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Abstract. The rapid increase in distributed photovoltaic (PV) generation worldwide 

demands more efficient large-scale modeling methods. This study investigates an 

automatic modeling technique for low-voltage distributed PV network topology 
based on ledger information. By analyzing PV system ledger data, we construct and 

automatically generate the topology model using automated algorithms. Our data-

driven method and complex network theory-based algorithm improve system 
resilience and operational efficiency. Experimental results validate the effectiveness 

of our approach. Future research will focus on optimizing these algorithms and 

evaluating their applicability across various scenarios to support optimal PV system 
regulation and control. 
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1. Introduction 

With the global increase in demand for renewable energy and heightened awareness of 

environmental conservation, photovoltaic (PV) power generation plays an increasingly 

important role in the energy sector as a clean and renewable energy source[1]. 

Distributed PV systems are widely utilized in urban, rural, and industrial areas due to 

their high flexibility, short construction cycle, and lack of pollution. According to reports 

from the International Energy Agency (IEA)[2], the installed capacity of distributed PV 

generation is continually growing worldwide and is expected to maintain a rapid growth 

trajectory in the future[3]. 

The operation of photovoltaic (PV) power plants requires a highly reliable electric 

communication network[4]. Precise analysis of ledger data enables the assessment of 

operational maintenance quality and informs policy-making for management[5]. 

However, distributed PV plants are characterized by complex structures, decentralized 

deployment, and heterogeneous equipment, resulting in extensive ledger and alarm data. 

Conventional data analysis methods often struggle to handle such diverse and 
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voluminous data[6]. Therefore, researching how to leverage big data processing 

techniques for analyzing ledger data is crucial in providing significant support for the 

operation and maintenance management of electric communication networks[7]. 

The contributions of this paper are as follows: 

a) We have proposed an automatic modeling technique for low-voltage 

distributed photovoltaic (PV) network topology based on ledger information, 

filling a gap in existing research in this field and offering a new approach and 

method for PV system topology modeling. 

b) We have designed and implemented an automated modeling algorithm 

capable of generating a system's topological model based on the ledger 

information of photovoltaic (PV) systems. This algorithm achieves the 

automation and intelligence of PV system topology modeling. 

c) The effectiveness and feasibility of the proposed algorithm were validated in 

practical photovoltaic (PV) systems, providing a new technical approach for 

the operation and management of PV systems with promising application 

prospects and practical value. 

2. Related Work 

2.1. Ledger information 

The ledger information in distributed energy systems, such as operational data and 

equipment information of photovoltaic systems, serves as a crucial foundation for 

achieving intelligent management and optimizing system operations [8]. By observing 

existing research, we can gain a clear understanding of the application and value of ledger 

information in distributed energy systems. 

The operational data of photovoltaic (PV) systems includes parameters such as PV 

power generation, voltage, and current, enabling real-time monitoring and evaluation of 

system performance [9]. The approach proposed by Liu et al. achieves real-time 

monitoring and analysis of PV system operational data [10]. This method utilizes 

statistical analysis of PV generation and voltage data to achieve real-time tracking of 

system operational status and anomaly detection. 

The photovoltaic equipment information, including component models, installation 

dates, and maintenance records, is crucial for the management and maintenance of 

photovoltaic systems [11]. The management strategy proposed by Chen et al. integrates 

photovoltaic equipment information with operational data to achieve intelligent 

management and preventive maintenance of PV system equipment [12]. Through regular 

updates and analysis of equipment information, this strategy enhances the reliability and 

stability of photovoltaic systems. 
The comprehensive utilization of photovoltaic system operational data and 

equipment information enables comprehensive monitoring and evaluation of system 

operational status [13]. The method proposed by Xu et al. leverages a ledger information 

database, integrating operational data and equipment information of photovoltaic 

systems to achieve real-time tracking and intelligent scheduling of system operational 

status [14]. Through comprehensive analysis of system operational status, this method 

enhances the operational efficiency and reliability of photovoltaic systems. 

From the comprehensive studies above, it is evident that ledger information holds 

significant application value and development prospects in distributed energy systems. 
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Future research can further explore methods for mining and utilizing ledger information 

to enhance the intelligence and operational efficiency of distributed energy systems [15]. 

2.2. Topology modeling of photovoltaic network 

The topology modeling of photovoltaic networks is a key step in achieving system 

optimization and operational management, and various methods and technologies have 

been applied in this field. Through a review of existing research, we can gain a 

comprehensive understanding of the methods and techniques previously used for 

photovoltaic network topology modeling, as well as their limitations and areas for   

improvement. 

The traditional network topology modeling methods are mainly based on power 

system theory and network analysis techniques, constructing network topology models 

through the connection relationship between nodes and lines [16]. These methods include 

models based on node degree distribution, small world networks, random networks, etc., 

to preliminarily describe and analyze the topological characteristics of photovoltaic 

networks [17]. However, these methods often overlook the specificity of photovoltaic 

systems and cannot accurately reflect the actual operating conditions of photovoltaic 

systems. 

In recent years, complex network theory has been introduced into photovoltaic 

network topology modeling to address the limitations of traditional methods [18]. 

Complex network models include scale-free networks, small world networks, modular 

networks, etc., which can better describe the relationships and topological features 

between nodes in photovoltaic systems [19]. However, these methods still involve 

simplification of photovoltaic system characteristics and differences between theoretical 

models and actual situations. 

With the development of data science and machine learning technology, more and 

more research is adopting data-driven methods to model the topology of photovoltaic 

networks [20]. These methods utilize a large amount of operational data and ledger 

information to achieve accurate modeling and prediction of photovoltaic networks 

through data analysis and machine learning algorithms [21]. However, data-driven 

methods require high data quality and model interpretability, and have a strong 

dependence on data quantity and quality. 

Based on the above research, it can be concluded that modeling the topology of 

photovoltaic networks is a complex and critical issue, and current methods and 

technologies have their own advantages and disadvantages. Future research can continue 

to explore methods based on complex network theory and data-driven approaches, 

combined with the actual situation of photovoltaic systems, to achieve accurate modeling 

and optimization of photovoltaic network topology [22]. 

3. Our Solution 

3.1. Ledger Data Preprocessing 

For better modelling of low voltage distributed PV networks, the ledger information 

needs to be processed using preprocessing techniques. Assume the original data domain 

is represented as {��, ��, … , ���}, where ��denotes the dimensionality of the original 

Z. Li et al. / Automatic Modeling Technology of Low-Voltage Distributed Photovoltaic Networks642



data domain. The initial step involves preprocessing the raw data. Given the severe 

multivariate and heterogeneous nature of the data, attribute reduction is a critical aspect 

of the preprocessing stage. Let A  {��, ��, … , ���} be a vector representing the desired 

attributes. The goal is to achieve all desired attributes through data preprocessing by 

defining an attribute reduction method, denoted as sig. Data cleaning will yield the 

following result: 

{	�, 	�, … , 	�
} = ��{��, ��, … , ��} 

where �� represents the dimensionality of the important attribute data domain. The 

subsequent sections will detail the specific implementation of attribute reduction, 

denoted by the method sig.  

To define the symbol ���  as a derived algorithm from the Apriori data mining 

algorithm, this paper introduces an attribute association degree C as a convergence 

constraint. Thus, the data mining problem can be summarized by the following 

expression: 

�����, ���, ⋯ , ����� = �����	�, 	�, ⋯ , 	�
��  
�. �. su p ������, ���, ⋯ , ������ > � 

where �����, ���, … , ����� denotes the distribution and association relationship of 

the attribute values ���, ���, … , ����  and ��! ������, ���, … , ������  represents the 

support of this distribution and relationship. The entire analysis process is illustrated in 

Figure 1. The details of the model are discussed in the next few subsections. 

 

Figure 1. Process of analysing inspection work based on big data technologies. 

During the preprocessing phase, data auditing, correction, and cleaning are essential 

to ensure data quality. The steps are as follows: 

(1) Data Auditing: Initial data auditing   manual operations such as data 

extraction, verification, and review. Audit rules are then established for software 

auditing. The software utilizes these rules to perform rapid data audits. 

(2) Data Correction: Errors in the data are addressed following relevant 

business processes. To avoid directly altering the original data, corrections are 

classified based on the data type and the cause of the errors, ensuring a more 

systematic approach to rectification. 

(3) Data Cleaning: Data cleaning targets primarily two types of erroneous 

data: missing values and outliers. Missing values are managed through deletion 

strategies, while outliers are corrected using re-filling strategies to ensure data 

integrity. 
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3.2. k-Connected Topology Construction

To efficiently identify critical nodes in the network and to ensure that network 

connectivity and stability are maintained when building connected topologies locally and 

across clusters. Determining critical nodes within each cluster is essential for 

constructing a local k-connected topology. In this paper, a method based on Depth-First 

Search (DFS) is employed to identify critical nodes.

Figure 2. Depth-First Search

During the Depth-First Search process, the order in which node � is traversed is 

denoted as "�#(�), and the lowest ancestor node that can be reached from node u or its 

subtree via a non-parent-child edge is represented by low(u). The formula for calculating 

low(u) is given by:

$%&(�) = ' min{$%&(�), $%&(*)} , (�, *) represents a tree edge
min{$%&(�), "�#(*)} , (�, *) represents a tree edge

where (�, *) is a tree back edge and * is not the parent of �.

Once the local k-connected topology within each cluster is constructed, cluster 

heads are selected to establish inter-cluster k-connected topology. The construction of 

inter-cluster k-connected topology among cluster head nodes also follows the Harary 

graph's concept. During the construction of inter-cluster k-connected topology and when 

transmitting data collected from the intra-cluster information, cluster member nodes can 

enter a sleep phase to conserve energy.

4. Experiment

4.1. Experiment Design

Using the Matlab simulation platform, we simulated and analyzed the performance 

of the resilience topology construction method proposed in this paper. Bi-connectivity is 

a fundamental requirement for network resilience. On the other hand, when node 

connectivity exceeds 4, it not only leads to excessive communication energy 

consumption but also increases system motion constraints. Therefore, we use the 

topology of cluster heads with 3-connectivity as an example to verify the effectiveness 

of our algorithm. The monitored area size is set to 100 m × 100 m with 40 nodes, each 

having a communication radius of 30 m. There are 4 clusters, and the topology of cluster 

heads is designed to be 3-connected.

In this paper, we use node betweenness centrality, average connectivity of the 

network, and network robustness to compare and analyze changes in the resilience 

performance of the network within each cluster before and after removing critical nodes.

pp y y
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4.2. Experimental Results Presentation and Analysis 

4.2.1. betweenness centrality assessment 

The betweenness centrality +-  of node !  reflects its influence within the entire 

system. It is defined as the ratio of the number of shortest paths in the network that pass 

through node p to the total number of shortest paths. The formula for betweenness 

centrality +- is: 

+- = / 0-1
01

(�, 2 ≠ !, � ≠ 2)
(0,1)

 

�- =
2 ∑ 0-1

01(0,1)

"(" − 1)  

 
Figure 3. Distribution of node betweenness centrality in the network before removing the critical nodes 

within the cluster. 
The distribution of node betweenness centrality in the system before removing the 

critical nodes is shown in Figure 3. In Figure 3, the node numbered 37 has the highest 

betweenness centrality. This is because communication between nodes on either side of 

the critical node must pass through it. As shown in Figure 4, the betweenness centrality 

of the critical nodes 22, 30, and 38 has decreased, while the betweenness centrality of 

nodes 16, 8, 28, 4, and 33 has correspondingly increased 

 
Figure 4. Distribution of node betweenness centrality in the network after removing the critical nodes 

within the cluster. 

4.2.2. network robustness evaluation 

Network robustness is used to measure the average impact on the connectivity between 

remaining nodes after the removal of any node. It is defined as the ratio of the number 

of node pairs that remain connected after the removal of any node to the total number of 

node pairs in the network. Suppose the remaining set of nodes in the network after the 

removal of a certain node is 78. The formula for calculating network robustness "9 is as 

follows. 
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"9 = 1
"(" − 1) / / $01

1:00∈<?
 

where " represents the total number of nodes in the network, �01  represents the 

number of connected node pairs in the network. If there is a path between nodes � and 2, 

then �01 = 1; otherwise, �01 = 0. 

4.2.3. average connectivity evaluation 

The degree of a node reflects its impact on the network's connectivity, typically 

referring to the number of edges directly connected to a given node. The formula for 

calculating the degree A0 of node � is as follows. 

A0 = / �01  

If node � and node 2 are directly connected, then �01 = 1; otherwise, �01 = 0. 

The average degree (or average connectivity) � of a network is the average value 

of degrees of all nodes in the network. The formula for calculating � is as follows. 

� = ∑ A0�0B�
"  

The performance comparison analysis of the network before and after removing the 

critical node is shown in Table 1. Initially, the network is looser and there may be some 

critical nodes acting as bridges. However, removing these critical nodes improves the 

overall robustness of the network as more connectivity paths are formed between nodes 

within the clusters, although connectivity between clusters decreases. This means that 

even though the network is divided into more small clusters, the connectivity within each 

cluster is tighter, thus improving the overall robustness. 

Table 1. Network Performance Comparison Analysis. 

Performance 

metrics 

Including 

critical nodes 

Removing 

critical nodes. 

Improvement rate 

(%) 

average 

connectivity 

4.90000 5.40000 9.26 

Robustness 0.18619 0.26276 29.14 

5. Conclusion 

This study presents an innovative approach to automatically model low-voltage 

distributed network topology in PV systems using ledger information. By leveraging 

data-driven methods and complex network theory, an automated algorithm was 

developed, enhancing system resilience and operational efficiency. The accuracy of 

ledger information is crucial for effective modeling, and automated algorithms 

streamline the process. Future work should focus on optimizing the algorithm, extending 

its application to other energy networks, and further refining data-driven methods to 

improve PV system performance and reliability. 
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