
A Study of Automated Software Testing and

Optimization Models Based on Behavioral

Data

Haoran LIa,1
aBeijing Institute of Control Engineering,Beijing 100190,China

Abstract.In order to solve the problem of low efficiency of traditional software
testing algorithms, the research on automated software testing and optimization
model based on behavioral data was proposed. The model proposed in this paper
uses K-means to initialize EM and adaptively determine the number of clusters. In
this process, the clustering results can be evaluated. At the same time, all parameters
of the Gaussian mixture model are given. These parameters are used as parameters
for a new round of iterative calculation of each cluster, and the final results tend to
be the optimal solution. The experimental results show that the reduction rate of the
algorithm proposed in this paper is higher than the two algorithms mentioned above,
and its total reduction rate is 11.46% higher than that of the software test case set
reduction algorithm based on the fuzzy K-Means clustering model, and 6.42%
higher than that of the software test case set reduction algorithm based on the
Gaussian mixture model. Conclusion: Compared with Gaussian mixture model
algorithm and fuzzy K-Means clustering algorithm, the proposed algorithm has
higher reduction rate and error detection rate. After reduction, although the scale of
software test case set is simplified, the coverage rate is high.

Keywords.software testing,use case approximation,gaussian mixture modeling

1. Introduction

Automated software testing is the process of executing test cases using specialized

testing tools or other automated means to verify that the functionality, performance,

security and other attributes of the software meet expectations [1]. It aims to reduce

manual involvement, improve testing efficiency, and ensure software quality [2].

Compared with manual testing, automated testing has higher execution speed, less error

rate and better test coverage [3].

The basic principles and methods of software automation testing. Software

automation testing utilizes tools and techniques to perform testing tasks to replace

manual operations [4]. It includes aspects such as test case generation, execution and

result analysis. Automation testing by writing scripts or using automated testing tools,

can realize automated execution of large-scale test cases, improve testing efficiency and

accuracy [5]. In software automation testing, common methods include regression testing,

functional testing, performance testing, security testing and so on [6]. By building test

1 Corresponding Author.Haoran LI,Beijing Institute of Control Engineering,E-mail:53157112@qq.com

Design Studies and Intelligence Engineering
L.C. Jain et al. (Eds.)
© 2025 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA250355

994

scripts and test data, automated testing tools can simulate user operations and system

responses, automate the execution of test cases and generate test reports [7]. This can

reduce manual errors, improve test coverage, and obtain reliable test results in a shorter

time [8].

In today's digital era, software has penetrated into every aspect of our lives, from

cell phone applications to complex enterprise-level systems, the quality of software is

directly related to the user experience and business success [9]. Therefore, ensuring the

quality of software has become a core task in the process of software development.

Automated software testing technology as an important means to ensure the quality of

software, through the simulation of user behavior and system scenarios, can

automatically detect defects and vulnerabilities in the software, so as to improve the

reliability and stability of the software [10]. However, with the increase in software

complexity and the diversification of testing needs, automated software testing is also

facing many challenges.

2. Literature review

The larger the size of the software, the higher its logical complexity, and the higher

the reliability requirements for such software. The hidden errors of software can cause

its own operation failure [11]. That is to say, the hidden error of software is one of the

most critical factors affecting the reliability of software. For small-scale software, most

of the engineering practices use manual breakpoints to test in order to find out the error.

However, the manual method to determine the location of the error is more complex and

difficult, and is not applicable to large-scale software testing [12]. Therefore, in order to

find and eliminate software errors more accurately and efficiently, experts and scholars

have carried out extensive research, put forward a number of solutions, and developed

tools for unit, static and dynamic testing of software [13]. These methods and test

software, all require the test case set to cover as comprehensive as possible, only in this

way can accurately locate errors and improve the effectiveness of testing [14]. However,

the number of use cases included in the test case set should be kept as simple as possible

in order to reduce the cost of testing.

Many researchers have proposed different methods for test case set reduction. A

research team proposed a test case set reduction method based on vector similarity [15].

Another team proposed a method to solve the test case reduction problem by using the

search tree, which can find the global optimal solution [16]. Other researchers

introduced requirements analysis into test case set reduction and proposed a two-stage

optimization method: first, requirements slicing, and then use case set optimization [17].

In addition, a research team proposed an online test case set reduction method, which

embedded the test set reduction into the test generation process, and realized the test set

reduction through the satisfaction relationship between the test sequence and the test

goal [18]. In addition, by defining and combining the equivalent migration and

equivalent state generated based on the ASM model, the research has reduced the

invalid state and invalid migration path, and realized the reduction of the use case set

space [19]. Finally, a test case reduction method for error location requirements is

proposed, which not only reduces the complexity of error location, but also improves

the accuracy of location [20].

These methods used to simplify the set of test cases also have some major problems

as follows: 1) how to model the relationship between the set of test cases to improve the

H. Li / A Study of Automated Software Testing and Optimization Models 995

accuracy of finding software errors; 2) how to achieve the simplification of parameter

settings, or to achieve adaptive parameter settings. In order to solve these problems, this

paper proposes a model study of automated software testing and optimization based on

behavioral data. The algorithm introduces Gaussian mixture model to find the

relationship between test cases, extract the test cases that meet the test requirements, and

realize the simplicity of the set of use cases; meanwhile, through the adaptive strategy,

the parameter settings are simplified.

3. Methodology

3.1 Behavioral Data Software Testing Classification Model

For web-architecture software test data, the feature classification includes the

following steps.

1) For the input network software test data, the feature points are extracted, and the

set of data feature points is F.

2) According to the feature expansion algorithm, the sparse decomposition

algorithm is used to sparse the test data of the network software. The sparse data set

obtained is D, and the relationship between the set F and the set D is F=nD.

3) Aggregate all sparse data to generate dataset W, then W=Pooling (F).

4) Aggregation of the data is performed using the square root aggregation method,

and the formula for the aggregation calculation is.

W� = ��
� ∑����  �F� − 1� (1)

W = �W� + W� + ⋯ W�� (2)

Classification of web-architecture software test data based on the expression of

sparse data, concept tree, weight calculation and expression calculation are used to

express the characteristics of web-architecture software test data, which are classified

and saved according to the data characteristics.

5) Save the network structure of the software test data for the number, easy to extract

and query.

The classification model based on feature expansion of network structure software

test data has the following advantages: firstly, the model maps the features of network

structure software test data into vector space, which is conducive to feature expansion

and performance; secondly, through accurate calculation, it can reduce the classification

error and the calculation speed is faster, which improves the data relevance processing

ability; finally, after the data is classified, it is labeled with the category and number in

each database, which is conducive to later data retrieval and querying. data retrieval and

query.

3.2 Feature Expansion Algorithm

Input: Net structure software test data, generate data files to be tested.

H. Li / A Study of Automated Software Testing and Optimization Models996

Output:Feature vector space after feature expansion of net-constructed software test

data.

1) For any one feature item in the test data of the network structure software to be

tested, calculate the minimum confidence and minimum support of the feature item, and

the calculation formulas are shown in Eq. (3) and Eq. (4).

s =
�	

��

�

 (3)

c =
�	

��

�

 (4)

2) The feature items with the minimum execution degree and the minimum support

degree are generated into the query feature co-occurrence set. The network software test

data in the query feature co-occurrence set is defined as the rule feature item, and the

rule degree of each item is calculated. The calculation method of the rule degree H is

shown in Formula (5).

H =
�
� �√�√� + √v� (5)

3) If the H value is greater than the set rule threshold, the rule feature item can be

considered as a rule item; If there is a unique rule item in the query feature co-occurrence

set, step 4) will be executed; If there are two or more rule items, step 5) will be executed;

4) Inclusion of unique rule terms in the feature space set;

5) Matching web-constructed software test data characteristics;

6) The data in the feature space set to generate the feature vector space, continue to

calculate the next set of network structure software test data.

3.3 Classification of test data for web-constructed software

There are more interference factors in the feature vectors of the net structure

software test data after feature expansion, due to the similarity between the net structure

software test data, which affects the feature expression ability of the net structure

software test data, and the data analysis can improve the expression ability of the data,

which is more conducive to the realization of data classification and query.

First of all, the conceptual tree carries out the conceptual description of its data

through the attribute analysis of the data, and defines the attribute weight formula of the

web-constructed software test data as shown in equation (6).

J(n) = ∑  ���� 	log� (Deep + 1)
 (6)

Due to the similarity of the data, there is not much difference between the similar

data, in order to accurately categorize the data, after calculating the weights of the test

data of the net structure software, the expression ability is calculated, as shown in

equation (7).

H. Li / A Study of Automated Software Testing and Optimization Models 997

G(n) = sin J(n)��
� (7)

According to the expression ability of the net structure software test data, the

eigenvalues are fully expressed and reasonably categorized according to the differences

in the expressed eigenvalues.

3.4 Gaussian mixture modeling

The probability distribution of software test case set data is usually complex, so

Gaussian mixture model is introduced to simulate approximation and reduction of

software test case set to simplify the problem. The Gaussian mixture model (GMM)

is�The weighted sum of individual Gaussian models (clusters of clusters) of the data,

the� Gaussian estimation of quasi probability density distribution. Each Gaussian

probability density function corresponds to a class. EM (expectation maximization)

algorithm is used in training.

Let each sample correspond to a class, that is, a Gaussian probability density

function, and the entire sample set corresponds to M Gaussian probability density

functions. However, the specific Gaussian probability density function corresponding to

each sample xi is uncertain, and the weight of each Gaussian probability density function

in GMM is also uncertain. Formula (8) shows GMM:

p�x�� = ∑����  φ�f��x�/μ�, ∑�  
 (8)

Each Gaussian probability density function,i.e., single Gaussian model, has three

parameters 。 When modeling the Gaussian mixture model, it is necessary to determine

3N parameters.

All parameters of GMM need to be estimated through sample set X Φ , the

probability of sample xj is shown in equation (9):

p(X ∣ Φ)∏����  ∑����  φ�N��x� ∣ μ�, C�
 (9)

3.5 Experimental analysis

3.5.1 Experimental data sets

This paper uses Siemens software test case set which is widely used and easy to

compare. Developed by experts from Siemens Corporate Research, it contains seven

types of program codes: Print_tokens1, Print_tokens2, Schedule1, Schedule2, Replace,

tacs, and tot_info. Each type of program code has one error free version and some error

containing versions. The number of lines, initial test cases, errors in the program, and

test cases of each type of program code in the software test case set are shown in Table

1. For each type of program code, the software test case set uses five types of

programming languages for code writing to meet the code requirements of common

programming languages.

H. Li / A Study of Automated Software Testing and Optimization Models998

Table 1. Data set for software test case approximation

data sets the number of

initial use cases

Number of

errors

Number of rows number of test

cases

Print_tokens1 30 20 565 4130

Print_tokens2 30 18 510 4115

Schedule1 32 24 412 2650

Schedule2 32 32 307 2710

Replace 30 22 563 5542

tacs 32 24 173 1608

tot_info 32 28 406 1502

3.5.2 Evaluation criteria

In the experiments, three indexes, namely, the approximation rate, the error

detection rate and the loss rate of error detection, are used to evaluate the experimental

results in order to verify the effectiveness, correctness and stability of the algorithm.

(1) Approximate rate

Simplification rate is calculated as shown in equation (10), which is the ratio of the

difference between the number of test cases in the existing software test case set and the

number of test cases in the simplified software test case set, compared with the number

of test cases in the existing software test case set.

RR =
��������

��� × 100% (10)

(2) False detection rate

The error detection rate is calculated as shown in Equation (11), which is the ratio

of the number of program code errors detected from the test cases to the number of actual

program code errors in the test cases after learning the initial use cases in an approximate

way.

EDR =
���

�� × 100% (11)

(3) False detection loss rate

The error detection loss rate is calculated as shown in Equation (12), which is the

ratio obtained from the difference between the number of program code errors detected

in the test cases and the number of actual program code errors in the test cases after

learning the initial cases in a simplified manner, compared with the number of actual

program code errors in the test cases.

��� =
|��|������

|��|
× 100% (12)

From Eq. (10), Eq. (11) and Eq. (12), we can compare the reduction rate, error

detection rate and error detection loss rate of Gaussian mixture model, fuzzy K-Means

clustering model and the algorithm proposed in this paper.

H. Li / A Study of Automated Software Testing and Optimization Models 999

4. Results and discussion

In order to verify the performance of the software test case set reduction algorithm

proposed in this paper based on the adaptive Gaussian mixture model, the algorithm

proposed in this paper, the software test case set reduction algorithm based on the

Gaussian mixture model and the software test case set reduction algorithm based on the

fuzzy K-Means clustering model are compared and analyzed.

The number of test cases in the set of software test cases obtained after

simplification using the three algorithms is shown in Table 2.

Table 2. Initial number of use cases after simplification

data sets the number of
initial use cases

The algorithm in
this paper, the

Gaussian mixing Fuzzy K-Means

Print_tokens1 30 17 23 19

Print_tokens2 30 13 17 14

Schedule1 32 14 20 17

Schedule2 32 12 15 16

Replace 30 15 14 16

tacs 32 18 21 18

tot info 32 16 20 19

Total 218 105 130 119

The 3 algorithms approximation rates are shown in Table 3.

Table 3. The approximation rates of the three algorithms

data sets Simplification rate/%

The algorithm in this
paper, the

Gaussian mixing Fuzzy K-Means

Print_tokens1 43.33 23.33 36.67

Print_tokens2 56.67 43.33 53.33

Schedule1 56.25 37.50 46.88

Schedule2 62.5 53.13 50.00

Replace 50.00 53.33 46.66

tacs 43.75 34.38 43.75

tot _info 50.00 37.50 40.63

Total 51.83 40.37 45.41

Through analysis, the reduction rate of software test case set reduction algorithm

based on fuzzy K-Means clustering model is better than that based on Gaussian mixture

model. The reduction rate of the algorithm proposed in this paper is higher than the two

algorithms mentioned above. Its total reduction rate is 11.46% higher than that of the

software test case set reduction algorithm based on the fuzzy K-Means clustering model,

and 6.42% higher than that of the software test case set reduction algorithm based on the

Gaussian mixture model. The improvement of simplicity can reduce the complexity of

software testing to a certain extent and improve the efficiency of software testing.

5. Conclusion

This paper proposes a research on automated software testing and optimization

model based on behavioral data. The algorithm does not need to fix the number of

clusters during initialization and iteration. It can adaptively determine the number of

clusters according to the characteristics of different software test case set data, improve

H. Li / A Study of Automated Software Testing and Optimization Models1000

the adaptability, accuracy and generalization of clustering, and achieve optimal reduction

of the use case set. Experimental results show that the reduction rate and error detection

rate of the proposed algorithm are higher than those of the Gaussian mixture model

algorithm and the fuzzy K-Means clustering algorithm. After reduction, although the

scale of software test case set is simplified, the coverage rate is high.

References

[1] Yayan, U. . (2023). Rosmutation: mutation based automated testing for ros compatible robotic software.
advances in electrical and computer engineering, 23(3), 47-56.

[2] Chandra, S. S. V. , Sankar, S. S. , & Anand, H. S. . (2022). Smell detection agent optimization approach
to path generation in automated software testing. Journal of Electronic Testing, 38(6), 623-636.

[3] Xue, F. , Junsheng, W. U. , Zhang, T. , Wang, W. , & Cheng, J. . (2022). Visual judgment approach
of isomorphic gui for automated mobile app testing. Journal of Northwestern Polytechnical University,
40(4), 804-811.

[4] Ruiz, B. . (2023). The role of automation in modern software testing. Journal of Computer Engineering &
Information Technology, 12(4), 1-1.

[5] Wang, Y. , Zhao, Y. , Wang, X. , Tang, W. , Zhang, J. , & Wang, S. , et al. (2024). Robotic process
automation efficiency for mobile app testing: an empirical investigation. International Journal of Software
Engineering and Knowledge Engineering, 34(07), 1025-1046.

[6] Smith-Miles, K. , & Munoz, M. A. . (2023). Instance space analysis for algorithm testing: methodology
and software tools. ACM computing surveys, 55(12), 1-31.

[7] Arasteh, B. , Imanzadeh, P. , Arasteh, K. , Gharehchopogh, F. S. , & Zarei, B. . (2022). A source-
code aware method for software mutation testing using artificial bee colony algorithm. Journal of
Electronic Testing, 38(3), 289-302.

[8]Zhi-boLI, Qing-baoLI, Ming-jingLAN, & Jian-fanSUN. (2022). Mart algorithm based on mirror selection
order optimization. Acta Electronica Sinica, 50(02), 314-325.

[9] Zhuang, M. , Chen, Z. , Wang, H. , Tang, H. , He, J. , & Qin, B. , et al. (2022). Anatomysketch:
an extensible open-source software platform for medical image analysis algorithm development. Journal
of Digital Imaging, 35(6), 1623-1633.

[10] Khudhur, A. A. , Mohamed, I. , & Zainudin, S. . (2024). Enhancing automated test case generation
through knn algorithm in software testing. Journal of Electrical Systems, 20(3s), 927-936.

[11] Sezgin, A. , & Boyac, A. . (2023). Aid4i:an intrusion detection framework for industrial internet of things
using automated machine learning, 76(8), 2121-2143.

[12] Xue, F. , Junsheng, W. U. , Zhang, T. , Wang, W. , & Cheng, J. . (2022). Visual judgment approach
of isomorphic gui for automated mobile app testing. Journal of Northwestern Polytechnical University,
40(4), 804-811.

[13] Miyaki, R. , Yoshida, N. , Fujiwara, K. , Tsuzuki, N. , Yamamoto, R. , & Takada, H. . (2022).
Fuzz4b: a support tool for fuzzing with afl. Computer Software, 39(2), 124-142.

[14] Yayan, U. . (2023). Rosmutation: mutation based automated testing for ros compatible robotic software.
advances in electrical and computer engineering, 23(3), 47-56.

[15] Araghi, M. A. , Rafe, V. , & Khendek, F. . (2024). Using data mining techniques to generate test cases
from graph transformation systems specifications. Automated Software Engineering, 31(1), 1-43.

[16] Hacks, S. , Persson, L. , & Nicklas Hersén. (2023). Measuring and achieving test coverage of attack
simulations extended version. Software and systems modeling, 22(1), 31-46.

[17] Giamattei, L. , Guerriero, A. , & Russo, P. S. . (2024). Automated functional and robustness testing of
microservice architectures. The Journal of Systems and Software, 207(Jan.), 1-14.

[18] Krishna, V. V. , & Gopinath, G. . (2022). Agile test automation for web application using testng
framework with random integration algorithm in machine learning to predict accuracy and response time
on automated test results. journal of theoretical and applied information technology, 100(16), 4909-4917.

[19] Dai, X. , Ning, B. , & Gu, C. L. S. . (2022). Automated test case generation based on competitive
swarm optimizer with schema and node branch archive. Technical Gazette, 29(3), 915-925.

[20] Hacks, S. , Persson, L. , & Nicklas Hersén. (2022). Measuring and achieving test coverage of attack
simulations extended version. Software and Systems Modeling, 22(1), 31-46.

H. Li / A Study of Automated Software Testing and Optimization Models 1001

