Information Modelling and Knowledge Bases XXXVI 327
Y. Kiyoki et al. (Eds.)

© 2025 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241589

Using MAS for a Sketch Map Creation

Marek MENSIK, Mat&j TOMSU, Petr RAPANT, Adam ALBERT,

VSB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava,
Czech Republic

Abstract. Knowledge about the real world is often recorded in plain text, such
as posts on social networks, descriptions in various guides, etc. These messages
include spatial information that can be extracted using natural language process-
ing methods. The extracted information can then be represented as a planar graph,
which can be further transformed into a topological map using additional informa-
tion describing the area. This paper outlines an algorithm that takes a given planar
graph as input and uses a multi-agent system to place individual points in 2D space,
creating a topological map respecting all edge directions given in the narratives.

Keywords. Spatial data, Planar graph, Sketch map, Map topology

1. Introduction

In this paper, we build upon [1], where we outlined the algorithm for creating a topo-
logical map by placing points representing locations obtained from narratives into a 2D
space. Narratives are recorded in natural language, and it is necessary to transform them
into a formal language for better machine processing.! The process of transforming from
natural language to the formal language using TIL constructions is outlined in [2], and it
is not the aim of this paper.

The process of creating a sketch map from plain text data consists of three steps: (i)
identification of spatial entities (named entity recognition) and their spatial relations by
natural language processing, (ii) creation of a planar graph that captures identified spatial
entities and their spatial relations, and (iii) conversion of this graph into a topological
graph and topological map. This paper presents the first results related to the third step,
which was realized using the multi-agent approach.

The entire paper is structured as follows: In the following Chapter 2, a general strategy for
the utilization of multi-agent systems (MAS) is described.? In Chapter 3, We describe the
system designed by us, including its components and the rules based on which individual
agents act and communicate; and in Chapter 4, we showcase the system’s functionality
using a specific example.

I'See more in [2], [3].
2More about MAS can bee seen in [4].

328 M. Mensik et al. / Using MAS for a Sketch Map Creation

2. MAS Strategy

MASs is a field of artificial intelligence and computer science study focusing on coordi-
nating autonomous agents to achieve a common goal or solve complex problems through
interaction and cooperation. The research in this domain spans various aspects, includ-
ing consensus protocols, adaptive control, event-triggered mechanisms, communication
strategies, and fault tolerance, among others.

MAS:s are applied across diverse fields, showcasing their versatility and effectiveness in
addressing complex, dynamic, and distributed problems. Notable examples include the
management of mobile robots and smart grids [5], as well as the optimization of oilfield
pipeline networks [6]. In healthcare and medical systems, MASs facilitate object de-
tection/tracking, control/assistance, security systems, and human-care systems, thereby
improving service delivery and operational efficiency [7]. In process industries, such as
wastewater treatment, MASs are utilized for process monitoring, helping to manage and
optimize treatment processes to ensure environmental compliance and operational effi-
ciency [8].

The deployment of agents can be addressed in several ways. One option is to design
an algorithm for computing the positions of individual agents, and the other is to leave
this computation to the individual agents within the MAS, solving the problem in a dis-
tributed manner. From our perspective, the latter solution is more robust, as it deals only
with the behavior of individual agents, and a topological graph emerges emergently by
placing individual agents in positions that respect the absolute directions.

The general principle of operation of a multi-agent system for creating a topological
graph can be described as follows:

Start conditions:

» Each agent knows its neighbors and the absolute directions of its connections with
these agents. The absolute directions and their numbering are described below.

* For the optimization of topological graph creation, it is advantageous when agents
are inserted into the system along individual bounding circles (Definition 1). This
way, each agent has exactly two neighbors.

System behaviour:

1. The first agent is placed in the MAS and assigned an absolute position at the origin
of the coordinate system ([0,0]).

2. Another agent is placed in the MAS space.

2.1 If none of the neighboring agents is present in the MAS space, the agent is
placed at the origin of the coordinate system ([0,0]), and the MAS returns to
point 2.

2.2 If one of the neighboring agents is present in the MAS, the new agent inquires
about its position. Based on the knowledge of the absolute direction to this
agent, the new agent calculates its position, and the MAS returns to point 2.

M. Mensik et al. / Using MAS for a Sketch Map Creation 329

2.3 If two neighboring agents are present in the MAS, the agent determines their
positions, takes the position of the first agent, calculates its own position, and
determines the current absolute direction of its connection with the second
agent. If it corresponds to the known absolute direction, the MAS returns to
point 2.

2.4 If the determined absolute direction does not correspond to the known abso-
lute direction, the agent determines its position by deriving it from the second
agent. The agent then prompts the first agent to adjust its position to preserve
the known absolute direction between them.

2.5 The first agent adjusts its position.

2.6 The first agent verifies the absolute directions to its potential neighbors, and
if they all match the known absolute directions to them, the MAS returns to
point 2.

2.7 Otherwise, it prompts the first of the conflicting neighboring agents to adjust
its position so that the absolute direction towards it aligns with the known
absolute direction and proceeds to point 2.6.

Definition 1 (bounding circle BC). Let G be a planar graph and C be a graph circle. If
each edge of the circle C has the maximal number Cn calculated by the equation:

Cn = ((RDN° —RDN™ +8) mod 8) (1)

Then C is called the bounding circle.?

Absolut directions are fundamental elements in map sketching. We encode the direc-
tions from the input data using numbers.* The mapping of relative directions into natu-
ral numbers is shown in Table 1, which shows the basic eight directions that we obtain,
i.e., (F — forward, FL - forward-left, L — left, BL — backward-left, B — backward, BR -
backward-right, R — right, FR — forward-right).

RD Encoding RD Encoding
F 0 B 4

FL 1 BR 5
L 2 R 6

BL 3 FR 7

Table 1. Directions and their numerical representation.

3RDN" is Relative Direction Number (RDN) of outgoing incident edge and RDN™ represents RDN of the
edge entering into the node.
4See more in [1].

330 M. Mensik et al. / Using MAS for a Sketch Map Creation

A [O] (+y)

[1](—x,+y) [7](+x,+y)
2)(~x) 6](+x)
[3](—)6, _y) [5](+xa _y)

[4](-y)

Figure 1. Absolute directions.

The absolute direction is related to a specific graph and is not aligned with the cardinal
directions (North-South, East-West). In the middle of the compass rose, you can imagine
an agent approaching from direction 4, then its direction F is labeled with the number
0. Because each agent can arrive at a given location from a different direction, a unifica-
tion of directions through rotation occurs before graph rendering, ensuring a consistent
absolute direction for all agents.’

3. Description of our Multiagent System.

To implement the proposed strategy, we chose a multi-agent system containing three
types of agents: Gate Keeper, Broker, and Node agent.

The Gate Keeper is the unique entity within this system. It is the controlling element for
the entry of Node agents into the system. Its task is to coordinate the addition of Node
agents based on predefined bounding circles contained in its list. Additionally, the Gate
Keeper keeps list of agents that have already entered the system to prevent the re-entry
of the same agent. In this way, the Gate Keeper ensures that each Node agent is added to
the system exactly once.

Therefore, the Gate Keeper has a pool of all agents, each with an already assigned unique
identifier, such as the node number it represents. The Gate Keeper selects individual
agents from this pool for entry into the system based on the order of the inserted bounding
circle..

The Broker is another agent in the system, and like the Gate Keeper, there is only one
Broker. It stores the complete topology of bounding circles of nodes in a labeled planar
graph, where the labeling represents the direction between individual points. The Broker
conveys this information to the newly arrived Node agent and waits until all Node agents
arrange their positions to preserve the desired directions between them, stabilizing the
system. The Broker then prompts the Gate Keeper to admit the next agent.

This system’s last type of agent is the Node agent. This type of agent represents points
on the bounding circle, and its task is to establish connections with neighboring Node

5The description of how directions are unified can be found in [1].

M. Mensik et al. / Using MAS for a Sketch Map Creation 331

agents to create a predefined topology while preserving the directions between them.
After connecting, the Node agent sets, or adjusts, its coordinates to represent the correct
point in the defined topology. Depending on the solution’s state regarding positions, this
agent can take one of four states: WAITING, MOVING, PLACED, UNPLACED. For
better orientation and understanding, agents will be further described by symbolic names
(e.g., AgentA, AgentB, etc.).

Creating the topological graph begins with dividing Node agents into circles, which we
then try to place gradually. The first Node agent added is placed at the origin (0,0) and
is in the PLACED state. The next agent added to the system (being in the MOVING
state) and adjacent to the first one in a given direction calculates its position relative to
the first Node agent and places itself. The calculation is done through communication
with the placed agent, inquiring about its coordinates. This is possible because the Node
agent attempting to place itself always receives information from the Broker, which has
an overall overview of the situation, about neighboring agents. With this information,
the Node agent can communicate with them, calculate its position based on the acquired
data, and place itself (changing its state to the PLACED state). If a Node agent does not
have any neighboring agent in the system from which to calculate its position, it will wait
in the system, meaning it will not be placed (remaining in the UNPLACED state).

Whenever a new Node agent attempts to place itself at the calculated position, it must
check whether the path between it and its neighbor intersects with another edge connect-
ing already placed agents.

When the incoming Node agent has two neighboring agents between which it must be
placed, it must first calculate its position as an intersection based on the positions of the
neighboring nodes and the directions to them. The calculated position is then submitted
to the Broker to verify any path collisions. The Node agent places itself at the calculated
position if there is no collision. If a collision occurs during the addition of a new Node,
a request is sent to the already placed neighbor to adjust its position, and the Node agent
tries to place itself again.

This is how Node agents communicate and adjust their positions to avoid path collisions.
In cases where a neighbor, or both neighbors, cannot move for some reason, the new
Node remains unplaced and waits (is in state UNPLACED). As mentioned, the Broker is
responsible for checking intersections. It knows all nodes in the system, their positions,
and directions, allowing it to determine whether the paths between nodes intersect or not.

In this way, distances and positions between individual Node agents are adjusted, result-
ing in a topological graph that corresponds to the topology of the input planar graph at
the end.

3.1. Rules of behavior for agents in the system.

In this chapter, we summarize the behavior of individual agents. We do not provide de-
tailed mathematical background here to avoid overwhelming the reader with technical
details. When it comes to computing the movement of agents on a 2D plane, basic mathe-
matical formulas and directions are utilized to determine the direction in which the agent
should move.

332 M. Mensik et al. / Using MAS for a Sketch Map Creation

3.1.1. GateKeeper

The Gate Keeper deploys Node-type agents into the system and checks whether a given
Node is already present in the system. It has stored bounding circles to which individual
Node agents are added.

* The first Node enters the system as stationary.
* If a Node wants to enter the system, it must be there exactly once.
* If a message about a stabilized system comes from the Broker, another Node can
be added.
3.1.2. Broker

The Broker has stored bounding circles, their topology, and directions between nodes.
It monitors the active neighbors of new Node agents on the specified circle. It validates
edges between Node agents to prevent intersections.

* If the first agent wants to position itself, the Broker assign to it the position (0,0).

* A message with the name and address of the new Node is received. The Broker
stores it and sends the Node a list of active neighbors on the circle.

* A message is received from the Node with its state (PLACED/UNPLACED). The
Broker saves the state and waits until all Node agents are in this state. Then, it
sends a message about the stabilized system to GateKeeper.

* If the Broker receives two positions from any Node agent, it checks all paths be-
tween active agents. It determines whether the path between these two positions
intersects with another path.

3.1.3. Node

The Node agent enters the system only with its name and address. It obtains additional
information from the Broker or its neighbors.

* When entering the system, the Node contacts the Broker with its address and name.
* If the Broker sends a list of neighbors, the Node saves them and contacts each.

* If the response from the neighbors includes positions, the Node calculates its po-
sition and sends it to the Broker for validation.

« If the Broker responds with VALID, the Node places itself at the calculated posi-
tion.

o If the Broker responds with INVALID, the Node sends a message to one of its
neighbors to adjust its position.

* If a message is received from this neighbor stating that the adjustment was not
possible, the Node sends a request to another neighbor to adjust its position.

* If messages from all neighbors indicate that the adjustment was impossible, the
Node sets its state to UNPLACED and sends it to the Broker.

M. Mensik et al. / Using MAS for a Sketch Map Creation 333

e If it receives a message from its neighbor to adjust its position, the Node moves its
position in the specified direction from its second neighbor.

Each agent utilizes a set of rules to choose actions and communicate with other agents.
Thanks to this division, adding an agent to the system is straightforward. The only lim-
itation arises from the need to verify the entire circle that contains the respective agent
whether it is not necessary to adjust already placed nodes.

Communication

Communication is crucial in a Multi-Agent System (MAS) because without it, interac-
tions among individual agents would vanish, and the system would degrade to purely
reactive agents. The Agent Communication Language (ACL) is standardized to transmit
data and physical messages. It is a structure composed of various components that spec-
ify the syntax and meaning of the message content, message parameters such as sender
and receiver, and the type of communicative intention.

Sample message between agents when sending positions to each other:

"type": "position information",
"sender": "AgentA",
"receiver": "AgentB",
"content": {

"X": O,

"y": 2

4. Case Study

In the following example, the creation of a map is demonstrated, consisting of three
circles that are successively added, thereby forming a topological graph. The process of
creating the topological graph is illustrated in the images below.

The input for this example is a list of circles. The notation of the circle list is in a format
that always includes the number of the circle; below is a list of neighbors in that circle
and a number C expressing the absolute direction from Node A to Node B. The triplet
of data is written in the form ([A, B], C). An overview of absolute directions is shown in
Figure 1.

Bounding circles:

co ([b,m], 4) ([1,k],1) ([b,c],3) ([k,gl,2)
(la,pl,7) ([m,1],2) ([k,q91,2) ([3,d1,0) ([1,p1,3)
([p,11,7) ([i,h],2) (lg,el,0) C2: ([1,k],1)
([o,1],3) ([h al,0) (e, 31,0) ([p,al,3)
([c,0],3) Cl: ([o,1],3) (la,£],0)
([b,c],3) ([d,b],6) ([c,0],3) ([£,91,0)

%More information about ACL can be found in [9],[10], [11].

334 M. Mensik et al. / Using MAS for a Sketch Map Creation

According to the input of circles, GateKeeper will create a list of agent names, which
will be sent to the system to be placed. In this example, the resulting list is as follows:
la.p.Lo,c,bomihdkgejf].

In the system, the first agent, denoted as a, is added, and it is stationary with the position
(0,0) (see Fig. 2a). The system stabilizes, and GateKeeper allows the entry of another
agent, p. It sends its address and name to the Broker. The Broker responds with a list of
active neighbors, in this case, the address of Node a, its name, and the direction to it.
Node p then contacts a and calculates its coordinates based on a’s coordinates and the
direction, resulting in (1,1) (see Fig. 2b). Node p sends these coordinates to the Broker
for validation. The Broker finds no collision, so Node p can be placed at the calculated
position. Another node agent, /, is added in the same way as p (see Fig. 2c¢).

(@) (b) (c)
Figure 2. Adding the first nodes.
GateKeeper step by step introduces additional agents into the system. These agents com-

municate with their neighbors and settle into calculated valid positions, as depicted in
Figure 3.

a

(d) ©)

Figure 3. Adding additional nodes.

M. Mensik et al. / Using MAS for a Sketch Map Creation 335

The description continues until the agent % (see Fig. 4a) joins the system. After connect-
ing, it realizes its neighbors are Nodes i, a. It attempts to calculate the intersection but
finds none. Therefore, i sends a message to Node i to move since Node « is stationary.
Node i moves away from Node m but encounters a collision with Nodes /, 0. Node i then
sends a message to m to move as well. This process repeats until a valid intersection ex-
ists for Node # at coordinates (0, -1) (see Fig. 4c). The first circle is drawn, and the pro-
cess continues for additional circles. The visualization of Node movements is depicted
in Fig. 4.

(@) (b) (©)

Figure 4. Node adjustments.

The system continues, and GateKeeper introduces additional nodes in the same manner.
In the case of Node j, Node d must move to create an intersection between d and e for the
placement of Node j (see Fig. 5d). After the movement (see Fig. Se), the final node agent
f calculates its intersection and settles onto it (see Fig. 5f). At this point, GateKeeper
has an empty list of agents, and there are no more Nodes to let them for placement. The
system is now complete.

g
a a a
h m h m h m
(a) (b) (©)
d L b d V d V V b
e s S ¢
9] g ©
f
P
a a
h m h h m
(@) (e) ®

Figure 5. Adding final nodes.

336 M. Mensik et al. / Using MAS for a Sketch Map Creation

The functionality of the proposed system was tested on a local machine, where each
agent shares the same IP address but differs only in the port number. As a result, com-
munication was not affected by physical network elements. Due to this setup, commu-
nication speed was in the range of milliseconds, and there were no losses of individual
packets. However, the system is configured so that each agent waits for a response or
acknowledgment of message delivery. Therefore, each agent waits for 50 milliseconds,
and if there is no confirmation of receipt or response, the agent repeats the message
transmission.

When running a multi-agent system on multiple machines, communication may take
longer. In such cases, agents wait for message confirmation in the order of seconds. The
agent resends the message if there is no response within that time frame. This adjust-
ment accounts for the potential latency introduced by communication across multiple
machines.

5. Conclusion

This paper outlines an algorithm that transforms a planar graph representing connec-
tions between places into a resulting topological graph. From the input data, we identify
bounding circles, which are progressively added to the draft and subsequently merged
into the overall topological graph. The entire process uses a multi-agent system, where
individual agents represent the graph’s nodes (places mentioned in narratives). Thanks
to communication among agents, the process is distributed, allowing for easy monitoring
of the construction of the entire sketch map. The system was implemented in the Python
programming language.

Acknowledgements

This research has been supported by a Grant from SGS No. SP2024/108, VSB - Technical
University of Ostrava, Czech Republic, “Application of Formal Methods in Knowledge
Modelling and Software Engineering VII”.

References

[1] Marek Mensik, Petr Rapant, and Adam Albert. Algorithm for generating sketch maps from spatial
information extracted from natural language descriptions. In Frontiers in Artificial Intelligence and
Applications, volume 380, pages 239-252, Amsterdam, 2024. IOS Press.

[2] Martina Cihalovd and Marek Mensik. Rules for converting natural language text with motion verbs
into til-script. In Frontiers in Artificial Intelligence and Applications, volume 364, page 159 — 168,
Amsterdam, 2023. IOS Press.

[3] Marek Mensik, Adam Albert, Petr Rapant, and Tomas Michalovsky. Heuristics for spatial data descrip-
tions in a multi-agent system. Frontiers in Artificial Intelligence and Applications, 364:68-80, 2023.

[4] Michael J. Wooldridge. Reasoning about Rational Agents. Intelligent Robotics and Autonomous Agents.
MIT Press, Cambridge, 2000.

[5] Boda Ning, Qing-Long Han, Zongyu Zuo, Lei Ding, Q. Lu, and Xiaohua Ge. Multiagent systems in
mobile robots and smart grids. IEEE Transactions on Industrial Informatics, 2023.

[6] Chuang Wang, Zidong Wang, Qing-Long Han, Fei Han, and Hongli Dong. Leader-follower-based par-
ticle swarm optimization algorithm for oilfield pipeline network. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2023.

(7]
(8]
[9]

[10]

[11]

M. Mensik et al. / Using MAS for a Sketch Map Creation 337

F. Derakhshan and Shamim Yousefi. Applications of multiagent systems in healthcare and medical
systems. International Journal of Distributed Sensor Networks, 2019.

Hongtian Chen, Oguzhan Dogru, S. K. Varanasi, Xunyuan Yin, and Biao Huang. Process monitoring in
wastewater treatment systems with multiagent systems. /IEEE Transactions on Cybernetics, 2024.

Fipa communicative act library specification. http://www.fipa.org/specs/fipa00037/
SC00037J.html, 2002. Accessed: 2024-02-01.

Ernesto German and Leonid Sheremetov. Specifying interaction space components in a fipa-acl interac-
tion framework. In Mehdi Dastani, Amal El Fallah Seghrouchni, Jodo Leite, and Paolo Torroni, editors,
Languages, Methodologies and Development Tools for Multi-Agent Systems, pages 191-208, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Marie Duzi, Martina Cﬂlalové, and Marek Mensik. Communication in a multi-agent system based on
transparent intensional logic. In Mendel 2011 : 17th International Conference on Soft Computing, pages
477-485, Brno, 2011. Vysoké uceni technické v Brné.

http://www.fipa.org/specs/fipa00037/SC00037J.html
http://www.fipa.org/specs/fipa00037/SC00037J.html

