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Abstract. To address the limitations of flexibility or efficiency of existing prompt-
ing paradigms in generating intermediate reasoning steps, this paper proposes an
reasoning framework LLM-AS, which innovatively combines the A* search algo-
rithm with the reasoning process of large language models(LLMs). LLM-AS uti-
lizes the efficient exploration capability of the A* algorithm and avoids the redun-
dant exploration of high-cost nodes, which significantly improves the search effi-
ciency and reduces the cost of invoking LLM. Meanwhile, through the self-improve
mechanism of LLMs, LLM-AS ensures the quality of the generated solutions while
minimizing model interactions. In addition, the flexibility of the A* search algo-
rithm enables LLM-AS to be applicable to diverse thought organization structures,
providing more possibilities for handling various tasks. We conducted experiments
on two complex tasks, game 24 and 8 puzzle, to compare the accuracy of the ex-
isting prompting paradigms and LLM-AS on both gpt-3.5-turbo and gpt-4.0. The
experimental results show that LLM-AS effectively improves the ability of LLMs
to solve complex tasks.
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1. Introduction

Recent advances in large language models (LLMs) have opened up more possibil-
ities for solving different types of problems in natural language processing [1–6]. Stan-
dard I/O prompts work for simple, single-step problems. CoT [7] and CoT-SC [8] im-
prove performance by generating intermediate steps but are limited to linear thought.
ToT [9] organizes thoughts in a tree structure, improving performance on complex tasks
but increasing invocation costs. The question arises: is it possible to reduce the cost of
invocation while guaranteeing the performance of LLMs in solving complex problems?

We propose LLM-AS, a reasoning framework for complex tasks that combines A*
search [10] with LLM reasoning. It enhances exploration efficiency by avoiding high-
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Figure 1. Comparison of our LLM-AS with other prompting paradigms.

cost nodes and exploring towards the target, reducing LLM invocation costs while im-
proving efficiency.

To minimize A* search risks, we use LLMs for self-review and correction. The
self-improve module optimizes solutions iteratively, enhancing quality of the generated
solutions while minimizing LLM interactions.

Incorporating the A* search algorithm offers flexibility as it can explore various
thought structures and allows intelligent heuristic design, adapting the reasoning frame-
work to more task types.

We conducted experiments with LLM-AS using gpt-3.5-turbo [11] and gpt-4.0 [12]
on two complex real-world tasks, Game 24 and 8 Puzzle, which shows that our LLM-AS
exhibits superior performance. It is an effective thoughts generation method and provides
new insights for solving complex problems with LLMs.

Our main contributions are as follows:

• We propose a new planning and reasoning algorithm by combining LLMs and A*
search, optimizing components for enhanced LLM reasoning.

• We propose a self-improve module to balance LLM invocation cost and solution
accuracy by iteratively optimizing solutions from a reasoning process integrating
A* search.

• We experimentally prove our reasoning algorithm’s effectiveness on complex
tasks, improving LLM performance for solving complex problems.

2. Background

2.1. Reasoning for LLMs

Prompts can enhance LLMs’ reasoning by guiding them to break down complex
problems into intermediate steps, mimicking human thinking [13, 14]. Each step’s out-
come can be organized in various structures [7, 9, 15–17], like linear chains or hierarchi-
cal trees (Fig. 1), related to the reasoning approach.

Input-Output (IO) Prompting. The I/O method is the simplest way to utilize
LLMs for task resolution. It only requires defining the task and problem as a prompt
input to the model, with the model’s output representing the solution.
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Chain-of-Thought [7]. The CoT method leverages the context-learning abilities of
LLMs by breaking a problem into multiple intermediate steps. It provides the model with
a prompt in the form of a triplet ¡input, intermediate steps, output¿, thereby guiding the
model through the problem-solving process.

Self-consistency CoT (CoT-SC) [8]. The CoT-SC method samples different rea-
soning processes to generate multiple solutions for a given problem and selects the most
consistent answer as the final solution from the model.

Tree-of-Thought (ToT) [9]. The ToT method organizes the thought nodes for
problem-solving in a tree structure. ToT allows for backtracking and foresight when nec-
essary to explore globally optimal solutions.

2.2. A* Search Algorithm

The A* search algorithm (1968) [10] is an efficient heuristic method using an eval-
uation function f (n) = g(n) + h(n), where g(n) is the actual cost to the current node and
h(n) estimates the cost to the target. This prioritizes exploring paths closer to the goal,
reducing unnecessary search space exploration and enhancing efficiency.

f (x) = g(x)+h(x) (1)

The A* algorithm is often used to solve path planning problems. Currently, there
are also efforts to apply LLMs to the traditional A* algorithm to address computational
and memory efficiency issues in path planning. [18]

2.3. LLMs self-improve

When dealing with complex and tedious tasks, human beings often complete a sim-
ple initial solution and then gradually make adjustments and refinements based on it.
LLMs can also improve the accuracy of their solutions by simulating such a way of think-
ing and conducting self-reflection [19, 20]. The self-reflection capability of LLMs refers
to the ability of the model to review, evaluate and improve its own output after generat-
ing it. This capability of LLMs not only further improves the quality of generation and
factual accuracy, but also maintains the original creativity of LLMs [21–23]. This ability
is often applied to improve the decision-making ability of agents [24]. And, some meth-
ods that can enhance the ability of LLMs to perform self-reflection are also currently
proposed [25] and can also be used as our future work to optimize the components in our
framework.

3. Methodology

We propose an inference strategy combining LLMs with the A* search to enhance
LLMs’ reasoning on complex problems, as shown in Fig. 2. In the following, we intro-
duce its components and workflow.

Initialization. In initialization, we define states (S), the set of executable actions
(A), and the state transfer function (δ : S × A → S). The initial state (s0) is added to the
open list for unexplored nodes, while the closed list for accessed nodes is initialized as
empty.
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Figure 2. The components and workflow of our LLM-AS framework.

Selection. The node with the lowest cost f (s) = g(s)+h(s) in the open list is cho-
sen, moved to the closed list. g(s) is the actual cost from the initial state to the current
state. h(s) estimates the cost to the goal (lower means closer).

Expansion and Evaluation. Successor states are extended based on action spaces
and checked against the closed list to avoid loops. Their g(s) and h(s) values are up-
dated based on the state transition costs. An accurate h(s) optimizes A* search perfor-
mance. For tasks which determining the heuristic function is challenging, we use LLMs
to compute h(s) using their internal knowledge.

Termination Conditions. The iterative process of selection, expansion, and evalu-
ation continues until termination condition T is met, improving answers and exploring
new possibilities. T can be set as follows:

• Reaching the goal state: For tasks with a clearly defined goal, this condition di-
rectly triggers the end of the search when the search reaches a preset goal state.

• Search constraints: To control computational resource consumption, limits on
search depth or the number of nodes visited can be set.

Review and Correction. After generating a solution through the reasoning pro-
cess of LLMs integrated with the A* search algorithm, the self-improve module is in-
voked. Initially, the path of thoughts is organized into structured input prompts accord-
ing to task execution steps, converting it into a text format understandable by the LLM.
converted into a text format understandable by the large model. Subsequently, the LLM
conducts a thorough review of the generated solution to identify potential logical errors
or inconsistencies [21–23]. Based on the prompts, if no errors are identified, the solution
is deemed final. Otherwise, the LLM outputs the steps where errors occur. Based on the
feedback from the model, iterative corrections are made to the preceding reasoning pro-
cess to continuously optimize the solution’s quality. Starting from the step where an error
is identified, subsequent steps are regenerated. This module exemplifies the complemen-
tary advantages of the LLM’s self-improve capabilities and the reasoning integrated with
the A* search algorithm, jointly driving the effective and efficient resolution of complex
problems.

X. Meng et al. / LLM-AS: A Self-Improve LLM Reasoning Framework630



Table 1. An overview of definitions for tasks

game 24 8 puzzle

Thought intermediate equations swap and the puzzle state after the move

State the remaining 1-4 numbers the number layout in the grid

Action picking two number and a operation to com-
pose an equation

swap blank square with one of its neighbor-
ing numbered squares

initial state four numbers that can be used to form a
mathematical expression

a grid with 8 number squares and 1 blank
square

goal state the result of the math of the expression com-
posed with the remaining numbers is 24

The numbers are arranged in the order of 1-
8 from the top left to the bottom right, with
the blank square at the bottom right corner

4. Experiment

We evaluated the effectiveness of the LLM-AS approach on two challenging tasks:
game 24 and 8 puzzle. These tasks require multiple steps to complete. The high complex-
ity and difficulty of these tasks pose significant demands on the reasoning capabilities of
LLMs. To demonstrate the effectiveness of LLM-AS, we compared it against standard
I/O, zero-shot CoT, few-shot CoT, CoT-SC, and ToT. During the experiments, we set the
temperature of the invoked LLM to 0.0.

4.1. game 24

Game 24 is a mathematical reasoning task where the goal is to form an arithmetic
expression using the given 4 numbers and basic operations (+, -, *, /) so that the result is
24.

4.1.1. Task Setup

Our dataset has 1362 games from 4nums.com, with 100 randomly selected for
testing. The adaptability definition for the game 24 task is outlined in Table 1, where
thoughts are equations and states are remaining numbers. The goal is for the equation to
result in 24. We used the success rate across 100 games as the evaluation metric.

4.1.2. Baseline & LLM-AS Setup

We provide five examples for the standard I/O prompt. For few-shot CoT, we use
intermediate equations. For CoT-SC, we sample 10 times and voted for the most consis-
tent result. For ToT, the model generate and evaluate next steps. We explore candidate
set widths b=1 and b=3 for comparison. For LLM-AS, the LLM generate and evaluate
states. Five examples are given for evaluation. After A* search, the LLM review and
correct the solution using five refine examples. In the refine prompt, each time a number
is selected, it is regarded as a step and labeled sequentially to allow the LLM to identify
the specific step where the error occurs.
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4.1.3. Results

Table 2 shows each method’s performance on game 24 with gpt-3.5-turbo and gpt-
4.0. LLM-AS consistently outperforms baselines, with improved accuracy to 21.56% on
gpt-3.5-turbo and 65.32% on gpt-4.0 after one correction. This highlights LLM-AS’s
superiority in complex tasks. The best baseline, ToT (b=3) on gpt-4.0, achieves 62.00%
accuracy but costs more due to many LLM invocations. LLM-AS improves accuracy
while reducing explorations and costs.

4.2. 8 puzzle

8 puzzle is a classic puzzle game. The game panel is a 3x3 grid with a number (1-8)
or a blank square (represented by 0) on each small square. The goal of the game is to
arrange the numbers in the order 1-8 from the top left to the bottom right by exchanging
the blank squares with the neighboring number squares, with the blank square in the
bottom right corner.

4.2.1. Task Setup

8 Puzzle is a classic game with a 3x3 grid of numbers 1-8 and a blank (0). The goal
is to arrange numbers 1-8 in order by swapping them with the blank, ending with the
blank in the bottom right. We used the proportion of these 100 games reaching the goal
state as our evaluation metric.

4.2.2. Baseline & LLM-AS Setup

We provide three examples for standard I/O. In few-shot CoT, we concatenate ac-
tions with the state. For CoT-SC, we sample 10 times and chose the most consistent re-
sult. ToT generate and evaluate next steps, with a max search depth of 9. We try candidate
set widths b=1 and b=3. For LLM-AS, the model evaluate states using three examples,
then review and correct the solution using three more examples after A* search. In the
refine prompt, each swap action is numbered sequentially enabling the LLM to pinpoint
the exact step where the error arises.

4.2.3. Results

The spatial complexity and long-term planning requirements of the 8 puzzle signif-
icantly challenge LLMs. Table 2 shows LLM-AS outperforms all baselines, improving
to 30.63% and 39.92% on gpt-3.5-turbo and gpt-4.0 after one correction. This surpasses
the best baseline, ToT (b=3), on gpt-4.0 with 15.00% accuracy. LLM-AS’s integration of
A* search and LLM-based evaluation effectively tackles the puzzle, showing potential
for spatial reasoning and long-term planning tasks.

As observed in Table 2, both the baseline methods and our LLM-AS exhibit su-
perior performance on gpt-4.0 compared to gpt-3.5-turbo. gpt-4.0 boasts a larger model
size and a more extensive and diverse training dataset than gpt-3.5-turbo. Furthermore,
gpt-4.0 ingeniously leverages Graph Neural Networks, enabling the model to better cap-
ture the temporal information and dependencies in language. We attribute these factors
to the performance disparity between gpt-3.5-turbo and gpt-4.0, resulting in gpt-4.0’s
outstanding performance in handling the two complex tasks.
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Table 2. Experimental results on game 24 and 8 puzzle tasks

game 24 8puzzle

gpt-3.5-turbo gpt-4.0 gpt-3.5-turbo gpt-4.0

I/O 5.98 8.90 0.00 1.34
zero-shot CoT 5.98 8.92 0.00 1.92
few-shot CoT 3.18 4.05 0.00 5.04

CoT-SC 3.20 4.38 3.78 6.94
ToT(b=1) 8.02 40.13 7.86 8.01
ToT(b=3) 15.71 62.00 13.26 15.00
LLM-AS 21.56 65.32 30.63 39.92

5. Conclusion

This paper shows LLM-AS enhances LLMs’ reasoning for complex tasks by inte-
grating A* search and utilizing the LLMs for review and correction, improving accuracy
and reliability. A* search prioritizes goal-directed paths, reducing high-cost exploration,
significantly enhancing efficiency and lowering LLM invocation costs. Experiments on
two tasks show LLM-AS outperforms existing prompt paradigms.

This research advances the application of LLMs in complex tasks, laying a founda-
tion for enhancing their planning and decision-making capabilities in agents [26,27]. For
future work, we will conduct more experiments to explore the capability of LLM-AS in
exploring more diverse thought topologies, such as graph structures. And apply it to a
wider range of real-world problems.
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