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Abstract. Human-in-the-loop reinforcement learning (HIRL) enhances sampling

efficiency in deep reinforcement learning by incorporating human expertise and 

experience into the training process. However, HIRL methods still heavily depend 

on expert guidance, which is a key factor limiting their further development and 

largescale application. In this paper, an uncertainty-based dynamic weighted 

experience replay approach (UDWER) is proposed to solve the above problem. Our 

approach enables the algorithm to detect decision uncertainty, triggering human 

intervention only when uncertainty exceeds a threshold. This reduces the need for 

continuous human supervision. Additionally, we design a dynamic experience 

replay mechanism that prioritizes machine self-exploration and human-guided 

samples with different weights based on decision uncertainty. We also provide a 

theoretical derivation and related discussion. Experiments in the Lunar Lander 

environment demonstrate improved sampling efficiency and reduced reliance on 

human guidance.
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1. Introduction

Human-in-the-loop reinforcement learning (HIRL) is an approach that enhances the 

efficiency of deep reinforcement learning by incorporating human feedback during the 

learning process [1][2]. It has gained significant attention in recent years and has shown 

potential in areas like autonomous driving [3], robot control [4], and large language 

models [5], which has initially verified its effectiveness and prospects in complex tasks.

However, HIRL methods still heavily depend on expert guidance, which is a key

factor limiting their further development and large-scale application [6]. The high cost 

of human guidance arises from the challenge of predicting unsafe machine actions, 

requiring constant supervision. Additionally, current methods often underutilize human 

guidance, further increasing reliance on human labor. For instance, HG-Dagger [7] lacks 
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a weighting mechanism for human guidance data, and Li [8] fails to fully leverage human 

contributions by equally sampling human and proxy data.

Currently, research has begun to focus on reducing human guidance. One approach

[9] is to train models to imitate human decisions, which works well in simple scenarios 

but struggles in complex ones. Other approaches use expert guidance with constrained 

rewards [3], but designing effective reward functions for real-world environments 

remains challenging. Thus, developing more efficient HIRL algorithms to reduce human 

guidance remains a key challenge.

Based on the above challenges, this paper introduces an innovative solution: the 

Uncertainty-based Dynamic Weighted Experience Replay (UDWER) approach. In the 

following sections, we will first explain the theoretical foundations and design of 

UDWER, and then demonstrate its effectiveness through experimental results. This 

solution addresses the limitations of current Human-in-the-loop methods by detecting 

uncertainty to engage experts only when needed and using a dynamic weighting 

mechanism, thus reducing human involvement and improving learning efficiency. 

The rest of this paper is organized as follows: Section 2 presents the proposed

method with theoretical validation, Section 3 discusses the experiments and results, and 

Section 4 concludes the study.

2. Methodology

2.1. Control transfer based on uncertainty

The DRL agent’s control is modeled as a Markov decision process (MDP) (�, �, �, �, �).

Using the MC-dropout method [10], we measure the uncertainty of the machine’s 

decision am, allowing the algorithm to output both the decision and its uncertainty [11].

Equation 1 describes how to calculate the uncertainty of the decision, where �� ∼�(�|
�:�
�, ���:�
�) represents the probabilistic network parameters.

�[��] ≈ �� � ���(
)���� (1a)

�[(��)���] ≈ �� � [�
�� + ���(
)����(
)]���� (1b)

� = Var[��] = �[��� ��] − �[��]��[��] (1c)

In the interaction between DRL and the environment, the agent’s strategy generates 

actions to explore the environment. Given a DDQN deep reinforcement learning agent, 

the strategy output is [12]:

����� = arg ��!" #(
�, �; �) (2)

When the agent's decision uncertainty �� (equation 1) exceeds a predefined 

threshold, a human expert intervenes to ensure safety. This mechanism—referred to as 

control transfer—allows the system to alternate between autonomous agent decisions 

and human interventions based on real-time uncertainty levels.

�� = $arg ��!" #(
�, �; �)
��%

�� < &�� ≥ & (3)
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Among them, ��% represents the human expert’s decision. If �� < & , the agent’s 

uncertainty is within an acceptable range, and the agent makes the decision. If �� ≥ & ,

uncertainty is too high, requiring human intervention. The resulting interaction tuple is

stored in the experience replay buffer, where both human and machine actions are saved 

together, along with the agent’s decision uncertainty for future use:

* ← .� = (
�, ��, /�, 
�0�, ��) (4)

2.2. Dynamic-weight experience replay

After establishing the mechanism for control transfer between agent and human 

decisions, we now focus on the learning process. We observe that machine self-

exploration samples triggering human intervention are less effective for learning than 

human-guided samples. Thus, the learning weight of self exploration samples should be 

reduced, while human-guided samples should be prioritized. Although this difference is 

underappreciated in existing approaches, it provides new perspectives for more effective 

use of human-guided data.

Based on this, we propose a dynamic weighted experience replay mechanism, which 

adjusts the learning priority of different experiences based on their associated uncertainty. 

Human-guided experiences are given higher priority to enhance learning efficiency, 

while machine-generated experiences with high uncertainty are given lower priority.

Figure 1. Uncertainty-based Dynamic weighted experience replay for Human-in-the-loop DRL.

A weighting function is created which maps the uncertainty level �� of each

experience tuple to a weight, meeting these conditions:

� Assign lower weights to machine decisions with high uncertainty.

� Increase weights for human-guided experiences to enhance learning.

� Normalize the final weights so their sum equals one, ensuring consistency.

In the experience buffer, let 1� be the set of experiences corresponding to machine

-environment interactions, with 2� entries, and 13 be the set of experiences correspond

ing to human-environment interactions, with 23 entries. The design weight function is:
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(5)

Proof. For the case �� < & , the sum of all these weights can be expressed as:

B
   ��
�2�� ��
��∈�A

   
2� + 23�∈�A = � ��
�2��∈�A� ��
�(2� + 23)�∈�A

Since the numerator denominator divides both ∑ ��
��∈�A , the sum of this part is 1.

Dividing this result by 2� + 23,we get 
EAEA0EF.For the case of �� ≥ &, the weight of each

experience is (2� + 23)
�, so the sum of this part is:

Add the two parts together at the end:2�2� + 23 + 232� + 23 = 2� + 232� + 23 = 1
That is ∑ 4(��)�∈(�A∪�F) = 1 , which satisfies the third condition.∎
During learning, 2�, 23 represent the fixed ratio of human to agent decision data in 

the experience buffer. Carefully analysing the formula (5), for humans, it is usually 

assumed that the experience gained by individuals are not similar and can be considered 

as uniformly distributed, while the agent’s learning weight 4(��) decreases as 

uncertainty �� increases, reflecting the need for lower weights on uncertain agent 

decisions. This fulfils the first two conditions.

By choosing the appropriate parameter & , machine decision weights are kept 

smaller than those from human interactions. These weights are dynamically adjusted 

based on real-time performance. The dynamic weighting function is then applied to the 

loss function to improve gradient descent and update the Q-network parameters.

KLM = 4(��) ⋅ K� = 4(��) ⋅ 1O B(/� + ���!"P #(
�0�, �Q; �
) − #(
�, ��; �))R    S
���

(6)
2.3. Workflow

As shown in Figure 1, the workflow of the method is as follows: The environment

provides initial observation data to the DRL agent, which generates an action ����� and

its uncertainty �� . When �� ≥ & , the human intervenes with an action ��% .The DRL

agent and human then determine the final action �� through an interactive control

mechanism 2.1, which is applied to the environment. Interaction data, including state
� ,action ��(�����/��%), reward /� , next state 
�0� , and uncertainty �� , are stored as

tuples in the experience replay buffer. The agent updates its strategy using data from the

experience replay.
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3. Experiments

3.1. Experimental settings

This chapter uses OpenAI’s Lunar Lander (Figure 2) as a simulation to verify the 

effectiveness of the proposed algorithm. The objective is to control the lunar lander to 

touch down in a designated area without crashing. The action space consists of four 

discrete options: no action, left engine, main engine, and right engine. Each episode lasts 

up to 1000 steps, with failures penalized by -100 points and successful landings rewarded 

with 100 points. A task is considered complete when the average reward reaches 200 

over 100 trials.

The central assumption is that human operators make optimal decisions and act to 

maximize their benefits. During training, once human become familiar with the task, the 

agent explores and updates its strategy. We will evaluate learning performance 

improvements and associated labor costs by comparing three methods: UDWER, PHIL-

TD3 [3], and DDQN. Metrics include cumulative returns, success rates, crash rates, and 

the human guidance needed.

Figure 2. OpenAI Lunar Lander environment.

3.2. Discussions of experimental results

As shown in Figure 3, UDWER performed well throughout the training process, 

converging quickly and obtaining higher average returns for most of the time, while 

fluctuating less. PHIL-TD3 converged faster but had lower returns and more fluctuations. 

DDQN, in contrast, had the slowest convergence speed.

Figure 3. Return within 95% confidence interval.
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A successful and safe landing is crucial for game success. As shown in Figure 4, 

UDWER quickly achieved a high success rate and low crash rate, stabilizing after 400 

rounds (Figure 4(a)). PHIL-TD3 and DDQN showed a fluctuating rise or fall, which was

slow and less stable.

(a)Success rate                                                           (b) Crash rate

Figure 4. Comparison of task completion.

Table 1 indicates UDWER had the highest win rate (84.85%), followed byPHIL-

TD3 (74.33%) and DDQN (70.05%). While PHIL-TD3 had the lowest failure rate

(8.30%), UDWER (9.00%) was more efficient overall, completing tasks with fewer 

timeouts. DDQN had the highest failure rate (11.45%). Overall, UDWER outperformed 

the others in task efficiency and success rate.

Table 1. Comparison of algorithm task completion.

win overtime lose

UDWER 3394 246 360

PHIL-TD3 2973 695 332

DDQN 2802 740 458

Figure 5 compares human guidance costs between UDWER and PHIL-TD3 during

the early stages of training. Both methods rely on human guidance to prevent unsafe 

actions, but differ in how they leverage it. During the 35-minute task, UDWER used 

human guidance in 32.9% of interactions, 8.2% lower than PHIL-TD3, showing more

efficient use of guidance data. UDWER’s efficiency comes from its uncertainty-based 

approach and dynamic weight experience replay, which reduces unnecessary

interventions and integrates human input more effectively.

Figure 5. Comparison of human guidance costs in the early stages of training.
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4. Conclusion

This paper introduces an Uncertainty-based Dynamically Weighted Experience Replay 

method tailored for Human-in-the-loop Deep Reinforcement Learning. Experimental 

results demonstrate that our approach effectively reduces the need for continuous human 

intervention while improving sampling efficiency. Our approach shows great potential 

for applications in areas such as autonomous driving and robotics.

Future research will focus on applying this approach to real-world scenarios and 

exploring its scalability in larger, more complex systems. Another key direction is the 

introduction of adaptive thresholds for human intervention, especially in environments 

with significant complexity variations, to improve decision-making efficiency.
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