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Abstract.In order to solve the problem of low efficiency of traditional software 
testing algorithms, the research on automated software testing and optimization 
model based on behavioral data was proposed. The model proposed in this paper 
uses K-means to initialize EM and adaptively determine the number of clusters. In 
this process, the clustering results can be evaluated. At the same time, all parameters 
of the Gaussian mixture model are given. These parameters are used as parameters 
for a new round of iterative calculation of each cluster, and the final results tend to 
be the optimal solution. The experimental results show that the reduction rate of the 
algorithm proposed in this paper is higher than the two algorithms mentioned above, 
and its total reduction rate is 11.46% higher than that of the software test case set 
reduction algorithm based on the fuzzy K-Means clustering model, and 6.42% 
higher than that of the software test case set reduction algorithm based on the 
Gaussian mixture model. Conclusion: Compared with Gaussian mixture model 
algorithm and fuzzy K-Means clustering algorithm, the proposed algorithm has 
higher reduction rate and error detection rate. After reduction, although the scale of 
software test case set is simplified, the coverage rate is high. 
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1. Introduction 

Automated software testing is the process of executing test cases using specialized 

testing tools or other automated means to verify that the functionality, performance, 

security and other attributes of the software meet expectations [1]. It aims to reduce 

manual involvement, improve testing efficiency, and ensure software quality [2]. 

Compared with manual testing, automated testing has higher execution speed, less error 

rate and better test coverage [3]. 

The basic principles and methods of software automation testing. Software 

automation testing utilizes tools and techniques to perform testing tasks to replace 

manual operations [4]. It includes aspects such as test case generation, execution and 

result analysis. Automation testing by writing scripts or using automated testing tools, 

can realize automated execution of large-scale test cases, improve testing efficiency and 

accuracy [5]. In software automation testing, common methods include regression testing, 

functional testing, performance testing, security testing and so on [6]. By building test 
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scripts and test data, automated testing tools can simulate user operations and system 

responses, automate the execution of test cases and generate test reports [7]. This can 

reduce manual errors, improve test coverage, and obtain reliable test results in a shorter 

time [8]. 

In today's digital era, software has penetrated into every aspect of our lives, from 

cell phone applications to complex enterprise-level systems, the quality of software is 

directly related to the user experience and business success [9]. Therefore, ensuring the 

quality of software has become a core task in the process of software development. 

Automated software testing technology as an important means to ensure the quality of 

software, through the simulation of user behavior and system scenarios, can 

automatically detect defects and vulnerabilities in the software, so as to improve the 

reliability and stability of the software [10]. However, with the increase in software 

complexity and the diversification of testing needs, automated software testing is also 

facing many challenges. 

2. Literature review 

The larger the size of the software, the higher its logical complexity, and the higher 

the reliability requirements for such software. The hidden errors of software can cause 

its own operation failure [11]. That is to say, the hidden error of software is one of the 

most critical factors affecting the reliability of software. For small-scale software, most 

of the engineering practices use manual breakpoints to test in order to find out the error. 

However, the manual method to determine the location of the error is more complex and 

difficult, and is not applicable to large-scale software testing [12]. Therefore, in order to 

find and eliminate software errors more accurately and efficiently, experts and scholars 

have carried out extensive research, put forward a number of solutions, and developed 

tools for unit, static and dynamic testing of software [13]. These methods and test 

software, all require the test case set to cover as comprehensive as possible, only in this 

way can accurately locate errors and improve the effectiveness of testing [14]. However, 

the number of use cases included in the test case set should be kept as simple as possible 

in order to reduce the cost of testing. 

Many researchers have proposed different methods for test case set reduction. A 

research team proposed a test case set reduction method based on vector similarity [15]. 

Another team proposed a method to solve the test case reduction problem by using the 

search tree, which can find the global optimal solution [16]. Other researchers  

introduced requirements analysis into test case set reduction and proposed a two-stage 

optimization method: first, requirements slicing, and then use case set optimization [17]. 

In addition, a research team proposed an online test case set reduction method, which 

embedded the test set reduction into the test generation process, and realized the test set 

reduction through the satisfaction relationship between the test sequence and the test  

goal [18]. In addition, by defining and combining the equivalent migration and 

equivalent state generated based on the ASM model, the research has reduced the  

invalid state and invalid migration path, and realized the reduction of the use case set 

space [19]. Finally, a test case reduction method for error location requirements is 

proposed, which not only reduces the complexity of error location, but also improves  

the accuracy of location [20]. 

These methods used to simplify the set of test cases also have some major problems 

as follows: 1) how to model the relationship between the set of test cases to improve the 
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accuracy of finding software errors; 2) how to achieve the simplification of parameter 

settings, or to achieve adaptive parameter settings. In order to solve these problems, this 

paper proposes a model study of automated software testing and optimization based on 

behavioral data. The algorithm introduces Gaussian mixture model to find the 

relationship between test cases, extract the test cases that meet the test requirements, and 

realize the simplicity of the set of use cases; meanwhile, through the adaptive strategy, 

the parameter settings are simplified. 

3. Methodology 

3.1 Behavioral Data Software Testing Classification Model 

For web-architecture software test data, the feature classification includes the 

following steps. 

1) For the input network software test data, the feature points are extracted, and the 

set of data feature points is F. 

2) According to the feature expansion algorithm, the sparse decomposition 

algorithm is used to sparse the test data of the network software. The sparse data set 

obtained is D, and the relationship between the set F and the set D is F=nD. 

3) Aggregate all sparse data to generate dataset W, then W=Pooling (F). 

4) Aggregation of the data is performed using the square root aggregation method, 

and the formula for the aggregation calculation is. 

W� = ��
� ∑����  �F� − 1�                                           (1) 

W = �W� + W� + ⋯ W��                                        (2) 

Classification of web-architecture software test data based on the expression of 

sparse data, concept tree, weight calculation and expression calculation are used to 

express the characteristics of web-architecture software test data, which are classified 

and saved according to the data characteristics. 

5) Save the network structure of the software test data for the number, easy to extract 

and query. 

The classification model based on feature expansion of network structure software 

test data has the following advantages: firstly, the model maps the features of network 

structure software test data into vector space, which is conducive to feature expansion 

and performance; secondly, through accurate calculation, it can reduce the classification 

error and the calculation speed is faster, which improves the data relevance processing 

ability; finally, after the data is classified, it is labeled with the category and number in 

each database, which is conducive to later data retrieval and querying. data retrieval and 

query. 

3.2 Feature Expansion Algorithm 

Input: Net structure software test data, generate data files to be tested. 
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Output:Feature vector space after feature expansion of net-constructed software test 

data. 

1) For any one feature item in the test data of the network structure software to be 

tested, calculate the minimum confidence and minimum support of the feature item, and 

the calculation formulas are shown in Eq. (3) and Eq. (4). 

s =
�	

��

�

                                                     (3) 

c =
�	

��

�

                                                     (4) 

2) The feature items with the minimum execution degree and the minimum support 

degree are generated into the query feature co-occurrence set. The network software test 

data in the query feature co-occurrence set is defined as the rule feature item, and the 

rule degree of each item is calculated. The calculation method of the rule degree H is 

shown in Formula (5). 

H =
�
� �√�√� + √v�                                             (5) 

3) If the H value is greater than the set rule threshold, the rule feature item can be 

considered as a rule item; If there is a unique rule item in the query feature co-occurrence 

set, step 4) will be executed; If there are two or more rule items, step 5) will be executed; 

4) Inclusion of unique rule terms in the feature space set; 

5) Matching web-constructed software test data characteristics;  

6) The data in the feature space set to generate the feature vector space, continue to 

calculate the next set of network structure software test data. 

3.3 Classification of test data for web-constructed software 

There are more interference factors in the feature vectors of the net structure 

software test data after feature expansion, due to the similarity between the net structure 

software test data, which affects the feature expression ability of the net structure 

software test data, and the data analysis can improve the expression ability of the data, 

which is more conducive to the realization of data classification and query. 

First of all, the conceptual tree carries out the conceptual description of its data 

through the attribute analysis of the data, and defines the attribute weight formula of the 

web-constructed software test data as shown in equation (6). 

J(n) = ∑  ���� 	log� (Deep + 1)
                              (6) 

Due to the similarity of the data, there is not much difference between the similar 

data, in order to accurately categorize the data, after calculating the weights of the test 

data of the net structure software, the expression ability is calculated, as shown in 

equation (7). 

H. Li / A Study of Automated Software Testing and Optimization Models 997



G(n) = sin J(n)��
�                                            (7) 

According to the expression ability of the net structure software test data, the 

eigenvalues are fully expressed and reasonably categorized according to the differences 

in the expressed eigenvalues. 

3.4 Gaussian mixture modeling 

The probability distribution of software test case set data is usually complex, so 

Gaussian mixture model is introduced to simulate approximation and reduction of 

software test case set to simplify the problem. The Gaussian mixture model (GMM) 

is�The weighted sum of individual Gaussian models (clusters of clusters) of the data, 

the� Gaussian estimation of quasi probability density distribution. Each Gaussian 

probability density function corresponds to a class. EM (expectation maximization) 

algorithm is used in training. 

Let each sample correspond to a class, that is, a Gaussian probability density 

function, and the entire sample set corresponds to M Gaussian probability density 

functions. However, the specific Gaussian probability density function corresponding to 

each sample xi is uncertain, and the weight of each Gaussian probability density function 

in GMM is also uncertain. Formula (8) shows GMM: 

p�x�� = ∑����  φ�f��x�/μ�, ∑�  
                                   (8) 

Each Gaussian probability density function,i.e., single Gaussian model, has three 

parameters 。 When modeling the Gaussian mixture model, it is necessary to determine 

3N parameters. 

All parameters of GMM need to be estimated through sample set X Φ , the 

probability of sample xj is shown in equation (9): 

p(X ∣ Φ)∏����  ∑����  φ�N��x� ∣ μ�, C�
                                 (9) 

3.5 Experimental analysis 

3.5.1 Experimental data sets 

This paper uses Siemens software test case set which is widely used and easy to 

compare. Developed by experts from Siemens Corporate Research, it contains seven 

types of program codes: Print_tokens1, Print_tokens2, Schedule1, Schedule2, Replace, 

tacs, and tot_info. Each type of program code has one error free version and some error 

containing versions. The number of lines, initial test cases, errors in the program, and 

test cases of each type of program code in the software test case set are shown in Table 

1. For each type of program code, the software test case set uses five types of 

programming languages for code writing to meet the code requirements of common 

programming languages. 
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Table 1. Data set for software test case approximation 

data sets the number of 

initial use cases 

Number of 

errors 

Number of rows number of test 

cases 

Print_tokens1 30 20 565 4130 

Print_tokens2 30 18 510 4115 

Schedule1 32 24 412 2650 

Schedule2 32 32 307 2710 

Replace 30 22 563 5542 

tacs 32 24 173 1608 

tot_info 32 28 406 1502 

 

3.5.2 Evaluation criteria 

In the experiments, three indexes, namely, the approximation rate, the error 

detection rate and the loss rate of error detection, are used to evaluate the experimental 

results in order to verify the effectiveness, correctness and stability of the algorithm. 

(1) Approximate rate 

Simplification rate is calculated as shown in equation (10), which is the ratio of the 

difference between the number of test cases in the existing software test case set and the 

number of test cases in the simplified software test case set, compared with the number 

of test cases in the existing software test case set. 

RR =
��������

��� × 100%                                         (10) 

(2) False detection rate 

The error detection rate is calculated as shown in Equation (11), which is the ratio 

of the number of program code errors detected from the test cases to the number of actual 

program code errors in the test cases after learning the initial use cases in an approximate 

way. 

EDR =
���

�� × 100%                                            (11) 

(3) False detection loss rate 

The error detection loss rate is calculated as shown in Equation (12), which is the 

ratio obtained from the difference between the number of program code errors detected 

in the test cases and the number of actual program code errors in the test cases after 

learning the initial cases in a simplified manner, compared with the number of actual 

program code errors in the test cases. 

��� =
|��|������

|��|
× 100%                                       (12) 

From Eq. (10), Eq. (11) and Eq. (12), we can compare the reduction rate, error 

detection rate and error detection loss rate of Gaussian mixture model, fuzzy K-Means 

clustering model and the algorithm proposed in this paper. 
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4. Results and discussion 

In order to verify the performance of the software test case set reduction algorithm 

proposed in this paper based on the adaptive Gaussian mixture model, the algorithm 

proposed in this paper, the software test case set reduction algorithm based on the 

Gaussian mixture model and the software test case set reduction algorithm based on the 

fuzzy K-Means clustering model are compared and analyzed. 

The number of test cases in the set of software test cases obtained after 

simplification using the three algorithms is shown in Table 2. 

Table 2. Initial number of use cases after simplification 

data sets the number of 
initial use cases 

The algorithm in 
this paper, the 

Gaussian mixing Fuzzy K-Means 

Print_tokens1 30 17 23 19 

Print_tokens2 30 13 17 14 

Schedule1 32 14 20 17 

Schedule2 32 12 15 16 

Replace 30 15 14 16 

tacs 32 18 21 18 

tot info 32 16 20 19 

Total 218 105 130 119 

 

The 3 algorithms approximation rates are shown in Table 3. 

Table 3. The approximation rates of the three algorithms 

data sets Simplification rate/% 

The algorithm in this 
paper, the 

Gaussian mixing Fuzzy K-Means 

Print_tokens1 43.33 23.33 36.67 

Print_tokens2 56.67 43.33 53.33 

Schedule1 56.25 37.50 46.88 

Schedule2 62.5 53.13 50.00 

Replace 50.00 53.33 46.66 

tacs 43.75 34.38 43.75 

tot _info 50.00 37.50 40.63 

Total 51.83 40.37 45.41 

 

Through analysis, the reduction rate of software test case set reduction algorithm 

based on fuzzy K-Means clustering model is better than that based on Gaussian mixture 

model. The reduction rate of the algorithm proposed in this paper is higher than the two 

algorithms mentioned above. Its total reduction rate is 11.46% higher than that of the 

software test case set reduction algorithm based on the fuzzy K-Means clustering model, 

and 6.42% higher than that of the software test case set reduction algorithm based on the 

Gaussian mixture model. The improvement of simplicity can reduce the complexity of 

software testing to a certain extent and improve the efficiency of software testing. 

5. Conclusion 

This paper proposes a research on automated software testing and optimization 

model based on behavioral data. The algorithm does not need to fix the number of 

clusters during initialization and iteration. It can adaptively determine the number of 

clusters according to the characteristics of different software test case set data, improve 
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the adaptability, accuracy and generalization of clustering, and achieve optimal reduction 

of the use case set. Experimental results show that the reduction rate and error detection 

rate of the proposed algorithm are higher than those of the Gaussian mixture model 

algorithm and the fuzzy K-Means clustering algorithm. After reduction, although the 

scale of software test case set is simplified, the coverage rate is high. 
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