root are labeled with a1, . . . ,an.

Inspired by Proposition 1, for a given AF F we let kbABA(F) be the set R ∪A of
rules and assumptions as described in the proposition, i.e. a0← a1, . . . ,an ∈ kbABA(F) iff
there is some t ∈ A s.t. a0 is a label of a node in t and its children are labeled a1, . . . ,an;
a ∈ kbABA(F) iff a �=	 and there is some leave labelled a. With a little notational abuse
we denote the induced ABA framework with (L ,kbABA(FD), ).

Interestingly,D does not need to be trim in order to find all the necessary components
of the knowledge base, since we can simply ignore rules which are not applicable. In

M. Ulbricht and J.P. Wallner / Strongly Accepting Subframeworks326



the following we establish that af ABA and kbABA are strictly well-behaved, even without
restricting our attention to trim ABA frameworks.

Proposition 2. Let D = (L ,R,A , ) be an ABA framework and let D′ be induced by
kbABA(F), i.e. D′ = (L ,kbABA(FD), ). Then FD = FD′ .

Proof. Set FD = (A,R) and FD′ = (A′,R′). We have kbABA(D)⊆R∪A (part of the proof
of Proposition 1 which does not require D to be trim). Moreover, kbABA(D)∩A = A
is clear since each assumption induces some argument. By definition of the instantiation
procedure, FD′ ⊆ FD. Since attacks are uniquely determined by the tree-based arguments,
it suffices to show that A ⊆ A′.

Suppose the contrary, i.e. take t ∈ A\A′. Without loss of generality, assume that each
proper sub-argument in t occurs in A′. Since D and D′ share the same assumptions, the
root label of t is no assumption, say a0. Let a1, . . . ,an be the label of the children. By
definition a0 ← a1, . . . ,an ∈ kbABA(D) and hence t ∈ A′; contradiction.

Example 3. For D with the AF FD from Example 2, kbABA(FD) consists of the rules

p ← e. e ← c,d. d ← c.

and assumptions A = {a,b,c,d,e} which can be extracted from the tree-based instan-
tiated arguments occurring in the AF (see Figure 1); the dummy rule “p ← r.” is lost.
Nonetheless, af ABA(kbABA(FD)) = FD.

Consider an AF F ′ consisting only of argument A5 (with assumption e and rule
p ← e). This AF is not closed. It holds that F ′

� af ABA(kbABA(F ′)) = F ′′ with F ′′ having
the two arguments A5 and A8. Confirming our intuition, F ′′ is now closed.

Corollary 1. The mappings af ABA and kbABA are strictly well-behaved.

We now have settled the syntax of our approach. Regarding the semantics, let us
consider a generic mapping acc that returns for both knowledge bases and AFs a set of
“accepted” atoms.

Definition 9. The mappings acc and af are called compatible if it holds that a ∈ acc(B)
iff a ∈ acc(af (B)) for each knowledge base B.

Intuitively, compatibility simply states that when instantiating a knowledge base, the
corresponding semantics are preserved. It is well-known that this is the case for ABA.

Proposition 3. For the ABA and AF semantics we consider, crdσ and af ABA are compat-
ible (for fixed L , and ).

We remark that our general view and the condition of af and kb being well-behaved
(F ⊆ af (kb(F))) have a certain relation to Galois connections. Highlighting only the
essential, if kb(F)⊆ B implies F ⊆ af (B) (*), one can show that F ⊆ af (kb(F)) follows.
Condition (*) can be seen as “one direction” of the requirement for Galois connections.
Intuitively, condition (*) appears plausible for structured argumentation: if B contains all
ingredients to instantiate F , then af (B) should contain all of F , as well.

Proposition 4. If kb(F)⊆ B implies F ⊆ af (B), it holds that F ⊆ af (kb(F)).

Proof. By definition, kb(F)⊆ kb(F) holds and F ⊆ af (kb(F)) holds by assumption.
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4. Strongly Accepting Subframeworks

Next we discuss our notion of strong acceptance, utilizing earlier works [8,10].

4.1. Basic Definitions

The idea behind a strongly accepting sub-framework is that one aims to find a
sub-framework B′ ⊆ B accepting a certain atom (argument), but accounts for non-
monotonicity by requiring that this property survives moving to supersets of B′ within B.
We first define this idea on knowledge bases.

Definition 10. Let B a knowledge base. A set B′ ⊆ B strongly accepts a if a ∈ acc(B′′)
for all B′′ such that B′ ⊆ B′′ ⊆ B.

As mentioned earlier, strong acceptance can be defined on AFs [8,10].

Definition 11. Let B a knowledge base and F = af (B). A sub-AF F ′ ∈ FB strongly
accepts a if a ∈ acc(F ′′) for all F ′′ such that F ′ ⊆ F ′′ ⊆ F.

Example 4. Consider our running Example 2. As we already discussed in the introduc-
tion, the sub-AF consisting of {A3,A5} strongly accepts A5 (and hence the atom p). From
the point of view of the knowledge base, we require the assumptions A ′ = {c,e} and
rules R ′ = {(d̄ ← c,e.),(p ← e.)} to construct these arguments. The reader may verify
that indeed, A ′ ∪R ′ strongly accepts p (note that this is a superset to the one discussed
in the introduction; we come back to a smaller one below).

The observation we made in the previous example is no coincidence: given a
strongly accepting sub-graph of af ABA(B), under mild conditions we can find a strongly
accepting subset of B by applying the mapping kbABA. The following proposition formal-
izes this result.

Proposition 5. Let B be a knowledge base, and F ′ ∈ FB. Suppose af is ⊆-monotone, and
af , kb, and acc are well-behaved and compatible. If F ′ strongly accepts a, then kb(F ′)
strongly accepts a.

Proof. Assume that F ′ strongly accepts a and kb(F ′) = B′ does not. Then there is a B′′
with B′ ⊆ B′′ ⊆ B with a /∈ acc(B′′). It holds that af (B′) ⊆ af (B′′) (by monotonicity of
af ) and F ′ ⊆ af (kb(F ′)) (by af and kb being well-behaved). Then F ′ ⊆ af (kb(F ′)) =
af (B′) ⊆ af (B′′). Moreover, since af (B) is ⊆-maximal, it follows that F ′ ⊆ af (B′′) ⊆
af (B). By assumption that F ′ is strongly accepting a, it follows that a ∈ acc(af (B′′)),
which implies a ∈ acc(B′′), a contradiction.

The opposite direction does not hold in general, also not for concrete instantiations
(e.g., ABA and ASPIC+ [3]) as discussed partially before and more concretely in the
following counter-example.

Example 5. From our running example ABA D consider the rules R ′:

d̄ ← c. p ← e.
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and A ′ = {e}. The set D′ = A ′ ∪R ′ strongly accepts p in D which can be seen as fol-
lows. In order to prevent p from being acceptable, the argument A4 is required. However,
for this we would need to add assumptions c and d as well which in turn allows to con-
struct A3. We already know however that presence of A3 and A5 suffice to strongly accept
p. On the other hand, the AF af ABA(D

′) consists of the argument A5 from Figure 1 only
which does not suffice to strongly accept p: we can simply add A4.

However, if af is a bijection and kb its inverse, then the converse is also true.

Proposition 6. Let B a knowledge base, and F ′ ∈ FB as well as B′ ⊆ B. Suppose af and
kb are ⊆-monotone, and af , kb, and acc are compatible s.t. af : 2B → FB is a bijection
and kb = af−1. If F ′ strongly accepts a, then kb(F ′) strongly accepts a. If B′ strongly
accepts a, then af (B′) strongly accepts a.

To summarize, the notion of strong acceptance can be naturally defined for both the
AFs as well as the underlying knowledge base. Since not every AF F ∈ FB is induced
by some subset of the knowledge base B, it is in general not true that strong acceptance
is preserved when applying af resp. kb. However, as formalized by Proposition 5, under
mild conditions it can be translated back from the AF to the knowledge base. As our
results regarding ABA demonstrate, the preconditions for Proposition 5 hold for ABA.

If one restricts strong acceptance on the AF side to only closed AFs in FB, in addition
to having af being a bijective with kb its inverse, we can apply Proposition 6 to conclude
that strong acceptance transfers in both ways.

4.2. Strong Acceptance and Size of Subframeworks

In the general case, an associated AF may not be small w.r.t. the structured knowledge
base it was instantiated from. For instance, an AF associated to an ABA framework may
be exponential in size [14] (the example given there applies to ABA as well). Neverthe-
less, as we show, in many cases one can bound strongly accepting subframeworks both
on the knowledge base and argument level.

To formalize this idea, we will make use of claim-augmented AFs (CAFs) [15]. A
CAF is a tripleF = (A,R,cl) where F = (A,R) is an AF and cl : A → C assigns a claim
c ∈C to each argument in A; C is a countably-infinite set. We let cl(E) = {cl(e) | e ∈ E}
for a set E of arguments. In the literature, semantics for CAFs have been introduced and
formally investigated, but we are only interested in the claims as additional information.
We thus let σ(F ) = σ(F) for each semantics σ considered in this paper. We assume
that our mappings af , kb, and acc naturally extend to CAFs.

Example 6. Our running example ABA frameworks yields a CAF F = (A,R,cl) where
the underlying F = (A,R) corresponds to the AF from Figure 1. Claims of arguments
correspond to their conclusions, i.e. we let cl(A3) = d̄ and analogously for the other Ai.

When constructing arguments corresponding to an ABA framework D, out-going
attacks are naturally characterized by the conclusions of an argument. Viewing the AF as
a CAF by defining cl as shown above, this procedure yields a well-formed CAF. In the
following, we assume that the CAFs we work with possess this feature.

Assumption 2. For a given KB B, af (B) = F = (A,R,cl) is well-formed in the sense
that cl(a) = cl(b) implies a+ = b+ for each argument a,b ∈ A.
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We remark that this assumption holds for many structured argumentation ap-
proaches, such as ABA, but not all: in case of preferential approaches (e.g., ASPIC+ [3])
one can find counterexamples. We make use of one additional technical assumption that
holds for several structured argumentation formalisms.

Assumption 3. For a given KB B, it holds that the set of claims in af (B) is bounded
polynomially by |B|.

This assumption does not hold, e.g., if there is an underlying logic or deductive
system of a knowledge base which gives rise to claims not present in original knowledge
base (e.g., if a leads to a∨b leads to a∨b∨ c, ...). Observe however that for our running
example of non-preferential ABA instantiations, we have |cl(A)| ≤ |L | and for each
framework D, FD is well-formed.

In the following, we will show that any strongly accepting sub-framework can be
reduced to at most |C| arguments, whereC is the set of claims occurring in F . The crucial
observation is formalized in the following theorem. It states an admissible extension
E ∈ ad(F) with more than |C| claims can be reduced in size. The proof proceeds by
removing arguments which do not contribute any novel claim.

Theorem 1. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. If a set of arguments E is admissible in F and contains a, then there exists
an admissible set E ′ with a ∈ E ′ and |E ′| ≤ |C|.
Proof. Let E be admissible in F and a ∈ E. If |E| � |C| then there is a claim α ∈ C
such that more than one argument in E has claim α . Pick any a ∈ E with claim(a) = α .
We claim that E ′ = E \ {x ∈ E | claim(x) = α ,x �= a} is admissible in F . It holds that
E ′ is conflict-free (since conflict-freeness holds for any subset of a conflict-free set).
Suppose there is a b ∈ E ′ such that there is a c ∈ A with (c,b) ∈ R and there is no
d ∈ E ′ with (d,c) ∈ R. Since E ′ ⊆ E it holds that b ∈ E. Since E is admissible there
is a d′ ∈ E such that (d,c) ∈ R. Since d′ ∈ E \E ′, by construction of E ′, it holds that
claim(d′) = α = claim(a). By well-formedness, it holds that (a,c) ∈ R, contradicting
the assumption that b is not defended by E ′. We conclude that E ′ is admissible in F .
DefineC′ ⊆C as the set of claims of arguments in E. Finally, pick for each claim α ∈C′
an argument xα ∈ E with the exception that aα is chosen for the claim of a, and set
E∗ = {xα | xα ∈ E,α ∈ C′}. By the statements above it holds that E∗ is admissible and
contains a. By construction, there is exactly one argument per claim inC′.

For the other semantics σ ∈ {co,gr,pr,stb} we might move to a superset in order
to fulfill the semantic-specific requirements, but we can be sure that an admissible set of
small size can be extended in a suitable way.

Corollary 2. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. Let σ ∈ {co,gr,pr,stb}. If E ∈ σ(F), then there is some E0 ∈ ad(F) with
|E0| ≤ |C| and E0 ⊆ E.

Since extensions induce strongly accepting subsets as formalized in [8] we can now
infer that the size of such subsets can be trimmed down to size of at most |C| arguments.
Corollary 3. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. Let σ ∈ {co,gr,pr,stb}. If there is a strongly accepting sub-framework for a,
then here is also a strongly accepting sub-framework containing at most |C| arguments.
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5. Conclusions

In this paper we revisited strongly accepting subframeworks [10,8,9] (see also [16]),
and investigated their connection to structured argumentation frameworks. Based on a
generic notion of such structured frameworks, we showed that strongly accepting sub-
frameworks are applicable and generalizable from abstract AFs to structured frame-
works, with the concrete formalism ABA being presented here. There is an apparent mis-
match between notions on the abstract and structured level, but which can be addressed
with careful consideration of, e.g., closed AFs. Moreover, we considered properties con-
necting to strongly accepting frameworks, in particular we showed that such strongly ac-
cepting subframeworks can be bounded polynomially, even if a “full” AF is not bounded
polynomially, indicating that notions supporting explanations, based on strongly accept-
ing subframeworks, exhibit interesting size bounds, and open up further investigation.

The most apparent future work directions include the investigation of other concrete
structured argumentation formalisms and finding natural and mild conditions ensuring
the converse of Proposition 5. Moreover, studying relations to other forms explainability
is an intriguing avenue of future research.
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Reasoning With and About Norms in
Logical Argumentation
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Abstract. Normative reasoning is inherently defeasible. Formal argumentation has
proven to be a unifying framework for representing nonmonotonic logics. In this
work, we provide an argumentative characterization of a large class of Input/Output
logics, a prominent defeasible formalism for normative reasoning. In many nor-
mative reasoning contexts, one is not merely interested in knowing whether a spe-
cific obligation holds, but also in why it holds despite other norms to the contrary.
We propose sequent-style argumentation systems called Deontic Argument Calculi
(DAC), which serve transparency and bring meta-reasoning about the inapplicabil-
ity of norms to the object language level. We prove soundness and completeness be-
tween DAC-instantiated argumentation frameworks and constrained Input/Output
logics. We illustrate our approach in view of two deontic paradoxes.

Keywords.Nonmonotonic logic, Argumentation, Deontic logic, Normative reasoning

1. Introduction

Obligations and norms fulfil a crucial role in a variety of fields, including law, ethics,
AI, and everyday life [1]. The logical study of normative reasoning investigates reason-
ing with such concepts in formal systems of logic, e.g., deontic logics. Its importance
increases with the development of intelligent autonomous systems. Complex normative
systems often require reasoning with normative conflicts, exceptions, preferences and
priorities [1]. A central challenge is to provide transparent formal models of the under-
lying reasoning processes, e.g., by means of nonmonotonic logics.

Over the past decades, abstract argumentation has proven to be a unifying frame-
work for the representation of large classes of nonmonotonic logics [2]. Formal argumen-
tation provides both a natural and a transparent model of conflicts and their resolution
in terms of conflicting arguments. In this way, it provides a promising basis for tackling
the challenging requirements of normative reasoning. The logical analysis of normative
reasoning is well-established [1] with the Input/Output framework (I/O) being one of the
central approaches [3]. Nonmonotonicity is captured in constrained I/O logics through
considering maximal consistent families of norms. In recent years, also argumentative
representations of deontic logics have attracted increasing interest [4,5,6,7,8,9].
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This paper is the first to provide argumentative characterizations for a significant
class of I/O logics, including all original logics from [3]. In this way, we are able to com-
bine the advantages of I/O logic with those of formal argumentation. On the one hand, I/O
is a highly expressive and robust framework with two decades of developments, includ-
ing many applications (e.g., priorities, constitutive norms, cognitive modeling, causal
reasoning [1,10]). On the other hand, it does not provide the level of transparency that
comes with the explicit representation of conflicts in formal argumentation.

In particular, I/O leaves some central challenges of normative reasoning unad-
dressed. When answering the question as to why an obligation holds, one must state rea-
sons. Moreover, often it does not suffice to know why a specific obligation holds, one
must know why other obligations to the contrary do not hold. E.g., in order to understand
why “I am permitted to overtake on the left, despite having to drive on the right” one must
know how the first norm relates to the second. In this case, the first is an exception that
renders the latter inapplicable in the context of “overtaking another vehicle”. Common
approaches to I/O logics—as well as deontic logics—do not provide means for making
explicit the reasons why certain obligations are not derivable. Despite their central role
in ethics and explanation [11], a general lack of explicit modeling of reasons in formal
systems has been recently identified [12] (with some exceptions, e.g., [13]). Support and
defeat relations are central in the context of reasons as well as in formal argumentation,
which makes the latter an ideal framework to reason with and about reasons.

We address these problems by introducing a class of rule-based proof systems called
Deontic Argument Calculi (DAC) for normative reasoning by means of argumentation.

Our conceptual contribution is twofold: First, we use labels on formulae to make the
presentation transparent on the object level, i.e., we can syntactically distinguish between
facts, obligations, and constraints without “burdening” the logics with modalities [10].
Second, we internalize some of the meta-reasoning in the I/O formalism by referring
to the inapplicability of norms on the object language level. Consequently, our calculi
generate both arguments that provide explicit reasons for obligations and arguments that
defeat other arguments by giving explicit reasons for why certain norms are inapplicable.
The second type of arguments concerns the nonmonotonicity of normative reasoning.
The possibility to reason about the inapplicability of norms on the object language level
distinguishes our work from other systems such as [14,15]. We illustrate the utility of our
approach using the notion of related admissibility [16] to explain why some obligation
holds despite certain norms to the contrary.

The technical contribution of this work contains two types of completeness results:
First, we show adequacy between DAC and a significant class of monotonic I/O conse-
quence relations. Second, we prove that formal argumentation frameworks instantiated
with DAC arguments characterize a large class of nonmonotonic I/O logics. This makes
our work the first to argumentatively characterize I/O logic. Moreover, DAC enjoys a
modularity particularly suitable for expansions and our calculi are modular with respect
to a large class of base logics. Last, our work contributes to previous representation re-
sults in formal argumentation concerning systems based on maximal consistent sets [2].

2. Basic Terminology and Benchmark Examples

We introduce basic terminology by considering two examples. Developments in deontic
logic are driven by challenging examples [17]. Here, we focus on contrary-to-duty rea-
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a =

[
(¬h) f ,(¬h,¬t)

⇒ (¬t)o

]
b =

[
(¬h)c

⇒¬(�,h)

]

c =
[
(�,h)
⇒ ho

]
d =

[
(�,h),(h, t)

⇒ to

]

(i)

a =

[
(�,r)
⇒ ro

]

c1 =
[

(�,r)
⇒ (r∨ p)o

]

c2 =
[

(�, p)
⇒ (r∨ p)o

]

e =
[
(�, p),(¬(r∧ p))c

⇒¬(�,r)

]

d =

[
(�,r),(¬(r∧ p))c

⇒¬(�, p)

]

b =

[
(�, p)
⇒ po

]

(ii)

Figure 1. Defeasible normative reasoning examples: (i) The Chisholm scenario (Example 1). Arrows denote
defeat relations between arguments, relative to C ′ = {¬hc} (Example 2). (ii) A deontic conflict (Example 3).
Argument e defends {b,c2,e}, whereas argument d defends {a,c1,d}.

soning and deontic conflicts. Both can be effectively addressed using nonmonotonic rea-
soning [10] (for alternative approaches see [1]). The languageL is defined as follows:

ϕ ::= p | � | ⊥ | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ϕ → ϕ

with p ∈ Atoms. All connectives are primitive in order to be modular with respect to the
base logic (Section 3). We use p,q,r, ... for atoms, and reserve ϕ,ψ,θ , ... for arbitrary
formulae of L . In order to increase transparency we label formulae of L , i.e., L i =
{ϕ i | ϕ ∈ L } for i ∈ { f ,o,c}. We have formulae expressing facts L f , obligations L o,
and constraints L c. Moreover, we employ pairs of formulaeL n = {(ϕ,ψ) | ϕ,ψ ∈L }.
A pair (ϕ,ψ) represents a norm: i.e., “given fact ϕ , it is obligatory that ψ” [3].

We work with knowledge bases of the type 〈F ,N ,C 〉, whereF ⊆L f constitutes
the factual context, N ⊆ L n denotes a system of norms, and C ⊆ L c represents the
constraints with which output must be consistent. The basic idea is that facts (input) trig-
ger norms, from which obligations are detached (output). Moreover, constraints control
the output to ensure consistency. The above is in the spirit of constrained I/O logic [3].

Suppose we have a single fact F = {p f }, a norm system N = {(p,q)}, and no
constraints, then an argument concluding that q is obligatory is of the following form,

p f ,(p,q)⇒ qo

The left-hand side (lhs) gives reasons for the conclusion on the right-hand side (rhs).

Example 1 (Chisholm scenario [1], Figure 1-i). Jones is under the obligation to go and
help her neighbors (�,h).2 Furthermore, Jones knows if she goes to help, she must tell
them she goes (h, t). Now, if Jones does not go, she ought not to tell them she goes
(¬h,¬t). It turns out that Jones does not go to help ¬h f . Clearly, Jones has violated
her primary obligation to go and help. Let the knowledge base be F = {¬h f } and
N = {(�,h),(h, t),(¬h,¬t)}. Figure 1-i presents arguments a,c, and d that can be con-
structed from the knowledge base (we explain the meaning of b and the arrows in Exam-
ple 2); e.g., in argument a, the reasons for not telling ¬to are the fact ¬h f and the norm
(¬h,¬t). What must Jones do in this contrary-to-duty scenario? The desired answer is
that she ought not to tell the neighbors she goes ¬to. Formalizations of this scenario
cause problems for (monadic) deontic logics, e.g., both t and ¬t become obligatory.

2A norm (�,ϕ) with a precondition � is triggered by default, that is, even by an empty factual context.
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Arguments do not only provide reasons in support of an obligation, but also defend
them from potential defeaters. A rebuttal defeat opposes the conclusion of an argument
without pinpointing the reason as to why. In contrast, attacks on reasons—i.e., under-
cuts—are arguments that express which reasons are inapplicable given some context. We
adopt undercuts since they are more transparent about attacks. Recall that constraints are
consistency requirements and suppose C = {¬qc}.3 Then, a defeating argument

p f ,¬qc ⇒¬(p,q)

expresses that, if output is to be consistent with the constraint ¬qc, in context p f the
norm (p,q) cannot be consistently asserted as a reason (since it would detach qo). Hence,
¬(p,q) expresses that this norm is inapplicable given F and C . An argumentation
framework is then simply a set of arguments with defeat relations holding between them.

Example 2 (Example 1 cont.). We want to know what Jones must do in the light of her
violation ¬h f . Thus, we impose the constraint that the output must be consistent with
the fact that Jones does not help C = {¬hc} (i.e., C = F modulo relabelling). This
constraint gives us the argument b : ¬hc ⇒ ¬(�,h) expressing that given consistency
requirement ¬h, the norm (�,h) may not be asserted as a reason (it would output the
inconsistent ho). This argument serves as a defeater of any argument which appeals to
(�,h) in its reasons, in this case both c and d; see the defeat arrows in Figure 1-i. So,
that Jones ought not to tell ¬to is explained by argument a together with the fact that
arguments c and d concluding helping ho, respectively telling to, cannot be defended in
view of b. Namely, c and d both employ reasons that are inapplicable given C .

What makes this approach more transparent is the use of labels in arguments to in-
dicate different types of information (factual, obligations, constraints), the internalized
meta-reasoning about inapplicability of norms, and the argumentation framework reveal-
ing the contrastive dimension of defeasible reasoning. In Figure 1-i, the question “why
shouldn’t Jones help, despite argument c?” is answered by “since argument b attacks c
and b is not attacked.” These notions will be made precise in subsequent sections.

Example 3 (Deontic Conflict [1], Figure 1-ii). Suppose Smith has an obligation to return
a borrowed weapon to a colleague (�,r). Smith knows the colleague is planning to
commit a crime with this weapon and Smith is under the obligation to prevent crime
(�, p). Furthermore, the constraint is that Smith cannot secure both r and p. What should
Smith do? This is a deontic conflict. The knowledge base is F = /0, N = {(�,r),(�, p)},
and C = {¬(r∧ p)c}. Suppose we reason classically, e.g., p entails p∨r. The arguments
that can be constructed are presented in Figure 1-ii. The two defeating arguments, d and
e, express that given the constraints one of either two norms cannot be asserted.

Intuitively, the defensible set {a,c1,d} justifies the obligation that Smith ought to
return the weapon in Example 3, whereas {b,c2,e} does this for the prevention of crime.
Likewise, one can justify the floating conclusion (r∨ p)o in Figure 1-ii, by arguing that
in every defensible stance either c1 or c2 is selected (cf. disjunctive response [13]). How-
ever, following a more skeptical reasoning style one can argue why r∨ p is not obligatory
since there is no single argument concluding (r∨ p)o that is selected in every defensible
stance. Defeasible reasoning by means of argumentation gives rise to various reasoning
styles, including the aforementioned. We will discuss these in Section 5.

3Since we do not allow for formulae with mixed labels, we can safely omit brackets w.r.t. using labels.

K. Van Berkel and C. Strasser / Reasoning With and About Norms in Logical Argumentation 335



T
(�,�)

ID
(ϕ,ϕ)

(ϕ,ψ) ψ  γ
WO

(ϕ,γ)
(ϕ,ψ) (ϕ,γ)

AND
(ϕ,ψ ∧ γ)

(ϕ,ψ) γ  ϕ
SI

(γ,ψ)

(ϕ,ψ) (ϕ ∧ψ,γ)
CT

(ϕ,γ)
(ϕ,ψ) (γ,ψ)

OR
(ϕ ∨ γ,ψ)

Figure 2. Rules for constructing derivR,L proof-systems. The minimal set of deriv-rules is {WO,AND,SI}.

3. Constrained Input/Output Logic

We briefly recall the basics of Constrained Input/Output logic, the systems for which
we provide argumentative characterizations. The formalism was developed by Makinson
and van der Torre [3] and is particularly suitable for normative reasoning [10]. Its central
feature is the employment of syntactic objects of the form (ϕ,ψ), called norms.

I/O logics are construed over the non-labelled propositional languageL (Section 2)
and a base logic L. We use capital Greek letters Δ,Γ, ... for finite sets of L -formulae
and write

∧
Δ to denote the conjunction of elements of Δ. Let  denote the consequence

relation of the base logic L. We assume that  is reflexive (Γ,ϕ ϕ), transitive (Γψ and
Γ′,ψ  ϕ implies Γ,Γ′  ϕ) and monotonic (Γ  ϕ implies Γ,Γ′  ϕ). We also assume
the presence of a conjunction ∧, for which Γ  ψ ∧ϕ iff Γ  ψ and Γ  ϕ , a negation
¬, for which Γ  ϕ iff Γ,¬ϕ , a disjunction ∨, for which Γ,ϕ1  ψ and Γ,ϕ2  ψ iff
Γ,ϕ1∨ϕ2  ψ , and a falsum constant ⊥ for which ⊥  ϕ and ϕ,¬ϕ  ⊥. We assume L
has an adequate sequent calculus LC, i.e., Δ  ϕ iff the sequent Δ ⇒ ϕ is LC-derivable.

Constrained I/O logics work with knowledge bases of the type 〈F ,N ,C 〉, where
F ⊆ L is the factual input, N ⊆ L ×L a normative system, and C ⊆ L a set of
constraints containing the formulae with which output must be consistent. We assume
F and C to be consistent, i.e., F � ⊥ and C � ⊥. The traditional I/O proof systems
are only available for a class of monotonic I/O logics [10]. The system is referred to as
“deriv” and contains inference rules that derive I/O pairs from other I/O pairs (Figure 2).

Definition 1. Let derivR,L be a proof-system, with R a set of rules from Table 2. Let L
be the base logic, and let N ⊆ L n. A derivation of (ϕ,ψ) ∈ derivR,L(N ) is a tree of
rule-applications of R where the leaves are either members of N or instances of T and
ID (if T, ID ∈ R), all members of N are among the leaves, and the root is (ϕ,ψ).

We say ψ is obligatory (detached) under N and F if (ϕ,ψ) ∈ derivR,L(N
′) with

F  ϕ and N ′ ⊆ N . We write ψ ∈ derivR,L(Δ,N ) if (
∧

Δ,ϕ) ∈ derivR,L(N ).

Paradigmatic I/O logics are characterized by the sets of rulesR1= {T,WO,SI,AND},
R2 = {OR}∪R1, R3 = R1 ∪{CT}, and R4 = R2 ∪R3. The system R1 represents a
single deontic detachment procedure which allows for weakening of the output (WO),
combining output (AND), and strengthening of the input (SI). All propositional tautolo-
gies are among the output (T). System R2 extends R1 with reasoning by cases (OR),
i.e., if both ϕ and γ generate output ψ , then ϕ ∨ γ generates ψ too. System R3 extends
R1 with reusability (CT) allowing for iterations of successive deontic detachment (cf.
chaining reasons in Example 5). Last, R4 combines R2 and R3. The above systems
may be closed under throughput (ID), i.e., input is ‘put through’ as output. We write
R+

i = Ri ∪{ID} for i ∈ {1,2,3,4}. The resulting eight systems are sound and complete
with respect to their semantic characterizations [10]. We omit the semantics here.

The above systems are still monotonic. As Example 1 and 3 demonstrate, we require
defeasible detachment. Constrained I/O logics enable this [3]. Constrained I/O logics
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work with maximal families of normsN ′ ⊆ N under which the output remains consis-
tent with the constraints C . If the output is required to be consistent per se, we let C = /0.
If the output is to be consistent with the input, we takeF ⊆ C (e.g., Example 2).

Definition 2. Let derivR,L be a system from Figure 2 and let K = 〈F ,N ,C 〉 be a
knowledge base. The set of maximal consistent families of N (maxfam) is defined as:

• maxfamR,L(K ) is the set of max-elements of {N ′ ⊆ N | for all (ϕ,ψ) ∈
derivR,L(N

′), if F  ϕ , then C ,ψ � ⊥}.

We define sceptic nonmonotonic inference |∼s for constrained I/O logic as follows:

• K |∼s
R,L ϕ iff ∀ N ′ ∈maxfamR,L(K ), ∃(ψ,ϕ) ∈ derivR,L(N

′) with F  ψ .

Example 4 (Example 1 cont.). Consider R3 with L a classical logic, F = {¬h}, and
N = {(�,h),(h, t),(¬h,¬t)}. For C = /0, we have maxfamR3,L(F ,N ,C ) = {{(�,h),
(h, t)},{(¬h,¬t),(�,h)},{(¬h,¬t),(h, t)}}. We derive (�,h ∧ t) ∈ derivR3,L({(�,h),
(h, t)}) as follows:

(�,h)
(�,h)

(h, t) �∧h  h
SI

(�∧h, t)
CT

(�, t)
AND

(�,h∧ t)

with F  � and C ,h∧ t � ⊥. However, once we set the constraints to Jones’ violation,
i.e., C ′ = F , we obtain a single maxfam member N ′ = {(¬h,¬t),(h, t)} since now
C ′,h⊥ whereas C ′,¬t � ⊥ (note that (h, t)∈N ′ cannot be triggered by F ). Given C ′,
Jones is obliged to not tell, i.e., K |∼s

R,L¬t, and is not obliged to help, i.e., K |�∼s
R,L h.

First, maxfam sets (of arbitrary size) do not provide formal ways of pinpointing the
reasons why some norms are inapplicable, e.g., why (�,h) in Example 4 is inapplicable
given C =F . Second, deriv is unsuitable for generating transparent arguments, e.g., as a
certificate the derivation in Example 4 may justify that (�,h∧ t) is derivable, its conclu-
sion does not explain why h∧ t is obligatory. In fact, although in general a derivation is a
justification, it is not necessarily an explanation. Our calculi address both challenges.

4. Deontic Argument Calculi (DAC)

In order to generate more transparent I/O arguments, we label propositional formulae as
facts L f , obligations L o, and constraints L c (Section 2). What is more, we allow for
Boolean operations over the more complex meta-logical objects (ϕ,ψ) denoting norms.
Operations over these higher-order syntactic objects enable undercuts that explain why
certain norms should (not) be applied. For the present work, it suffices to consider nega-
tion only. Let L n = {¬(ϕ,ψ) | (ϕ,ψ) ∈ L n}. The language of norms is defined as
L n ∪L n. Furthermore, let L io = L f ∪L o ∪L c ∪L n ∪L n be the full labelled I/O
language. InL io, norms are integrated into the object-level language. We write ϕ for an
arbitrary formula ofL io and write Δi to denote that Δi ⊆ L i for i ∈ { f ,o,c,n}.

We introduce Deontic Argument Calculi (DAC) for I/O logic. These calculi are
sequent-style calculi, which are rule-based proof systems employing syntactic objects of
the form Δ ⇒ Γ, with Δ,Γ ⊆ L io and ‘⇒’ as a sequent arrow. We call Δ ⇒ Γ a sequent
or an argument, where Δ denotes the reasons for Γ (Section 2). Furthermore, Δ is inter-
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Ax LC Δi ⇒ Γi, for i ∈ { f ,o,c} Taut ⇒ (�,�) Detach ϕ f,(ϕ,ψ)⇒ ψo TP ϕ f ⇒ ϕo

Δ ⇒ ϕo

R-C Δ,(¬ϕ)c ⇒
Δ,(ϕ,ψ)⇒

R-N Δ ⇒¬(ϕ,ψ)

ϕ f ,Δ ⇒ Θ
L-CTa

ϕo,Δ ⇒ Θ

Δ,ϕ f ⇒ Θ Δ′,ψ f ⇒ Θ
L-ORb

Δ,Δ′,(ϕ ∨ψ) f ⇒ Θ
Δ ⇒ ϕ ϕ,Δ′ ⇒ Θ

Cutc
Δ,Δ′ ⇒ Θ

Figure 3. Rules for building DACS (Definition 3). The upper level contains initial sequents and the lower
level logical and structural rules. Side-condition (a) denotes Δ∩L n �= /0; (b) denotes that if TP �∈ S , then
Δ∩L n �= /0 and Δ′ ∩L n �= /0; and (c) that ϕ ∈ L io.

preted as a regular finite set and Γ is restricted to at most one formula. The use of regular
sets instead of multi-sets is more modular w.r.t. the base logic L. Let LC be an adequate
sequent calculus for the base logic L, then, intuitively,DAC takes labelled versions of any
LC-derivable Δ ⇒ Γ as an initial sequent (i.e., Δi ⇒ Γi for each i ∈ { f ,o,c}) and contains
logical- and structural rules for transforming labelled formulae ofL io (see Figure 3).

Definition 3. Let DAC be the base system with the underlying logic L, containing the
rules Ax,Detach,R-C,R-N, and Cut from Figure 3. The calculus DACS extends DAC
with the set of rules S ⊆ {Taut,TP,L-OR,L-CT}, leading to 16 DAC-axiomatizations.

A DACS -derivation of Δ ⇒ Γ is a tree whose leafs are initial sequents of DACS ,
whose root is Δ ⇒ Γ, and whose rule-applications are instances of the rules of DACS .
We write S Δ ⇒ Γ (resp. n

S Δ ⇒ Γ) if Δ ⇒ Γ is DACS -derivable (in at most n steps).

Since DACS takes labelled LC-derivable sequents as initial sequents, the rules of
LC are not part of DACS . Still, LC rules can be straightforwardly shown admissible in
DAC due to the presence of Cut. The rule Taut ensures that all propositional tautologies
are considered as output. The rule Detach is an initial explanatory argument stating that
the fact ϕ and the norm (ϕ,ψ) are reasons for the obligation ψ . Instead of deriving
pairs from other pairs (as in deriv), we keep norms as primitive reasons from a given
normative code N and only modify facts, obligations, and constraints. This gives us
some explanatory advantages (see R-C and R-N below). The rule TP corresponds to
throughput. The ruleL-CT corresponds to successive detachment, expressing that a norm
may likewise be triggered by the output of some other norm (cf. Example 5). L-OR

reflects reasoning by cases over input. The side-condition on L-OR is dropped for TP ∈
S due to reasoning by cases with throughput. Cut suffices as the only structural rule.

More interesting are the rules R-C and R-N. Concerning R-C, think of a sequent
with an empty right-hand side as an argument expressing inconsistent reasons. For in-
stance, an argument ϕ f ,(ϕ,ψ),(¬ψ)c ⇒ explains that the fact ϕ and the norm (ϕ,ψ)
(which are reasons for ψ) are inconsistent whenever the output must be consistent
with ¬ψ . What is more, whenever such an argument expresses inconsistent reasons,
we know at least one of its norms is inapplicable. The rule R-N expresses this: from
ϕ f ,(ϕ,ψ),(¬ψ)c ⇒ we obtain the defeating argument ϕ f ,(¬ψ)c ⇒ ¬(ϕ,ψ). Hence,
ϕ f and (¬ψ)c are reasons for the inapplicability of the norm (ϕ,ψ). DACS sequents
will be the building blocks for the desired argumentative characterizations (Section 5).

Example 5 (Example 1 cont.). The DAC-argument d (Figure 1-i), concluding that Jones
should tell her neighbors she is coming to help, is derived through chaining (�,h) and
(h, t). The following DACS -derivation (left) shows this, where L-CT ∈ S :

K. Van Berkel and C. Strasser / Reasoning With and About Norms in Logical Argumentation338



Detach� f ,(�,h)⇒ ho

Detach
h f ,(h, t)⇒ to

L-CT
ho,(h, t)⇒ to

Cut� f ,(�,h),(h, t)⇒ to

Detach� f ,(�,h)⇒ ho

R-C� f ,(¬h)c,(�,h)⇒
R-N� f ,(¬h)c ⇒¬(�,h)

Given C ′ = {¬hc}, “why should Jones not tell, despite argument d?” is answered by the
(right) derivable argument b (Figure 1-i). The fact � f is omitted by a Cut with ⇒� f .

Example 6 (Example 3 cont.). In the dilemma, Smith cannot both return the weapon and
prevent the crime. So, we find (�,r) applicable if and only if (�, p) is inapplicable. This
is expressed by arguments e and f . The DACS -derivations of e and f from Figure 1-ii are
obtained similarly to argument b in Example 5, using Detach twice, the DAC-admissible
rule from LC for right conjunction introduction, R-C, and R-N consecutively.

5. Argumentation and DAC-Instantiations

DAC arguments are of two types: they either give reasons for obligations, or they give
reasons for why certain norms are inapplicable, i.e., defeated. The latter arguments cap-
ture the defeasibility of normative reasoning and define the interaction among arguments.
We define DAC-induced argumentation frameworks (AFs) to model this interaction.

Definition 4. Let DACS be a calculus and K = 〈F ,N ,C 〉 a labelled knowledge base
(i.e., F ⊆ L f ,N ⊆ L n, and C ⊆ L c). We define AFS (K ) = 〈Arg,Att〉 as follows:

• Δ ⇒ Γ ∈ Arg iff Δ ⇒ Γ is DACS -derivable, Δ ⊆ F ∪N ∪C , and Γ ⊆ L io;
• a defeats b, i.e., (a,b) ∈ Att iff a = Δ ⇒¬(ϕ,ψ) and b = Γ,(ϕ,ψ)⇒ Θ.

We write Arg(Σ) to denote the set of DACS -arguments Δ ⇒ Γ for which Δ ⊆ Σ ⊆ L io.

For an AFS (K ) it suffices to only consider arguments relevant toK , i.e., Arg(F ∪
N ∪C ). We are interested in what combinations of arguments (extensions) can be col-
lectively accepted given an AF. For our purpose, stable extensions suffice.

Definition 5. Let 〈Arg,Att〉 be an AF and let E ⊆ Arg:

• E defeats an argument a ∈ Arg if there is a b ∈ E that defeats a, i.e., (b,a) ∈ Att;
• E is conflict-free if it does not defeat any of its own elements;
• E is stable if it is conflict-free and defeats all b ∈ Arg \E .

Let Stable be the set of stable extensions of AF. We define sceptic (s), sceptic∗ (s∗), and
credulous (c) nonmonotonic inference as follows:

• AF |∼s
stableϕ iff for each E ∈ Stable, there is an a ∈ E concluding ϕ;

• AF |∼s∗
stableϕ iff there is an a ∈⋂

Stable concluding ϕ;
• AF |∼c

stableϕ iff there is a E ∈ Stable s.t. there is an a ∈ E concluding ϕ .

The use ofDAC-arguments introduces nuances in sceptic inference: e.g., the distinc-
tion between s and s∗ corresponds to the discussion of floating conclusions in Section 2.

Example 7 (Example 3 cont.). Smith is in a dilemma of conflicting duties. TheAF of Fig-
ure 1-ii represents this conflict, where Arg = {a,b,c1,c2,d,e} and Att= {(e,a),(e,c1),
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Table 1. Lemmas for S . Let Δ↓ and ϕ↓ be the set of formulae in Δ, resp. ϕ stripped from any labels.

Lemma : if then

1 S Δ,Γc
1 ⇒ Σ and C ∧

Γ1 ∃Γ2 ⊆ C : S Δ,Γc
2 ⇒ Σ and Γ2 ∧

Γ1
2 n

S Δ ⇒¬(ϕ,ψ) n
S Δ,(ϕ,ψ)⇒

3 Δ↓  γ↓, where Δ ⊆ L f ∪L o ∪{(�,�)}, γ ∈ L f ∪L o

4  γ↓, where TP /∈ S , Δ ⊆ L f ∪{(�,�)}, γ ∈ L o

5 n
S Δ ⇒ n

S Δ\L c ⇒ ϕo s.t. ϕ  ¬∧
(Δ∩L c)↓, where ¬∧

/0=df ⊥

(e,d),(d,e),(d,c2),(d,b)}. It has two stable extensions {a,c1,d} and {b,c2,e}, defend-
ing the views that Smith ought to return the weapon, resp. prevent the crime. Hence,
AF |∼c

stable ro, po, whereas AF |�∼c
stable(r ∧ p)o, AF |�∼s

stable ro, and AF |�∼s
stable po. For the

floating conclusion (r∨ p)o we have AF |∼s
stable(r∨ p)o but AF |�∼s∗

stable(r∨ p)o. (The AF
of Example 2 in Figure 1-i has one stable extension {a,b}, and so AF |∼s,s∗,c

stable(¬t)o.)

To illustrate the utility of our approach, we consider the notion of related admissi-
bility [16]. An extension E is admissible if it is conflict-free and E defeats all arguments
defeating some a ∈ E . An argument a defends b iff a = b, or there is a c s.t. a defeats c
and c defeats b, or there is a c s.t. a defends c and c defends b. A set Ea ⊆ Arg is related
admissible with topic a iff a ∈ Ea, for all b ∈ Ea, b defends a, and Ea is admissible. Thus,
a related admissible set Ea identifies the relevant arguments that justify the acceptability
of a. Let E + = {a ∈ Arg | E defeats a} and E − = {a ∈ Arg | a defeats some b ∈ E }. In
Example 3, the answer to “why is Smith obliged to prevent crime (b)?” is given by the
related admissible set Eb = {b,e} where E −

b = {d} and {d}−∩Eb = {e} explain that the
only counterargument to b is d which is defeated by e expressing that the norm (�,r)
used in d is inapplicable given the reasons (�, p) and ¬(r∧ p)c offered in e. Hence, us-
ing only undercuts enables a more refined analysis of the relevant norms explaining the
(non-)acceptability of certain arguments and obligations. The DAC approach is therefore
more precise compared to using maximal consistent families of norms in traditional I/O.

6. Metatheory: Soundness and Completeness

We demonstrate two soundness and completeness results: First, we prove adequacy be-
tween I/O proof systems and DAC (Theorem 1). Second, we prove adequacy between
constrained I/O logics and DAC-based argumentation frameworks (Theorem 2). We pro-
vide explicit proofs of the main results. Table 1 lists several technical lemmas whose
proofs are omitted: Lemma 1 follows by the compactness of L, while Lemmas 2 to 5 are
proven by a straightforward induction on the length of the derivation.

We first show adequacy between deriv and DAC. Both systems are modular and
correspondence between the rules of these systems is defined in Table 2. In referring
to derivRL and DACS we assume this correspondence. We state the two directions of
Theorem 1 separately, we prove Lemma 7, and omit the similar proof of Lemma 6.

Lemma 6. Let Θ ⊆ L n, If S Δ f ,Θ ⇒ ϕo, then ϕ ∈ derivR,L(Δ,Θ).

Lemma 7. If (ϕ,ψ) ∈ derivR,L(Θ), then S ϕ f ,Θ ⇒ ψo.
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Table 2. Correspondence between derivR,L rules and DACS rules with the underlying logic L. For instance,
{ID,OR} ⊆ R iff {TP,L-OR} ⊆ S . The first column represents the minimal sets the systems must contain.

Rules of derivR,L {WO, AND, SI} T ID CT OR
Rules of DACS {Ax,Detach,R-C,R-N,Cut} Taut TP L-CT L-OR

Proof. By induction on the length of the derivR,L-derivation of (ϕ,ψ). Base case. Case
{(ϕ,ψ)}=Θ. ByDetach, S ϕ f ,(ϕ,ψ)⇒ψo. Case (�,�) is derived by T withΘ= /0.
By Detach, S � f ,(�,�) ⇒ �o and by Taut, S ⇒ (�,�). By Cut, S � f ⇒ �o.
Case (ϕ,ϕ) is derived by ID with Θ = /0. By TP, ϕ f ⇒ ϕo.

Inductive step. To illustrate, we consider the case of CT. The other cases are similar
or straightforward. Suppose that (ϕ,ψ) is derived from (ϕ,σ) ∈ derivR,L(Θ1) and (ϕ ∧
σ ,ψ) ∈ derivR,L(Θ2) by CT, where Θ = Θ1 ∪ Θ2. By the IH, S ϕ f ,Θ1 ⇒ σo and
S (ϕ ∧ σ) f ,Θ2 ⇒ ψo. By R∧2, ϕ,σ  ϕ ∧ σ . By Ax, S ϕ f ,σ f ⇒ (ϕ ∧ σ) f and
by Cut, ϕ f ,σ f ,Θ2 ⇒ ψo. Then, if /0 �= Θ2, by L-CT, S ϕ f ,σo,Θ2 ⇒ ψo and by
Cut, S ϕ f ,Θ ⇒ ψo. Else, Θ2 = /0 (and hence Θ = Θ1). We consider: (i) TP ∈ S and
(ii) TP /∈ S . Ad (i). By Lemma 3.1, ϕ,σ  ψ and by Ax, S ϕo,σo ⇒ ψo. By TP,
S ϕ f ⇒ ϕo and by twice Cut, S ϕ f ,Θ ⇒ ψo. Ad (ii). By Lemma 3.2,  ψ and so
σ  ψ . By Ax, S σo ⇒ ψo. By Cut, S ϕ f ,Θ ⇒ ψo.

Theorem 1. Let Δ ⊆ L , ψ ∈ L , and Θ ⊆ L n. Then, S Δ f ,Θ ⇒ ψo iff ψ ∈
derivR,L(Δ,Θ).

Proof. (⇒) This is Lemma 6. (⇐) Suppose ψ ∈ derivR,L(Δ,Θ). So, (
∧

Δ,ψ) ∈
derivR,L(Θ). By Lemma 7, S (

∧
Δ) f ,Θ ⇒ ψo. Since Δ  ∧

Δ, S Δ f ⇒ (
∧

Δ) f by
Ax. By Cut, S Δ f ,Θ ⇒ ψo.

We now prove our second adequacy result concerning constrained I/O logics and
DAC-instantiated argumentation frameworks.

Theorem 2. Let K = 〈F ,N ,C 〉 be a knowledge base. Let R be a set of deriv-rules
and S the set of corresponding DAC-rules (Table 2). Let AF=AFS (K ) = 〈Arg,Att〉.

1. If N ′ ∈maxfamR,L(K ) then Arg(F f ∪N ′ ∪C c) is stable in AF.
2. If A is stable in AF then there is a N ′ ⊆ N such that N ′ ∈ maxfamR,L(K )

for which A = Arg(F f ∪N ′ ∪C c).

Proof. (1) Let N ′ ∈ maxfamR,L(K ) and A = Arg(F f ∪ N ′ ∪ C c). For conflict-
freeness assume towards a contradiction that there are a = Δ f ,Θ,Γc ⇒ ¬(ϕ,ψ) ∈ A
(where Θ ⊆ N ′) and b = Ω,(ϕ,ψ) ⇒ Σ ∈ A such that a attacks b. By Lemma 2 and
since (ϕ,ψ) ∈ N ′, we have, Δ f ,Θ,Γc,(ϕ,ψ) ⇒∈ A . By Lemma 5, Δ f ,Θ,(ϕ,ψ) ⇒
σo ∈A for some σ for which σ  ¬∧

Γ. By Theorem 1, σ ∈ derivR,L(Δ,Θ∪{(ϕ,ψ)}),
which contradicts the C -consistency ofN ′.

For A defeats all b ∈ Arg \A let a = Δ f
1 ,Θ1,Γc

1 ⇒ Σ ∈ Arg \A , where Θ1 ⊆ L n.
So, there is a (ϕ,ψ) ∈ Θ1 \N ′. By the maximal consistency of N ′, N ′ ∪ {(ϕ,ψ)} is
inconsistent withC . So, there is a θ ∈ derivR,L(Δ2,Θ2) for some Δ2⊆F andΘ2⊆N ′ ∪
{(ϕ,ψ)} such that C  ¬θ . By Theorem 1, Δ2,Θ2 ⇒ θ o ∈ Arg. Note that (ϕ,ψ) ∈ Θ2
since otherwise Θ2 ⊆ N ′ in contradiction to the consistency of N ′. By R-C and R-

N, S Δ2,Θ2 \{(ϕ,ψ)},(¬θ)c ⇒¬(ϕ,ψ). By Lemma 1, b = Δ2,Θ2 \{(ϕ,ψ)},Γc
2 ⇒

¬(ϕ,ψ) ∈ Arg for some Γ2 ⊆ C for which Γ2  ¬θ . Note, b ∈ A and b attacks a.
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(2) Let A be a stable extension of AF(K ). Let N ′ = {(ϕ,ψ) ∈ N | ¬∃a = Δ ⇒
¬(ϕ,ψ) ∈ A }. We first show that A = Arg(F f ∪N ′ ∪C c):

“(⊇)” Let a ∈ Arg(F f ∪N ′ ∪C c). By the definition of N ′ there is no b ∈ A
that attacks a and since a ∈ Arg and by the stability of A , a ∈ A . “(⊆)” Let a ∈ Arg \
Arg(F f ∪N ′ ∪C c)with a= Δ⇒ Γ. So, there is a (ϕ,ψ)∈ Δ for which there is a b∈A
with b = Θ ⇒¬(ϕ,ψ). So b attacks a and by the stability of A , a /∈ A .

We now show that N ′ ∈ maxfamR,L(K ). Assume for a contradiction that N ′ is
inconsistent with C . So, there is a θ ∈ derivR,L(Δ,Θ) for some Δ ⊆ F and Θ ⊆ N ′ for
which C  ¬θ . By Theorem 1, a = Δ f ,Θ ⇒ θ o ∈ A . Assume first that Θ = /0.

If TP /∈ S , by Lemma 3.3,  θ and thus C is inconsistent which is a contradiction.
Thus, Θ �= /0. If TP ∈ S then, by Lemma 3.2, Δ  θ . But then F ∪C is inconsistent, a
contradiction and so Θ �= /0. So, in both cases Θ �= /0.

Let (ϕ,ψ) ∈ Θ. By R-N and R-C, S Δ,Θ \ {(ϕ,ψ)},(¬θ)c ⇒ ¬(ϕ,ψ). By
Lemma 1, there is a Γ ⊆ C for which b = Δ,Θ \ {(ϕ,ψ)},Γc ⇒¬(ϕ,ψ) ∈ A . Since b
attacks a, this contradicts conflict-freeness of A , which showsN ′ is consistent with C .

Assume for a contradiction that there is a (ϕ,ψ)∈N \N ′ such thatN ′ ∪{(ϕ,ψ)}
is consistent with C (i.e., N ′ is not maximal). By the definition of N ′, there is a
b = Δ f ,Θ,Γc ⇒¬(ϕ,ψ) ∈A . By Lemma 2, S Δ f ,Θ,(ϕ,ψ),Γc ⇒. By Lemma 5, S

Δ f ,Θ,(ϕ,ψ)⇒ σ o such that σ  ¬∧
Γ. By Theorem 1, σ ∈ derivR,L(Δ,Θ∪{(ϕ,ψ)})

which shows that N ′ ∪ {(ϕ,ψ)} is inconsistent with C (note that Γ ⊆ C ). This com-
pletes our proof since it shows thatN ′ ∈maxfamR,L(K ).

Corollary 1. Let K be a knowledge base, R a set of deriv-rules, and S a set of corre-
sponding DXC-rules (Table 2). For i ∈ {s,c}, AFS (K ) |∼i

stable ϕ iff K |∼i
R,L ϕ .

7. Related Work and Conclusion

In [14], a sequent-style system for monotonic I/O logics without constraints is presented.
It utilizes a correspondence between I/O and conditional logics. In [15] proof systems
for constrained I/O logic are developed, where modalities for ‘input’ and ‘output’ allow
for meta-reasoning in the object language. DAC uses labels instead of modalities and ad-
ditionally allows for meta-reasoning about the (in)applicability of norms. In [9], sequent
argumentation is used for defeasible reasoning with deontic logic. Norms are modelled
with material implications which allows for less fine-tuning of norms than in DAC.

In [5,6,18] argumentative characterizations of normative systems employing prior-
ity orderings are studied. Their language is restricted to literals only, whereas our ap-
proach adopts a full propositional language. In [6,18] arguments consist only of (sets of)
norms. In future work, we aim to incorporate priority and preference reasoning in the
more transparent context of DAC. Moreover, the I/O formalism has other applications
including reasoning with consistency checks, permissions, and constitutive norms [8,17].
In particular, we aim to exploit the internalization of meta-reasoning in DAC to charac-
terize various types of permission [17], for instance, negative permissions as defined in
terms of the absence of applicable norms to the contrary.

An alternative approach to model reasoning with norms is to instantiate ASPIC+

[2] with conditionals representing norms and a defeasible modus ponens rule. This ap-
proach leads to a “greedier” style of reasoning than our approach. Consider F = /0 and
N = {(�, p),(p,q),(�,¬q)}. An ASPIC+-based approach yields the obligation to p
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with stable semantics since the argument for p from (�, p) is unchallenged. In contrast,
our approach generates the argument (�,¬q),(p,q)⇒¬(�, p) concluding the inappli-
cability of (�, p). The latter is in line with the I/O approach to normative reasoning.

We illustrated our approach with the notion of related admissibility [16]. For future
work, we will investigate other argumentative approaches to explanation and how these
can be used in the context of DAC, e.g., explicit reasoning about the inapplicability of
norms in DAC can be harnessed to explain the non-acceptability of arguments [19].

Last, explanations typically occur in dialogues, through an exchange of reasons,
questions, and arguments [20]. Consequently, explanations are often tailored to the back-
ground of the explainee. We will adopt our approach to dialogue models in future work.

In conclusion, in normative reasoning contexts one is not just interested in whether
a specific obligation holds, but also in why it holds despite other norms to the contrary.
To address this challenge, we developed Deontic Argument Calculi (DAC) which are
rule-based proof systems that use labels to facilitate transparency and incorporate meta-
normative reasoning with norms into the object language.
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The black box model used in Machine Learning is considered one of the major prob-
lems in the application of Artificial Intelligence techniques [1] as it makes machine de-
cisions non-transparent and often incomprehensible even to experts or developers them-
selves. In this paper, we provide an argumentative interpretation of both the training
process and the results predicted. The goal is to build a Bipolar Argumentation Frame-
work (BAF) [2] showing the dialectical reasoning behind the assignment of a certain
class to a given record. Since we make assumptions neither on the dataset nor on the
algorithm used, the presented procedure can be applied to existing models without the
need for further adjustments. To illustrate our proposal, we use the Titanic dataset from
www.kaggle.com, which contains records relating to people involved in the Titanic dis-
aster. We consider three categorical features, namely Survived (the class to predict, with
value 1 if the person survived or 0, otherwise), Pclass (ticket class among 1, 2 and 3)
and sex (0 for woman and 1 for man), and two numerical features: Age (passenger age,
ranging from 0.17 to 76) and Fare (passenger fare with values from 0 to 512). In the fol-
lowing, we describe the step our procedure goes through in order to find an explanation
for the class Survived=1.

Dataset Clustering. In the first step, starting from the input dataset, we create a new
clustered dataset in which numerical features are split into categories that group ranges
of values to obtain a more appropriate and concise explanation.

BAF Generation. Then we build a BAF based on the correlation matrix computed
among the features. By construction, the obtained BAF only has symmetric relations.

Breaking Complete Symmetry.Given the correlation matrix, we apply a procedure
that removes symmetric edges from the BAF to establish a causal relationship between
features. In particular, we use the conditional probability [3] computed for arguments
which attack/support each other. We choose the minimum values possible that keep the
graph connected.

Computing Extensions. To identify the set of arguments which are more likely
to be accepted, we compute the semi-stable extensions [4] of the previously obtained

1This work has been partially supported by: GNCS-INdAM, CUP E55F22000270001; Project RACRA -
funded by Ricerca di Base 2018-2019, Univeristy of Perugia; Project BLOCKCHAIN4FOODCHAIN: funded
by Ricerca di Base 2020, Univeristy of Perugia; Project DopUP - REGIONE UMBRIA PSR 2014-2020.
2The author is a member of the INdAM Research group GNCS and of Consorzio CINI.
3Corresponding Author: Carlo Taticchi, Università degli Studi di Perugia; E-mail: carlo.taticchi@unipg.it.
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framework and then we use the tool described in [5] to find, for each of them, its prob-
ability of being admissible. In our example, we obtain the following extension, which is
semi-stable and also admissible with probability 1 (the highest possible).

Age<0.96, Fare≥10.48, Pclass=1, Sex=0, Survived=1

Building the Explanation Tree. Finally, starting from the arguments of the selected
extension, we produce the explanation tree of Figure 1, where accepted arguments are
highlighted in green and rejected ones in red.

Figure 1. An explanation tree for the class Survived=1 of the Titanic dataset.

Looking at the obtained explanation we can conclude, for instance, that the person
in question survived because “she is a woman (Sex=0), with a paid ticket (Fare≥10.48)
and travelling first class (Pclass=1)”. Indeed, arguments representing those features in
Figure 1 attack other arguments that are against the assignment of the class Survived=1,
standing in turn for being male (Sex=1) and having a third-class ticket (Pclass=3) with
a low fare (Fare<10.48).

In future work, alternative techniques could be applied to break the symmetry of the
graph to obtain a causal relationship between arguments. Furthermore, particular atten-
tion could be paid to simplifying the explanation provided, including notions of sym-
metry and interchangeability between arguments, as well as applying Natural Language
Processing to provide a further textual explanation.
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Abstract. We introduce PyArg, a Python-based solver and explainer for
both abstract argumentation and ASPIC+. A large variety of extension-
based semantics allows for flexible evaluation and several explanation
functions are available.
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Introduction. Deriving extensions and conclusions from argumentation set-
tings is an essential part of computational argumentation. Moreover, in recent
years the interest in argumentation-based explainable artificial intelligence has
increased considerably [1]. Since the derivation of conclusions and explanations
tends to become intractable when the number of arguments and attacks (in the
abstract setting [2]) or the size of the knowledge base and the set of rules (in the
structured setting, e.g., [3]) increases, it is useful to have a computational tool
that does this for us. To this end, we introduce PyArg, which, in addition to being
a solver, can also derive explanations.

The Demonstration. We introduce PyArg [4], a solver designed for researchers
and students who are used to work with Python. The package provides various
implementations of formalisms and algorithms in both abstract argumentation
and ASPIC+ and comes equipped with an integrated, interactive visualization.

• Selection between abstract argumentation [2] and ASPIC+ [3]. In the ab-
stract setting, users can provide arguments and the attacks between them,
in the ASPIC+ setting users can provide axioms, ordinary premises with
their preferences, strict rules, defeasible rules with their preferences and a
choice in how to derive an ordering from these preferences.

• Evaluation based on a large variety of extension-based semantics [5]. The
admissible, complete, grounded, preferred, ideal, stable, semi-stable and
eager semantics are available as well as a credulous and skeptical strategy.

• Explanations for (non-)accepted arguments and formulas (in the case of an
ASPIC+-setting), based on the explanations from [6,7]. There are functions
based on the notion of defense as well as based on necessity and sufficiency.

1Author order alphabetical.
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PyArg, the code and a link to the browser app, is available open source on
https://git.science.uu.nl/D.Odekerken/py_arg. We hope that it will turn
into a community project where PyArg becomes a complete solver for many argu-
mentation formalisms, which can be used for teaching and research purposes and
that is easily extendable for anyone interested to implement their own ideas.

Figure 1. Screenshot of PyArg, in the ASPIC+ setting, based on [6, Example 3].

Future Work. We intend to extend PyArg by implementing additional argu-
mentation formalisms, semantics and explanation functions as well as by introduc-
ing dynamic settings. In particular, we will implement algorithms for stability and
relevance for incomplete argumentation frameworks in an upcoming release [8].
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Abstract. This demo paper outlines the EQR argument scheme (AS) structure and
deploys its instantiations to convey explanations using a chatbot.

Keywords. argument schemes, chatbot, explanations, decision-support systems

Devised as a pattern of Explanation-Question-Response interactions between agents, the
EQR scheme draws from the AS for Practical Reasoning [1] and the Expert Opinion [2]
schemes in order to formalise the consequences entailed by following the assertion of an
expert opinion. A reference to such authority provides the rationale that justifies the con-
clusion of the argument, also leaving chances of inquiry for more detailed explanations.

EQR Scheme

Premise : In the current state R
Premise : asserting α (from an expert E in a field F)
Premise : will result in a new state S
Premise : which will make proposition A true (alternatively, false)
Premise : which will promote some value v

Conclusion : Following the opinion α should make proposition A true (false)

CONSULT2 is a novel data-driven mobile decision support system (DSS) designed to
help patients with chronic conditions self-manage their treatment plans [3]. Such a DSS
can deliver to the user more exhaustive information and more detailed answers to follow-
on questions by employing the EQR scheme through a chatbot.

1Corresponding Author: Federico Castagna, fcastagna@lincoln.ac.uk.
2https : //consultproject.co.uk
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Figure 1. High-level operations (left), and example of explanations performed by the chatbot (right).

EQRbot. The interaction with the patient will be handled by the chatbot3 which, after
providing the initial explanation (i.e., an instantiation of the EQR scheme through the
data collected by CONSULT), will ask the patient for feedback. If the user is satisfied,
then the conversation will immediately end. Alternatively, the chatbot will demand a
brief context along with the actual patient’s request. By matching stored explanations,
context and user input, the bot will output the additional solicited information (Figure 1,
left). Observe that the double query prompted by the bot, along with a general NLP filter,
ensures a significant reduction of misunderstandings when providing answers.

Example. Consider a patient suffering from fever and headache due to the Covid-19
virus. These facts, and the treatment recommended by the clinical guidelines of NICE-
NG1914, will be registered and encoded by the CONSULT system, eliciting the instanti-
ation of the EQR scheme (the initial explanation) and of potential additional information
(subsequent explanations) that will be conveyed by the EQRbot (Figure 1, right).

Acknowledgements. This research was partially funded by the UK Engineering &
Physical Sciences Research Council (EPSRC) under grant #EP/P010105/1.
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1. Introduction

An increasing amount of research is being directed towards neuro-symbolic computing,
combining learning in neural networks with reasoning and explainability via symbolic
representations [4]. One subfield of AI where neuro-symbolic methods are a promising
alternative for existing symbolic methods is computational argumentation. Much of the
theory of computational argumentation is based on the seminal work by Dung [6], in
which he introduces abstract argumentation frameworks (AFs) of arguments and attacks,
and several acceptability semantics that define which sets of arguments (extensions) can
be reasonably accepted. Core computational problems in abstract argumentation are typi-
cally solved with handcrafted symbolic methods [1]. However, recently we demonstrated
the potential of a deep learning approach by showing that a graph neural network is able
to learn to determine almost perfectly which arguments are (part of) an extension [2].

When considering dynamic argumentation - a growing research area where the
knowledge about attacks between arguments can be incomplete or evolving - other types
of computational problems arise where neuro-sybmolic methods are still unexplored.
In [3] we propose our enforcement graph neural network (EGNN), a learning-based
approach to the dynamic argumentation problem of enforcement: given sets of argu-
ments that we (do not) want to accept, how to modify the argumentation framework in
such a way that these arguments are (not) accepted, while minimizing the number of
changes [5]. Here we demonstrate our implementation of an EGNN.

2. Demonstration

When confronted with some problems with a high computational complexity, existing
symbolic enforcement solvers exhibit quite a significant drop in runtime performance,
limiting their practical applicability. While there is a need for efficient heuristics to ad-
dress this problem, designing such heuristics takes considerable expert effort and domain
knowledge. EGNN is a single architecture that can be trained through deep reinforce-
ment learning to learn enforcement heuristics for all common semantics and enforcement
problems, without supervision of an existing solver. EGNN learns a message passing
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Figure 1. Consider enforcing argument b in the AF F = ({a,b,c,d},{(a,b),(b,c)(b,d),(c,d),(d,c)}). EGNN
takes the AF (a), maps it it to a fully connected graph where nodes have a vectorial representation denoting
which arguments should be enforced (b). Node vectors are updated through message passing and are mapped
to an output per edge (c) indicating which edge should be flipped (d).

algorithm that predicts which attack relations between arguments should be flipped (i.e.
added or deleted) in order to enforce the acceptability of (a set of) arguments. Experi-
mental results demonstrate that EGNN can learn near-optimal heuristics for all extension
and status enforcement problems under the most common semantics, and outperforms
symbolic solvers with respect to efficiency on enforcement problems that are higher in
the complexity hierarchy.

We demonstrate our Python implementation of an EGNN and show: the input, mes-
sage passing and output steps of the model; the learned heuristics for enforcement prob-
lems; how the learned heuristic differs from symbolic algorithms. We do so by graphi-
cally demonstrating EGNN’s behaviour on an AF (cf. Figure 1).
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Abstract Dialectical Frameworks [1] (ADF) are a generalisation of Dung’s Argu-
mentation frameworks [2]. Multiple approaches for reasoning under various semantics
have been proposed over the last decade [3,4,5,6]. We present “Abstract Dialectical
Frameworks solved by Binary Decision Diagrams, developed in Dresden” (ADF-BDD)2,
a novel approach that relies on the translation of the acceptance conditions of a given
ADF into reduced ordered binary decision diagrams (roBDD) [7]. Our system is based
on the consideration that many otherwise hard to decide problems in ADF semantics
(e. g., answering SAT-questions) can be solved in polynomial time on roBDDs (see [8]
for an in-depth analysis). Our novel approach differs to the currently used systems, like
the SAT-based approach K++ADF [5] or the wide spectrum of answer set programming
(ASP) focused approaches like the DIAMOND family (e. g., DIAMOND [3] or GODIA-
MOND [4]) and YADF [6]. ADF-BDD is written in RUST [9] to provide good performance
while enforcing a high amount of memory- and type-safety. In addition the rust-compiler
produces highly optimised machine code, while keeping the whole tech stack simple.

ADF-BDD accepts the established input format, introduced first in [10]. There state-
ments are unary predicates s, defining the labels and the acceptance conditions are bi-
nary predicates ac, relating the label to a formula. It allows to enumerate the grounded
and complete interpretations, and stable models of the given input instance. The set of
statements is the shared signature of all acceptance conditions, hence our implementation
uses a single structure to store the nodes of all the roBDDs, which represent each ac-
ceptance condition. This allows for efficient caching of nodes and to eliminate duplicate
node candidates. Another side-effect is that shared sub-BDDs are computed only once.
ADF-BDD provides the explained implementation of roBDDs as the representation of the
acceptance conditions. As the instantiation of roBDDs is a computational hard task, it is
possible to utilise another state-of-the art competitive library called Biodivine/LibBDD3.
It is part of the Biodivine software in the AEON project [11]. While LibBDD is faster in

1This work is partly supported by the BMBF, Grant 01IS20056 NAVAS, by the Center for Scalable Data
Analytics and Artificial Intelligence (ScaDS.AI), and by the DFG through the Collaborative Research Center,
Grant TRR 248 project ID 389792660.
2https://github.com/ellmau/adf-obdd, version 0.2.4, https://crates.io/crates/adf_bdd
3https://crates.io/crates/biodivine-lib-bdd
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the instantiation, it is unfortunately not providing all the used features for the efficient
application and backtracking of operations on roBDDs of ADF-BDDs implementation.
The user can either use one of the two libraries to handle the representation of roBDDs
or a hybrid approach, combining the fast instantiation and the efficient operations.

The grounded interpretation is computed via a deterministic approach computing the
least fixed point of the approximate operator for ADFs. For the complete interpretations
we have chosen to implement a naive approach which lazily checks all possible three val-
ued interpretations. The stable model computation supports this naive approach of lazily
checking all possible two-valued interpretations. Furthermore a simple heuristics-based
approach is implemented. It allows to incorporate various easily accessible information
about the acceptance condition, provided by the roBDD representation. The heuristics
then approximate which of the two truth values one statement can have is less costly and
computes its influence to the other statements. For the other value we use a no-good like
list of value assertions, to steer the further enumeration of possible two valued models.

The performance of our tool4 is positioned in between the fastest SAT-based ap-
proach and the ASP based approaches. This is achieved although the complete seman-
tics are computed in a naive manner. The use of the heuristics based approach for stable
models runs faster and more reliable than the naive implementation. This shows that the
representation with roBDDs is a promising approach. Future optimisation, more sophis-
ticated learning algorithms, and better heuristics will reduce the gap to K++ADF further.

We present a library (“adf bdd”) for an easy use of the functionality in other
software-products and provide an executable (“adf-bdd”) to use the library as a straight-
forward and simple to use solver.

References

[1] Brewka G, Ellmauthaler S, Strass H, Wallner JP, Woltran S. Abstract Dialectical Frameworks. In: Baroni
P, Gabbay D, Giacomin M, van der Torre L, editors. Handbook of Formal Argumentation. College
Publications; 2018. p. 237-85.

[2] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artif Intell. 1995;77(2):321-58.

[3] Ellmauthaler S, Strass H. The DIAMOND System for Computing with Abstract Dialectical Frame-
works. In: Proc. COMMA. vol. 266 of FAIA. IOS Press; 2014. p. 233-40.

[4] Strass H, Ellmauthaler S. GoDIAMOND 0.6.6–ICCMA 2017 System Description. Second International
Competition on Computational Models of Argumentation. 2017.

[5] Linsbichler T, Maratea M, Niskanen A, Wallner JP, Woltran S. Advanced algorithms for abstract
dialectical frameworks based on complexity analysis of subclasses and SAT solving. Artif Intell.
2022;307:103697.

[6] Brewka G, Diller M, Heissenberger G, Linsbichler T, Woltran S. Solving Advanced Argumentation
Problems with Answer Set Programming. TPLP. 2020;20(3):391-431.

[7] Bryant RE. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Comput
Surv. 1992;24(3):293-318.

[8] Darwiche A, Marquis P. A Knowledge Compilation Map. J Artif Intell Res. 2002;17:229-64.
[9] Matsakis ND, II FSK. The rust language. In: Proc. HILT. ACM; 2014. p. 103-4.
[10] Ellmauthaler S, Wallner JP. Evaluating Abstract Dialectical Frameworks with ASP. In: Verheij B,

Szeider S, Woltran S, editors. Proc. COMMA. vol. 245. IOS Press; 2012. p. 505-6.
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Abstract.We present a method of annotating very large arguments, with the use of
IMC-Tool. IMC-Tool aids in creating long-distance argument structure relations, by
providing a simple annotation tool, and integration software to synthesise argument
annotations at scale.
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Annotating very large arguments presents particular problems, which can be naively
tackled by simply dividing into sub-tasks – rather than try to analyse 5,000 words of
argumentation as a whole, instead split into 20 sub-tasks of 250 words each. For envi-
ronments in which arguments can be artificially constrained, (such as kialo.com and
debategraph.org, for example) this solution can suffice. In general, however, the prob-
lem is that synthesising the solutions to the sub-tasks is a major challenge in itself. IMC-
Tool offers a solution to this problem by providing a method to add inter-map correspon-
dence, or IMC, to the process of argument analysis, and specifically to argument analysis
conducted using IAT (Inference Anchoring Theory) [1].

IMC-Tool consists of multiple components; an annotation tracker spreadsheet
which stores id numbers of annotated argument maps, an imc spreadsheet which is used
by the annotators for the IMC argument annotation, the extractNodes script which pop-
ulates the imc spreadsheet with node details for use for IMC annotation, and a createIM-
CMap script which turns the identified relations into an IAT map uploaded to AIFdb.
Figure 1 shows a diagram demonstrating how these components work together.

Firstly, the initial annotation is split into sub-tasks and annotated using OVA+ [2].
Each map is uploaded to AIFdb [3] and a unique AIFdb map id for each map is stored in
the annotation tracker spreadsheet. To begin the IMC procesure, by using the annotation
tracker spreadsheet, the extractNodes script extracts all required node details for the task,
by requesting each map from AIFdb. The map is parsed and the data is used to populate
the imc spreadsheet with the content of each node.

The annotator carries out the IMC annotation by selecting the source and target
nodes in the IMC spreadsheet. Subsequently, the target node’s details are appended to
the source node’s row, containing the node’s excerpt number, locution id and content.
The analyst can specify the identified structure of the relation from a drop down list,
containing relation types such as inference, conflict and rephrase, and their certainty that
the identified relation is correct. The annotation is then verified by another annotator,
who will either accept or reject the implementation. An example of the IMC spreadsheet
containing IMC annotations is shown in Figure 1.

1Corresponding Author. E-mail:k.gorska@dundee.ac.uk
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Figure 1. Model of the IMC process using IMC-Tool.

Once the IMC annotation is complete and all relations between parts have been im-
plemented, the createIMCMap script is used to build the complete IAT structure of all
identified relations. The source and target locutions are matched to the corresponding
locution nodes in the annotated maps in AIFdb. The relation type identified by the anno-
tator is automatically implemented using IAT structure, and once complete for all rows,
a map of the complete IMC annotation is uploaded to AIFdb. When all individual maps
and the map of identified relations between them are added to one corpus, AIFdb resolves
all duplication of nodes, resulting in a complete IAT analysis of the full text.

The IMC procedure described was applied to a 280,000-word corpus of 30 episodes
of IAT-annotated topical debate, QT30 [4]. The IMC analysis was completed in the con-
text of near real-time analysis by 4-6 annotators in around 90-100 minutes per hour-long
debate. In the QT30 corpus, IMC relations make up 14% of all argumentative relations.
Out of all IMC relations, there is a predominance of rephrases (64% compared to 22%
and 13% of inferences and conflicts respectively), which is also a higher proportion than
the 43% found in non-IMC relations. This suggests that in order to understand non-local
phenomena, we must first understand rephrase. Another area of future work is evaluating
the inter-annotator agreement of the IMC procedure.
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1. Introduction

Classical argumentation semantics [1] determine which arguments of a given argumenta-
tion framework (AF) are considered to be jointly acceptable in light of the AF’s attack re-
lation. A collection of such compatible arguments is called an extension; thus semantics
can be seen as functions that associate AFs with sets of extensions. Recently, abstract ar-
gumentation has been lifted into probabilistic settings to allow modelling of uncertainty,
beliefs, and other quantitative aspects, giving rise to various probabilistic argumentation
semantics. These include semantics working on the marginal probabilities of single ar-
guments [2], notions to capture admissibility and complete semantics in the probabilistic
setting [3], and direct liftings on the level of extensions of classical semantics [4].

For a given AF, a probabilistic semantics induces a family of probability distribu-
tions over the AF’s extensions. Notably, while there is only a finite number of possible
extensions for finite argumentation graphs, the space of distributions over extensions is
infinite. As a result, reasoning problems for probabilistic semantics come with additional
challenges of representing and enumerating solutions.

CPrAA2 is a Python tool developed in the context of [3] that is capable of solv-
ing common reasoning problems in the probabilistic setting. Given an AF as input and
selecting one or multiple probabilistic semantics from [2,3,4], the tool can

• compute distributions satisfying the semantics’ constraints, or get an assertion that
no such distribution exists,

• check credulous and skeptical acceptance of single arguments in the AF under
a given threshold (see [3]), i.e., verify whether the marginal probability of the
argument exceeds the threshold for at least one, or, respectively, all distributions,

• find a distribution under which the marginal probability of a given argument is
maximal (or minimal),

• enumerate infinite solution spaces by finding the distributions at corners of solu-
tion polytopes,

• utilize a number of labelling schemes [5] to yield the finite set of all labellings
corresponding to the (potentially infinitely many) distributions.

1E-mail: nikolai.kaefer@tu-dresden.de, ORCID: https://orcid.org/0000-0002-0645-1078
2https://perspicuous-computing.science/cpraa/
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2. Tool Architecture

Based on the input AF, the selected semantics, and the chosen task, CPrAA generates a
set of constraints on distributions for the AF. Subsequently, the constraints are passed to
an appropriate backend solver, with two general classes of solvers available.

First, linear solvers (via CVXOPT [6]) are applicable for semantics where all in-
duced constraints are linear, which is the case for the majority of semantics taken from
the literature (see [3] for details). They allow convex optimization tasks like the mini-
mization or maximization of marginal probabilities mentioned above. Linear constraints
further imply that the solution space forms a convex polytope. By enumerating the dis-
tributions found at the corners of the polytope, one yields an explicit representation of
the solution space: all distributions within this space arise as convex combination of the
corner distributions.

Second, SMT solvers like Z3 [7] cover all probabilistic semantics characterized by
polynomial constraints. This includes not only all semantics from [2,3,4], but also their
respective complement semantics, that is, a semantics inducing exactly those distribu-
tions not induced by the original semantics. Further, they allow enforcement of additional
context-specific constraints by using the standard SMT-LIB format [8], e.g., to specify
the conditional probability for an argument to be accepted given that certain other ar-
guments are not accepted. In addition to Z3, all SMT solvers available via the pySMT
interface [9] can be used as backend.

The tool comes with a rich command line interface for direct interaction and can
also be included as a Python library in other projects. Due to the constraint-based design,
extending CPrAA with new probabilistic semantics for AFs is straightforward.

Acknowledgments. I’d like to thank Christel Baier, Martin Diller, Clemens Dubslaff,
Sarah Gaggl, and Holger Hermanns for the collaboration that sparked the tool’s develop-
ment. This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC.
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Cognitive Argumentation [1] is the study of synthesis of cognitive principles within
formal computational frameworks of argumentation. Cognitive principles are drawn from
our understanding of human reasoning as acquired across a wide range of disciplines,
such as Cognitive Science, Philosophy and Linguistics. They inform and regulate the
computational process of argumentation to be cognitively compatible to human argu-
mentation and reasoning. By “humanizing” the form of machine argumentation we can
facilitate an effective and naturally enhancing integration of machines with the human.

COGNICA1 is a system that implements the framework of Cognitive Argumentation
with emphasis on conditional reasoning. It is based on the particular work of Johnson-
Laird and Byrne, “Conditionals: A Theory of Meaning, Pragmatics, and Inference” and
the mental models theory that underlies this work [2]. Using argumentation it is possible
to accommodate and extend their interpretation of the various types of conditionals used
in human discourse. Importantly, these argumentation-based interpretations can be ex-
tended from individual conditionals to sets of conditionals of different types that together
form a piece of knowledge on some subject of interest.

The COGNICA system has a simple interface of a Controlled Natural Language for
expressing different types of conditional sentences. These are automatically translated
into the GORGIAS2 argumentation framework and executed by the GORGIAS system
on top of which COGNICA is build. During this translation COGNICA automatically
also forms priority arguments across the arguments that result from the different types
of conditional statements in the knowledge, thus capturing the interaction between these
individual conditional statements. The controlled natural language of COGNICA allows
one to enter conditionals of different types as foreground knowledge, i.e., the particular
knowledge that the system would reason about. This may need to be complemented by
some relevant background knowledge entered in the system, alongside the foreground
knowledge, using exactly the same conditional form of controlled natural language.

Example (Foreground Knowledge).
If I am not tired then I will swim.
If the sea is crowded then possibly I will not swim.
Only If if the sea is calm then I will swim.

Then given a certain situation where some specific facts hold the COGNICA system
will consider queries and give a reply of “Yes”, “No” or “Maybe”. For example, when

1http://cognica.cs.ucy.ac.cy/COGNICAb/login.php
2http://gorgiasb.tuc.gr/GorgiasCloud.html
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Figure 1. Verbal and Visual explanations of COGNICA for Example 1.

given the facts “I am not tired” and “the sea is not crowded”, COGNICA will reply
“Maybe” to the query of “Will I swim?”.

Importantly, COGNICA provides automatically generated explanations in verbal and
graphical form for its answers. Figure 1 shows the explanations for the answer “Maybe”
in the above example. Note that the graphical explanations present the argumentative
reasoning by COGNICA as “reasoning pathways” of the “mind” of the COGNICA sys-
tem. COGNICA offers the opportunity for carrying out large scale empirical studies of
comparison between human and machine reasoning and to examine the nature of an
argumentation-based human-machine interaction. For example, to study the effect that
explanations can have on humans when reasoning or deciding what action to pursue.

A first such study was carried out where participants were asked to answer questions
based on foreground information that typically included three to five conditionals from
everyday life. They were then asked to reconsider these questions after they were shown
the answer of the COGNICA system together with its explanations (verbal and/or visual).
Initial results show that in around 50% of the cases where the conclusion of the human
participants differed from the one of the machine, the participants changed their answer
when they saw the explanations of the system. It is also possible to observe that this
kind of interaction with the system motivates participants to “drift” to more “careful
reasoning” as they progress in the experiment, in accordance with the argumentation
theory of Mercier and Sperber [3]. The exercise is ongoing and open to anyone. It can
be found at http://cognica.cs.ucy.ac.cy/cognica_evaluation/index.html.
We are also currently designing new such experiments in order to investigate how this
argumentation-based and explanation driven machine-human interaction varies across
the population with different cognitive and personality characteristics.
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probo2: A Benchmark Framework for
Argumentation Solvers
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Abstract.We introduce probo2, an end-to-end benchmark framework for abstract
argumentation solvers. It offers evaluation capabilities and analysis features for a
wide range of computational problems and is easily customizable.
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1. Introduction

Approaches to formal argumentation [1,7] are a significant part of active research in Ar-
tificial Intelligence. Especially, solving reasoning problems in Dung’s [5] abstract ar-
gumentation framework is fundamental for many argumentation systems. Solving such
computational complex reasoning problems requires efficient algorithms. In recent years,
there has been an increased effort to develop such algorithms and solvers [2]. To assess
the performance of a system, the evaluation on meaningful benchmarks is crucial and
adequate tools supporting researchers and developers in this task are essential. An ex-
ample of such a tool is the original probo [4] framework, which provides a general in-
terface and allows the comparison of abstract argumentation solvers in terms of correct-
ness and performance. However, this tool lacks functionality for extensive analysis and
visualizations.

In this extended abstract, we present probo2, an end-to-end benchmark frame-
work for abstract argumentation solvers. This framework aims at providing researchers
and developers with an easy-to-use, robust, and flexible command-line tool to simplify
and speed up typical tasks in benchmarking abstract argumentation solvers. Therefore,
probo2 offers functionalities to (1) generate benchmarks, (2) execute solvers and col-
lect data, (3) verify the correctness of solvers, (4) compare the performance of solvers, (5)
perform statistical analysis and—of particular interest in the research context—(6) gener-
ate "publication-ready" visualizations of results. probo2 offers a standardized pipeline
for evaluating argumentation solvers. Users can specify which performance metrics to
use and how to visualize the results, allowing to compare different solvers easily. To re-
produce results reliably, any experiment is completely described by a configuration file.
In addition, probo2 supports the parallelization of experiments. During development,
we set a strong focus on customizability. The modular design of probo2 allows users
to modify and extend functionality to their needs. For now, the framework focuses on
abstract argumentation. However, since probo2 is still being further developed, exten-
sions to structured argumentation frameworks are foreseen for the future.
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2. Implementation Overview

probo2 is written in Python. The source code and a detailed documentation are publicly
available on GitHub1. It is compatible with any solver implementing the ICCMA inter-
face. All computational problems and semantics of past competitions are supported, in-
cluding classical problems such as deciding acceptability and enumerating extensions as
well as corresponding tasks for dynamic problems and counting tasks. probo2 accepts
abstract argumentation frameworks in the ASPARTIX format [6] and the Trivial
Graph Format2. The framework also incorporates various graph generators such as
the StableGenerator [4] or AFBenchGen [3]. This enables the generation of diverse and
challenging argumentation graphs. A configuration file fully describes experiments, al-
lowing for reproducing results reliably. Correctness of solutions is verified by specify-
ing a reference solver or providing pre-calculated solutions. In order to compare the
performance of different solvers, various established performance measures such as the
penalized average runtime, instance coverage, and the ICCMA scorings are available.
For more extensive statistical analysis, probo2 offers parametric and non-parametric
significance tests, including posthoc analysis. Users can choose between various result
visualizations, including scatter plots, cactus plots, and pie charts. Tabular data can be
directly exported to LatTeX, HTML, or just plain text formats. As stated before, a key
feature of probo2 is its customizability. All visualizations can be customized according
to user preferences. Custom functionalities can be integrated into the existing pipeline
with a single command.

3. Summary

In this extended abstract, we gave a short overview on the probo2 benchmark frame-
work. probo2 is continuously being improved and we welcome any feedback or sug-
gestions for further features.
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Abstract. In this paper, we present Polemicist 2, a dialogical interface for exploring
complex debates from the BBC Radio 4 programme The Moral Maze. Polemicist
allows the user to interact with software agents representing the participants in the
original programme. The software enables the user to explore the topic as they
wish, asking questions to dive deeper on the areas that interest them most.
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The Polemicist2 application allows users to explore issues discussed in the BBC
Radio 4 Moral Maze programme3 by interacting with software agents which represent
the participants from the debate and whose knowledge bases are extracted from analysis
of the original episodes.

The Moral Maze is billed as combative, provocative and engaging live debate exam-
ining the moral issues behind one of the week’s news stories and is broadcast on the UK’s
leading non-music radio station. Each episode features four regular panellists along with
a series of ‘witnesses’ – experts or others knowledgeable in the field under discussion –
who are questioned in turn by the panellists. Each weekly episode is 45 minutes in dura-
tion and contains a high density of argumentative content. An average analysed episode
represented in the Argument Interchange Format [1] contains around 500 Information
nodes (I-nodes) – the propositional contents of the arguments – and 250 Scheme nodes
(S-nodes) – capturing the application of patterns of relationship between them.

Such a sizeable knowledge graph can prove extremely difficult to navigate and un-
derstand. Polemicist addresses this problem, effectively translating the navigation of the
graph into a series of dialogical moves conducted according to a particular dialogue game
[2]. Polemicist uses a fixed protocol, defined in the Dialogue Game Description Lan-
guage (DGDL) [3], allowing the user to take on the role of the moderator of the debate:
selecting topics, controlling the flow of the dialogue, and thus exploring all the angles of
the rich argumentative content on offer. Playing the role of moderator allows the user to
rearrange the arguments and create wholly novel virtual discussions between the contri-
butions of participants that might not have engaged directly in the original debate, while
staying true to their stated opinions.

The Polemicist dialogue interface features two main panels (see Figure 1). On the
left, a list of participants can be seen along with green and red highlighting showing their

1Corresponding Author: School of Science and Engineering (Computing), University of Dundee, DD1 4HN,
United Kingdom; E-mail: j.lawrence@dundee.ac.uk
2http://polemici.st
3https://www.bbc.co.uk/programmes/b006qk11
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agreement or disagreement with the most recent point made. This highlighting allows
the user to pursue a line of questioning which explores these opinions and the reasons
behind them.

The right-hand side of the dialogue interface shows a panel at the bottom allowing
the user to first select a participant to address a question to, and then select a question
either asking for an opinion or for reasons why a participant holds that opinion. Above
this is a record of the dialogue so far. This record allows the user to view the dialogue as
well as return to previous points, and to listen to the original audio associated with each
text segment.

Figure 1. The Polemicist dialogue interface

Whilst Polemicist currently relies on pre-annotated material from AIFdb4 to provide
the responses of the software agents in a dialogue, it presents a valuable potential use case
for automatically mined arguments. If the argumentative structure in a radio transcription
can be extracted in real-time by argument mining, conversations in Polemicist could
take place within moments of transmission ending. Combining the dialogue interfaces
with a robust argument mining platform could enable users to discuss any issue of their
choosing with any person whose opinions on that topic have been previously recorded.
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1. Introduction

Contrary to unstructured representations like natural language texts, argument graphs
enable advanced analysis of an argument’s structure which consists of linked Argumen-
tative Discourse Units (ADUs). Since most existing works dealing with the creation of
such graphs are primarily geared towards experts and neglect the needs of developers and
laymen, we propose (i) an intuitive, stable, and scalable tool (ArgueMapper)2 for creat-
ing and browsing graph-based representations of arguments by experts and laymen alike
and (ii) a straightforward format (Arguebuf)3 enabling developers to build related tools
and exchange data more easily. Both ArgueMapper and Arguebuf are available under the
permissive MIT license and are open to any kind of contribution.

2. ArgueMapper: A Tool for Manual Argument Mining

This section will highlight some features of ArgueMapper compared to existing tools
like Online Visualization of Arguments (OVA) [1] and MonkeyPuzzle [2].

Intuitive Interface Our tool (see Figure 1) complies with Nielsen’s usability heuris-
tics [4] to ensure as little friction as possible for laymen. At the same time, it is
similar enough to OVA to be familiar to experts as well.

Optimized for Mobile Devices ArgueMapper is fully functional on smartphones and
tablets by providing finger-optimized buttons and gesture controls.

Auto-Layout We combined ideas of OVA and MonkeyPuzzle by implementing a hier-
archical automatic layout algorithm that runs entirely in the user’s browser.

State Management To prevent loss of unsaved data, the app’s state is always stored in
the browser’s storage. In addition, we also fully support undo/redo functionality.

Modern Development Stack To simplify contributions, we built ArgueMapper using
modern tooling like TypeScript and React. It has a modular architecture and thus
may be embedded into other systems as well.

1Corresponding Author. Mail: info@mirko-lenz.de
2https://github.com/recap-utr/arguemapper, Demo at https://arguemapper.uni-trier.de
3https://github.com/recap-utr/arguebuf
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Figure 1. Three-pane layout of ArgueMapper with source texts on the left, the graph in the middle, and addi-
tional functions in the right sidebar. Example taken from the Microtexts corpus [3].

3. Arguebuf: A Format for Argument Graphs

In conjunction with ArgueMapper, we developed the format Arguebuf to address limita-
tions of existing ones like Argument Interchange Format (AIF) [5] and SADFace [6].

Simple Specification Arguebuf is specified using the concise and intuitive language
Protocol Buffers (Protobuf), meaning that it is easily expandable. Graphs may be
serialized to JSON or a more efficient binary format for use with gRPC.

Superset of AIF and SADFace It is possible to transform every AIF graph or SADFace
document into our new format without any information loss.

Code Generation Protobuf automatically creates native code for most programming
languages. Among others, this enables code completion and type checks in IDEs.

Supercharged Python Implementation We provide an optimized Python client with
advanced analysis features—for instance, importing legacy formats, converting
from/to AIF, and integrating with Graphviz, NetworkX, and spaCy.
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Gradual argumentation frameworks (GAFs) are abstract argumentation frameworks
that interpret arguments numerically [1]. Figure 1 shows a simple GAF on the left. Nodes
represent abstract arguments. Buy and Sell represent decisions (buy or sell stocks of a
company) and A1, A2, A3 represent arguments given by experts. Solid edges denote
attack and dashed edges support relations. Every argument has an initial weight shown
in the node. Intuitively, this weight is an apriori belief in the strength of the argument
when ignoring the others.

Semantically, attackers should decrease the initial weight, while supporters should
increase it. Various gradual semantics have been proposed, but many of them can be
seen as instances of modular semantics [2]. Modular semantics assign strength values
using an iterative procedure that initializes the strength values of arguments with their
base scores and repeatedly update the values based on the strength of their attackers and
supporters. To do so, an aggregation function aggregates the strength values of attackers
and supporters and an influence function adapts the base score based on the aggregate.
While this process may start oscillating in cyclic graphs [2], it usually converges quickly
in practice [3]. Figure 1 illustrates this procedure for the DF-QuAD semantics [4] on the
right.

Figure 1. Example of a GAF and illustration of strength computation for DF-QuAD.
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Figure 2. Discrete vs. continuized semantics.

Attractor1 allows implementing and evaluating gradual argumentation frameworks
in Java in a straightforward way. Implementation of several semantics, including Df-
QuAD [4], Euler-based [5], Quadratic Energy [3] and MLP-based semantics [6] can be
used out of the box. Other modular semantics can be easily implemented by combining
pre-implemented aggregation and influence functions. New aggregation and influence
functions can be added to implement novel modular semantics. Non-modular semantics
can be integrated as well if they maintain a simple interface. Attractor also provides
auxiliary functions to plot the evolution of strength values like in Figure 1 and to evaluate
and plot the computational performance of different semantics and algorithms on GAFs
of increasing size.

Attractor implements two reasoning algorithms that are based on the observation
that gradual semantics can be seen as dynamical systems [3]. This view allows con-
tinuizing the iterative computation of strength values described above. Continuization
can improve the convergence guarantees of modular semantics in cyclic GAFs without
changing their semantics in convergent cases [7]. Figure 2 illustrates on the left, how the
continuized semantics converges to the same strength values when the strength values
under the discrete semantics converge. On the right, it shows an example from [2] where
the strength values under the discrete semantics start oscillating, while its continuization
finds a reasonable compromise.
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Gorgias Cloud offers argumentation-based decision making as a service. The service
includes an integrated development environment for the theories, testing and execution
based on user scenarios, and, finally, an API for use by user applications.

Gorgias is a structured argumentation framework where arguments are constructed
using a basic scheme of argument rules. Two types of arguments are constructed within a
Gorgias argumentation theory: object-level arguments and priority arguments expressing
a preference between other arguments. Admissible composite arguments supporting a
claim typically include both types of arguments. The Gorgias framework was introduced
in [1], extended in [2] and applied to a variety of real-life application problems in [3].

The Gorgias system allows us to code argumentation theories of the form described
above and subsequently query the system to find out if there is an admissible (compos-
ite) argument that supports a desired Claim. The system of Gorgias has been publicly
available since 2003 and has been used by several research groups to develop prototype
real-life applications of argumentation in a variety of application domains. Today, it is
available as a service over the internet with Gorgias Cloud, which provides an integrated
environment for developing applications of argumentation with three novel features:

1. Assistance for editing argumentation theories in the internal code language of
Gorgias using templates for object level or priority arguments and abducibles

2. Ability to store multiple scenarios to test the behaviour of developed theories
3. REST-compliant web API so that Gorgias queries can be executed from any other
programming environments (e.g. Java, Python) used for developing applications.

The code shown on the left hand side of the Gorgias Cloud Execution Panel in Fig-
ure 1, shows a simple example of an argumentation theory. Gorgias rules are in the form
rule(label,conclusion,supporting in f ormation). Those with labels r1(X) and r2(X) are
for and against buying an object. The priority argument rules pr1(X), pr2(X) support
one or the other of the object-level rules, depending on whether we are low on funds.

Let us assume that we have an object, ob j, for which need(ob j) and neg(urgent
need(ob j)) hold. The query for asking if there is an admissible composite argu-
ment supporting the conclusion to not buy the ob j, i.e. neg(buy(ob j)), is posed at

1Corresponding Author: Nikolaos I. Spanoudakis, Applied Mathematics and Computers Laboratory,
Technical University of Crete, University Campus, 73100 Chania, Greece; E-mail: nikos@amcl.tuc.gr.
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the loaded
theory is
presented
here.

the loaded theory code (buying.pl)
is presented here. The current
theory has two object level rules
(r1, r2), two preference rules (pr1,
pr2) and one abducible.

The Gorgias prove query for
the neg(buy(obj)) position.

The (Internal) Explanation
with the rule labels
supporting the admissible
argument for neg(buy(obj)).

The Application Level
Explanation in human-
readable format.

This is where the user can write queries

The preferred position followed by the supporting
information of the object level rule (r2).

The conflicting position (supported by r1)
followed by the supporting information of
the preference rule (pr1).

Figure 1. Execution Panel of Cloud Gorgias, the theory on the left and the results of the query in the center.

the prompt at the bottom of the Execution Panel (see Figure 1). In the Execution
Panel we see both a) the Internal Explanation (IE) of the composite argument E,
Explanation = [ass(lowOnFunds), f1, pr1(ob j),r2(ob j)], where f1 is the label of the
belief neg(urgent need(ob j)), as well as b) the Application Level Explanation (ALE)
in a human-friendly format. ALE starts by presenting the Claim, followed by the sup-
porting information of the object level rule that supports it. Then, if this Claim has been
strengthened by a preference rule over another position, then this conflicting position is
printed along with the supporting information of the preference rule. Finally, the user is
informed that any employed assumptions should be confirmed.

The generation of the ALE from the IE is an important feature of the Gorgias Cloud
as it exhibits the desired characteristics of being attributive, contrastive and actionable:

• Attributive: Extracted from the object-level argument rules in E.
• Contrastive: Extracted from the priority argument rules in E.
• Actionable: Extracted from the hypothetical or abducible arguments in E.

Developers and users can use the ALEs to evaluate the behaviour of their system
with respect to its specifications. This is made easy as these explanations are at the same
high cognitive and language level as that of the application domain of the system.
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As black-box neural networks are increasingly applied in intelligent systems,
questions about their fairness, reliability and safety become louder. Recent work
tried making them human-understandable by trying to learn parameters that
can be well approximated by decision trees [1]. However, the tree remains just
an approximation, which leaves the question how faithful it really captures the
actual mechanics of the neural network. As it turns out, gradual argumentation
frameworks (GAFs) [2] are closely related to multilayer perceptrons (MLPs), one
of the main classes of neural networks. More precisely, every MLP corresponds to
a GAF under the MLP-based semantics, and conversely, every acyclic GAF under
this semantics corresponds to an MLP [3].

However, since a GAF with millions of attacks and supports between argu-
ments is not easier to interpret than an MLP with millions of connections be-
tween neurons, we have to make sure that the original neural network is sparse.
While learning sparse neural networks has become a more active area in recent
years, current work does not focus on learning an interpretable network, but on
decreasing the risk for overfitting, the memory and runtime complexity and the
associated power consumption [4]. Even though the learnt networks are signifi-
cantly sparser than dense networks, they are still too dense to be interpretable.
Furthermore, while numerical inputs can be seen arguments with a numerical
weight, MLPs result in more intuitive GAFs when all inputs are discrete. This is
the opposite of what is usually done in the literature on learning neural networks,
where even discrete features are often continuized (e.g., using word embeddings)
to improve learning performance (while sacrificing interpretability).

To learn a discrete sparse neural network, we apply structure learning ideas.
Our search space consist of the space of all MLP structures that satisfy structural
constraints. Examples for such constraints are the maximum depth (number of
layers), the maximum width (number of arguments per layer), the maximum
outdegree (number of outgoing edges per argument) and possible discretizations
of continuous features like bins (the value falls in a particular interval) or fuzzy
arguments (e.g., the value is small, average, large). In order to compare candidate
structures, we assign a score to every candidate structure C as follows: we train
C on the training set using the usual backpropagation procedure for MLPs and
compute its accuracy. The score of C is then defined as
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sλ(C) = (1− λ) ·Accuracy(C,Dtrain) + λ · nmax − nC

nmax
.

The score consists of two terms that are weighted by a hyperparameter λ ∈ [0, 1].
The first term evaluates the accuracy, the second one the sparsity. In the second
term, nc is the number of edges in C and nmax the number of edges in the fully
connected GAF corresponding to C .

As the search space is exponentially large, we aim at finding a good struc-
ture, rather than the best one. To do so, we implemented a genetic algo-
rithm. Let us emphasize that the genetic algorithm is responsible for finding
a good structure, not for learning the parameters of the structure (the latter
is done by backpropagation as usual). A detailled description of the algorithm
and an evaluation can be found in the technical report [5]. As an example, we
show a GAF (solid edges denote attacks, dashed edges supports) found for the
Adult income dataset from the UCI machine learning repository and a perfor-
mance comparison to Logistic Regression and Decision Trees of varying depth.

Overall, the performance of GAFs is usually better than logistic regression
(which can only learn linearly separable functions) and comparable to decision
trees. However, flat GAFs can sometimes obtain better performance than flat
decision trees [5]. They can also be easier to comprehend as they are based on
gradual influences rather than on long case differentiations. We are planning to
improve the results by adding fuzzy arguments and joint attacks/supports to
capture joint effects of inputs without increasing the depth of the network.
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Abstract. Skeptic is a web service aimed at automatically providing pointers for
the critical assessment of a persuasive text. That is, with a natural language text as
input, the web service returns a ranked list of questions designed to help readers
reason-check fake news and other contentious texts. Internally, Skeptic maps argu-
mentative features of the text to methods for critical assessment, such as the critical
questions of argument schemes, ways of evaluating different types of propositions,
and signs of possible biased reasoning. The argumentative features are retrieved by
utilising extant techniques for argument mining and classification.
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While deliberate misinformation, disinformation, and deception are by no means
new societal phenomena, the recent rise of fake news [1] and information silos [2] has
become a growing international concern, with politicians, governments and media or-
ganisations regularly lamenting the issue. Efforts to combat such disinformation dressed
up as genuine news focus too often exclusively on the factual correctness of the claims
made. Whilst the truth of purported facts is clearly of crucial importance, there are other,
often overlooked, aspects to consider here. It is, after all, very possible to argue from
true factual statements to blatantly false or misleading implications by applying skewed,
biased, or otherwise defective reasoning. Furthermore, the categorical corrections on fac-
tual impropriety delivered by fact-checkers can both alienate readers who believe they are
being told what to think and raise questions around the impartiality of the fact-checkers
themselves [3]. For these reasons, attention is increasingly turning to the extension of
fact-checking to the broader concept of reason-checking: checking not just factual state-
ments, but the full reasoning underpinning the persuasive text [4].

Skeptic is aimed at addressing these concerns by automatically providing pointers
for the critical assessment of a persuasive text beyond checking the veracity of factual
statements. The software tool is implemented as a web service2 that takes an input natural
language text and returns a ranked list of questions designed to help readers reason-
check the argumentation. The questions are meant to be used as pointers, empowering
the readers’ critical literacy skills, helping them to draw their own conclusions as to

1Corresponding Author: School of Science and Engineering (Computing), University of Dundee,
Nethergate, Dundee, DD1 4HN, United Kingdom; E-mail: j.visser@dundee.ac.uk.
2http://skeptic.arg.tech
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whether or not they should accept what they are reading. Actively involving the reader
in the reason-checking process should help avoid the instinctive enmity engendered by
authoritative fact-checks, while simultaneously broadening the critical spectrum.

The web service maps argumentative features of the persuasive text to methods for
critical assessment, such as the critical questions of argument schemes, ways of evaluat-
ing different types of propositions, and signs of possible biased reasoning. We employ a
pipeline of extant argument technologies [5], all developed to work with the AIF ontol-
ogy [6], using JSON as a common file type to facilitate handover between the different
pipeline components. The combined argument mining and classification techniques pro-
vide a reconstruction of the argumentative features of the text, such as the structure of
the argumentation, the proposition types of premises and conclusions, and the argument
schemes instantiated in the text. These features are then mapped to potential areas of
concern, which the Skeptic web service returns as a ranked list of prompts for readers to
investigate further.

Looking at the overall argumentation structure allows us to identify potential areas
of bias where only one side of an argument is being exposed. The argumentation structure
also allows us to identify the most central propositions in an argument. These are then
classified into one of three proposition types: statements of fact, value, or policy [7]. This
classification results in a powerful expansion upon mere fact-checking by broadening the
range of proposition types to be checked. Where factual statements can be checked for
veracity, policy statements could be checked for consistency or appropriateness, while
value statements could be checked for, e.g., popularity. Finally, identified instances of
argument schemes are mapped to their associated critical questions [8].

By combining the identification of argumentative features and mapping these to po-
tential flaws in the reasoning, the software allows the user to enter a piece of text and
receive a ranked list of questions that they may wish to consider further. The developed
software offers a range of potential applications in, for instance, critical literacy educa-
tion, tools to improve persuasive writing, and the identification of misinformation and
fake news.
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Structured analytic techniques have been established as a powerful weapon in the
arsenal of Intelligence Analysis that helps mitigating confirmation bias - arguably one of
the most well-known yet still most pernicious cognitive biases [1], by offering system-
atic processes to conduct the analyses. One of the most widely implemented techniques
is the Analysis of Competing Hypotheses (ACH) [2]. As with all structured analytical
techniques, ACH is simple in its core idea: first, generate hypotheses that explain some
particular event or series of events (there are other structured techniques for such gener-
ation); tabulate the working hypotheses; then cross those with the different items of evi-
dence and assumption; finally for each cell in the table – each combination of hypothesis
and evidence – analyse the extent to which the evidence is consistent with the hypothesis.

Argumentation is another approach that has increasingly gained traction in the In-
telligence Community. Argument mapping, for instance, is a common Structured Ana-
lytical Technique [3], and abstract argumentation frameworks [4] have recently been ex-
plored as a way of identifying the most valuable or critical items in intelligence analy-
ses [5]. An argument graph of a full-blown intelligence case can, however, very rapidly
expand to hundreds of nodes, making it difficult for an analyst to track or make sense of.

To address this challenge, we develop a software tool, called ACH-Nav 2, which is
an argument visualisation and navigation tool designed specifically to support decision-
making and sense-making into large volumes of data in the domain of Intelligence Anal-
ysis. The tool offers a navigation framework which is built around the concepts and rea-
soning of ACH, making the navigation process directly understandable to intelligence
analysts, by virtue of their familiarity with the method. It is based on the ArgNav tool3,
the goal of which was to provide the capability to navigate within large volumes of argu-
ment structures but in the general domain [6].

For an ACH-driven argument navigation, central concept is hypothesis. In the argu-
ment graph, the user can easily identify which propositional nodes are hypotheses and
is provided with options to unfold related information, including consistent and incon-
sistent evidence or alternative hypotheses, by identifying the corresponding structural
patterns around them. From these structures, the equivalent ACH matrix can be recon-
structed. Thus, the main interface of ACH-Nav consists of two main views of the data,

1Corresponding Author: Dimitra Zografistou, Centre for Argument Technology, University of Dundee, UK;
E-mail: dzografistou001@dundee.ac.uk
2Website: http://achnav.arg.tech/ ; Github repository: https://github.com/arg-tech/ACH-ArgNav
3https://argnav.arg.tech/
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the Argument map view and the ACH view and gives the options to switch between them
while maintaining focus on specific nodes. Additionally, from the ACH view, the tool
allows to instantly uncover the reasoning chain that leads to a hypothesis, by hovering
over the corresponding cell that includes this hypothesis. All this functionality is built on
the mapping between ACH and argumentation expressed in the Argument Interchange
Format (AIF) [7]. Figure 1 gives a screenshot of the ACH view.

Figure 1. ACH-Nav: ACH view of the data
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