
Efficient Early Sparsification for
Accelerating Solutions to the Traveling

Salesman Problem

Yonglu JIANG a, Hongyu XING b,c Hanchen SHI b,c Zijing WEI b,c and
Zhongguo YANG a,d,1

a School of Information Science and Technology, North China University of Technology,
Beijing, China

b School of London Brunel, North China University of Technology, Beijing, China
c Department of Mathematics, Brunel University London, London, UK

d Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,
North China University of Technology, Beijing, China

Abstract. The Travelling Salesman Problem (TSP) is a well-established NP-hard
problem, often tackled using heuristic algorithms. While state-of-the-art learning-
driven approaches for TSP perform comparably to classical solvers when trained
on trivially small instances, they struggle to generalize the learned policy to larger,
practical-scale instances. Consequently, as the number of cities increases, the effi-
ciency of these algorithms diminishes significantly. This paper focuses on the early
elimination of non-advantageous edges while retaining advantageous ones, thereby
accelerating the TSP solution. Our approach involves capturing the differential fre-
quencies of various edges during the early stages of an intelligent evolutionary al-
gorithm, which we term as “knowledge” derived from the evolutionary process. We
then design effective features to characterize the similarities and differences be-
tween edges. Leveraging this “knowledge”, we label edges as either advantageous
or non-advantageous. By integrating the guidance of a predictor, we intervene in the
intelligent evolutionary algorithm to sparsify the TSP graph, ultimately enhancing
the TSP solution. Our method effectively prunes edges in TSP instances, preserving
the optimal path while minimizing redundant edges. Experimental results demon-
strate that our approach significantly improves both computational efficiency and
solution quality on the TSP50 and TSP100 test sets compared to other models. This
methodology offers a novel perspective by extracting and utilizing latent knowl-
edge among edges, thereby enhancing the performance of intelligent evolutionary
algorithms in solving the TSP. Our findings not only improve current methodolo-
gies but also encourage further exploration and development in related fields and
practical applications.

Keywords. Traveling Salesman Problem, Intelligent Evolutionary Algorithm,
Machine Learning, Knowledge, Speed up

1Corresponding Author: Dr.Zhongguo Yang, E-mail: yangzhongguo@ncut.edu.cn

Fuzzy Systems and Data Mining X
A.J. Tallón-Ballesteros (Ed.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241426

255



1. Introduction

The Traveling Salesman Problem (TSP) is a classic example of a combinatorial opti-
mization problem with significant real-world implications. Originating in the fields of
logistics and routing, it involves finding the shortest route that visits each city exactly
once before returning to the starting point. Despite its apparent simplicity, the TSP is
classified as an NP-hard problem, making the determination of an exact optimal solution
computationally intractable as the number of cities increases, due to the problem’s ex-
ponential time complexity. This challenge has driven the exploration of alternative ap-
proaches to efficiently tackle large-scale instances of the TSP.

While state-of-the-art learning-driven TSP approaches perform comparably to classical
solvers when trained on trivially small instances, they struggle to generalize the learned
policy to larger, practical-scale instances. As the number of cities grows, the efficiency
of these algorithms significantly diminishes. Traditional exact algorithms are also con-
strained by their exponential time complexity, rendering them impractical for real-world
scenarios with numerous locations. To alleviate this computational burden, heuristic and
approximation methods have been developed, though their limitations become apparent
as the problem size increases [1]. Graph sparsification has emerged as a critical technique
for addressing the TSP by reducing the solution search space. Researchers, including
James Fitzpatrick, have investigated TSP instance sparsification using supervised learn-
ing models on the MATILDA dataset’s CLKhard and LKCChard categories [2]. Their
approach seeks to eliminate edges unlikely to be part of the optimal path. However, the
effectiveness of this method is limited when faced with constrained data or the need for
rapid processing, underscoring the necessity for enhanced generalization capabilities.

Fitzpatrick’s work offered valuable insight into the unlikelihood of certain edges appear-
ing in the optimal solution, which inspired our approach. By tracking the behavior of
different edges within a TSP instance, we observed that the selection dynamics of edges
within the population undergo significant changes as the algorithm iterates. Some edges
gradually withdraw from selection, while others are consistently chosen, indicating early
patterns. As depicted in Figure 1 (a) and (b), advantageous edges are swiftly identified
and continually selected, reducing the number of iterations required for convergence.
Conversely, Figure 1 (c) and (d) illustrates the rapid decline of non-advantageous edges,
facilitating their early elimination and leading to effective graph sparsification. This
method leverages empirical knowledge from the intelligent evolutionary algorithm, obvi-
ating the need for a pre-training dataset, to accelerate the sparsification of TSP problems
and significantly enhance generalization ability. Our approach enhances the efficiency
and effectiveness of TSP solutions by concentrating on promising edges and discard-
ing less relevant ones. In the work of Liu, Bokai and Lu, Weizhuo[3], machine learning
methods were employed to enhance computational efficiency, utilizing particle swarm
optimization (PSO), which inspired our approach to combinatorial optimization.

To operationalize this approach, we designed a set of features based on edge fitness and
adjacency, extracting a feature set for each edge at the start of the iteration. As the algo-
rithm progresses, we collect historical data on edge appearances and the optimal routes
at various stages, using this information to create dynamic labels. Through this iterative

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions256



(a) Early recognition of advantageous (b) Iteration reduction of advantageous

(c) Early detection of non-advantageous (d) Sparsification potential

Figure 1. Introducing edge frequency-based sparsification

process, we identify dominant edges likely to appear in the optimal solution and non-
dominant edges that are less likely to do so.

In subsequent iterations, we apply this knowledge to prune TSP instances. Non-dominant
edges are deliberately removed from the population, while edges likely to appear in the
optimal solution are retained. This strategy ensures the quality of the population, fosters
its evolution, and further accelerates the sparsification of the TSP problem.

Our original contributions in this paper can be summarized as follows:

• Knowledge-driven Feature Engineering: We apply principles from intelligent
evolutionary algorithms, integrating knowledge from iterative processes with care-
fully designed features to dynamically improve algorithm performance.

• Graph Sparsification Enhancement through Intelligent Edge Analysis: By
dynamically identifying and prioritizing edges based on their likelihood of being
part of the optimal solution, we achieve more effective graph sparsification. This
reduces the search space and accelerates convergence.

• Improved Generalization Capability of Swarm Evolution Algorithms: Our
algorithm does not rely on pre-existing datasets. Instead, it extracts knowledge
directly from the input TSP instance, reducing dependency on external data and
enhancing generalization capability.

Through comprehensive exploration and empirical evaluation, we aim to validate the ef-
fectiveness of our proposed methodology relative to existing approaches. These contri-

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 257



butions collectively highlight the novelty and potential impact of our methodology in
solving large-scale TSP instances.

2. Related Work

In our research, we built upon the optimization algorithms and methodologies developed
by previous scholars. By integrating their innovative approaches and collective exper-
tise, we aimed to advance existing algorithms and contribute meaningfully to the dis-
course on TSP. This collaborative foundation enabled us to enhance the performance and
effectiveness of TSP solutions, driving forward the field with improved methodologies.

2.1. Exact, Heuristic, Hybrid Solvers

The Concorde TSP solver is a leading tool for solving TSP instances [4]. It employs
a range of efficient algorithms, including branch and bound, cutting planes, linear re-
laxation, and dynamic programming, to achieve high accuracy. The Lin-Kernighan-
Helsgaun (LKH) TSP solver, an extension of the classic Lin-Kernighan algorithm im-
proved by Keld Helsgaun, is a highly effective heuristic for large-scale TSP problems,
demonstrating exceptional performance with thousands to millions of cities [5]. Google’s
OR-Tools provides a comprehensive suite of open-source libraries for solving complex
optimization problems, including various algorithms for TSP, such as heuristic, exact,
and hybrid methods [6]. Additionally, heuristic methods like nearest insertion and far-
thest insertion offer simplicity and effectiveness for small-scale problems. Despite the
strengths of these tools, opportunities for improvement exist in computational resource
utilization and the generalization of algorithms for very large-scale TSP instances.

2.2. Graph Neural Network Solution

Deep learning has shown promise in solving the TSP. Oriol Vinyals introduced the
pointer network, a neural architecture designed to handle output sizes that vary with in-
put sequence length [7]. By generating one million training samples, Ptr-Net can produce
paths close to the optimal solution for small-scale problems, paving the way for deep
learning applications in TSP. Similarly, Chaitanya K. Joshi developed a method using
a graph convolutional neural network to solve the TSP, employing a highly parallelized
beam search to generate non-autoregressive travel routes [8]. Although these methods
excel in solution quality, reasoning speed, and sample efficiency, they face challenges
when scaled to larger TSP instances. Issues include substantial training data require-
ments, limited solution accuracy, and restricted generalization. Additionally, as black
box models, neural networks often present challenges in interpretability and verification,
complicating their use in critical applications.

2.3. Graph Sparsification

The goal of graph sparsity is to reduce the number of edges, enhancing efficiency and
simplifying computational tasks. For the TSP, this means removing edges unlikely to be
part of the optimal solution. Yuan Sun’s work involves extracting various features from

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions258



TSP instances, including topological and path features, and using an SVM model to pre-
dict and eliminate these less likely edges [9]. Similarly, James Fitzpatrick’s approach
utilizes a supervised model to achieve graph sparsity in the TSP [2], while Yong Wang
generates sparse maps by analyzing frequency plots and applying frequency thresholds,
which helps reduce the search space and complexity [10].

Our method builds on these approaches but differs by avoiding pre-trained models. In-
stead, we collect frequency information during the optimization process of an intelligent
evolutionary algorithm to achieve graph sparsity.

3. Methodology

In this section, we outline the theoretical framework that supports our research and pro-
vide a detailed explanation of our methodology and its specific components. Our ap-
proach begins with an extensive feature extraction process that evaluates all edges within
the problem domain. We then track the evolution of these edges throughout the itera-
tions of the intelligent evolutionary algorithm. By examining changes in edge selection
patterns, we classify edges as either advantageous or non-advantageous. Furthermore,
we integrate a predictive model to estimate the potential advantages or disadvantages of
other edges. The entire process is depicted in Figure 2.

Figure 2. Knowledge-driven sparse graph optimization for TSP

3.1. Features Extraction

The work by Fitzpatrick et al. constructs six local features [2], which play a key role in
guiding the decision-making process of classifiers. These features are grounded in the
Euclidean distance between cities (i.e., disti j). Specifically, six features, denoted as F1
through F6, were designed to represent different proportional relationships, capturing
normalized distance metrics. F1 quantifies the distance between two cities relative to the
longest edge in the network, while F2 and F3 measure the distance between each city

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 259



and its farthest neighbor. To account for the inverse strength of these relationships, the
reciprocals of these distances were also computed, corresponding to F4, F5, and F6.

disti j =
√

(xi− x j)2 +(yi− y j)2,

F1 =
disti j +1

max edge+1
, F2 =

disti j +1
max dist from i+1

, F3 =
disti j +1

max dist from j+1
,

F4 =
max edge+1

disti j +1
, F5 =

max dist from i+1
disti j +1

, F6 =
max dist from j+1

disti j +1
.

These ratio-based features, incorporating both absolute distances and their relative re-
lationships, form a comprehensive feature set that encapsulates the spatial interrelation-
ships between cities within the TSP network. By considering both the magnitude of dis-
tances and the relative positions of cities, the model gains a deeper understanding of the
spatial dynamics in play. This dual consideration of absolute and relative metrics en-
riches the model’s capacity to detect patterns and dependencies within the TSP structure.

Figure 3. Heatmap of edge differences in feature space

Figure 3 presents a heatmap illustrating the feature differences across various edges. It
is evident that significant distinctions exist between edges with high frequency (advan-
tageous edges) and those with low frequency (non-advantageous edges). The similarity
among advantageous edges is high, as is the similarity among non-advantageous edges,
while the similarity between these two groups remains low.

By learning these features and incorporating edge frequency data, the predictive model
can be effectively trained. This approach allows the model to grasp the complex spatial
interrelationships within the TSP network, providing a robust framework for predicting
the behavior of coordinate networks.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions260



3.2. Knowledge Capture

By analyzing the structure of the optimal solution for the TSP, we observe that a signifi-
cant portion of the edge set does not appear in the optimal solution. Inspired by previous
research [7] [8], such edges can be identified in advance. During the initial phase of the
intelligent evolutionary algorithm, we monitor each edge in the population, recording the
frequency of their appearance across iterations. As illustrated in Figure 4, the frequency
of certain edges varies as the algorithm progresses. For example, Edge 3 and Edge 4 dis-
play distinct behaviors: Edge 3 is identified as non-advantageous, while Edge 4 is clas-
sified as advantageous—representing what we term ”accurate knowledge”. Conversely,
Edges 1 and 2 initially exhibit advantageous or non-advantageous traits, but these char-
acteristics diminish in later iterations, signifying ”incorrect knowledge”.

To reduce the impact of such incorrect knowledge, we introduce a sampling and labeling
strategy, which helps to mitigate its influence. Based on this process, we categorize the
edges we track into two distinct groups:

• Advantageous Edges Edges that appear with high frequency in high-quality so-
lutions (i.e., those with shorter tour lengths) are classified as advantageous.

• Non-Advantageous Edges Edges that appear infrequently or predominantly in
lower-quality solutions are classified as non-advantageous.

(a) Edge 1 (b) Edge 2 (c) Edge 3 (d) Edge 4

(e) Edge 5 (f) Edge 6

Figure 4. Trace the typical edges of the evolutionary process

Regarding Edge 5 and Edge 6 in Figure 4, their frequency change graphs exhibit com-
plementary patterns, indicating a competitive relationship. Therefore, we handled these
edges separately and included them in the search space. As described in Section 3.4, we
subsequently selected the optimal edge from this competitive set.

3.3. Knowledge-driven predictor

Building on insights from Section 3.2, we predict unmarked edges in the search space to
identify both promising and non-promising edges, with Edge 1 and Edge 2 in Figure 4

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 261



serving as key examples.

We begin by using features from Section 3.1 and the knowledge from Section 3.2 to label
a subset of the population. This labeled subset is then used to evaluate the entire popula-
tion, identifying N edges that are most and least advantageous in the feature space.

Frequency data is gathered every 10 iterations, with high-frequency edges labeled as 1
and low-frequency edges labeled as 0. Significant frequency changes, like those seen
with Edge 1 and Edge 2, result in inverse labeling. For edges labeled 1 but similar in
features to those labeled 0, their inclusion in the marked set is determined by an internal
voting mechanism. Finally, marked edges are flagged as 1, and the K-nearest neighbors
algorithm is applied to find the N nearest neighbors, helping to identify dominant and
non-dominant edges, thereby enhancing the search process through intelligent evolution.

3.4. Intervention algorithm for sparse

We utilize the insights from Section 3.3 to identify both advantageous and non-
advantageous edges within the population. This information is then used to guide and
adjust the genetic algorithm operators, effectively reducing the search space and enabling
edge pruning. To select the next generation of parent solutions, we apply a tournament
selection mechanism. In this approach, a random subset of solutions is selected from the
population, and the best-performing solution within this subset is chosen as the parent.
This process is repeated to select additional parents, incorporating predicted dominant
edges to increase the likelihood of selecting superior solutions.

The selected parent solutions undergo crossover operations to generate offspring, intro-
ducing variability and promoting exploration of the solution space. We utilize partial
mapping crossover (PMX) and order crossover (OX) [11]. To maintain population diver-
sity and prevent premature convergence, mutation operations are applied to the offspring,
including exchange and inversion mutations [12]. During mutations, dominant edges are
avoided, focusing on non-dominant edges to encourage high-quality mutations.

Additionally, we introduce a repair operator designed to correct edges unlikely to appear
in the optimal solution. This involves checking new individuals in each generation and
replacing suboptimal edges through local optimization or replacement operations. The
fitness function is adjusted to reward individuals containing high-quality edges by incor-
porating an edge reward term: the more high-quality edges an individual contains, the
higher the reward. This helps retain superior edges for the next iteration.

These four operations collectively eliminate non-advantageous edges and retain advan-
tageous ones, effectively reducing the search space and sparsifying the graph. This it-
erative approach accelerates the TSP solution process. As depicted in the flowchart in
Figure 2, these steps form a continuous loop. Given that incorrect information may arise
during execution, it is crucial to continuously update and integrate the latest knowledge
to maintain the robustness and efficiency of the graph sparsification process.

For more information we refer the reader to the following surveys [13][14].

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions262



4. Experiments and Results

In this section, we discuss benchmark problem instances, outline the procedures for con-
ducting training and experiments, and evaluate the effectiveness of our method on in-
stances from Ruprecht-Karls-Universität Heidelberg and other notable cases with distinct
characteristics [15][16]. Specifically, our approach was implemented using Python (3.8),
SciPy (1.7.3), NumPy (1.21.5), and Pandas (1.4.2) libraries for numerical operations, the
Scikit-learn (1.0.2) library for machine learning tasks, and the Matplotlib (3.5.1) library
for visualizing experimental results. The experiments were conducted on a Windows 11
system equipped with an Intel i9 processor, 16GB of RAM, and an Nvidia 4060 GPU.
These details provide a comprehensive overview of the software and hardware environ-
ment utilized in our experiments.

4.1. Learn Features and Predict Advantageous Edges

Features The experimental results identified six key features (F1-F6), represented as ra-
tios. These features capture the relative significance of edges, city distances, and overall
network properties. By combining these features with edge frequency data from the Trav-
eling Salesman Problem (TSP), we utilize a frequency-based ranking system to better
understand edge importance. This approach highlights the role of feature extraction and
frequency ranking in improving optimization accuracy and emphasizes the importance
of understanding the interaction between various features in predicting optimal routes.

Predict of Edge Frequencies The experimental process begins with loading a sorted
and merged dataset containing both TSP features and actual edge frequencies. The data
is split into features and labels, with the first ’n’ entries used as the training set. A K-
Nearest Neighbors Regression model predicts edge frequencies, while a Nearest Neigh-
bors model identifies the closest unlabeled neighbors for each sample. The results, in-
cluding the predicted labels and corresponding edges, are stored in a DataFrame.

To improve accuracy, duplicate entries are filtered, keeping only edges with the highest
predicted values. The refined results are saved to a new CSV file. This method demon-
strates the potential of machine learning models in route prediction and emphasizes the
importance of data preprocessing in optimizing the accuracy of practical solutions.

4.2. Analysis of Frequency Dynamics of Advantageous and Non-Advantageous Edges

Figure 5 illustrates the evolutionary dynamics of edge selection frequencies during TSP
optimization using a learning-based algorithm. The central network graph represents a
TSP instance, with nodes as cities and edges as potential paths. Edges are classified based
on their contribution to optimal or near-optimal solutions.

The left panel displays the frequency dynamics of advantageous edges, while the right
panel focuses on non-advantageous edges across successive generations of the genetic
algorithm.

• Advantageous Edges (Left Panel) The three plots show the proportion of advan-
tageous edges increasing rapidly, stabilizing near 100% by the 30th generation.
This indicates the algorithm effectively identifies and reinforces useful edges.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 263



Figure 5. Frequency dynamics of advantageous and non-advantageous edges

• Non-Advantageous Edges (Right Panel) The plots illustrate a rapid decline in
the frequency of non-advantageous edges, approaching 0% within the first 30 gen-
erations, highlighting the algorithm’s ability to eliminate less optimal edges.

Overall, Figure 5 demonstrates how edge frequencies evolve during optimization.
By tracking these changes, edges can be categorized into advantageous and non-
advantageous groups, reducing the search space and sparsifying the TSP graph. Focusing
on advantageous edges enhances both the efficiency and generalization of the optimiza-
tion process, with the frequency dynamics validating the algorithm’s effectiveness.

4.3. Sparsification of Complete Graphs based on Prediction Results

To assess the sparsification performance of our feature-based prediction model, we tested
three TSPLIB instances: wi29, dj38, and st70 [15]. We first solved these instances using
a traditional genetic algorithm and then applied our prediction model. The number of
iterations required for each algorithm to converge was compared. Figure 6 shows the
results for the predictive model.

Instance 1 The prediction model converged to the optimal solution at the 44th iteration,
and the sparse result contained 100% of the optimal solution at the 30th iteration.

Instance 2 The prediction model converged to the optimal solution at the 49th iteration,
and the sparse result contained 100% of the optimal solution at the 30th iteration.

Instance 3 The prediction model converged to the optimal solution at the 63th iteration,
and the sparse result contained 100% of the optimal solution at the 40th iteration.

The model demonstrated rapid convergence across all test cases, highlighting its effi-
ciency in feature extraction and knowledge utilization, which resulted in faster conver-
gence to optimal solutions.

Specific Analysis Instance 3 Using Instance 3 (st70.TSP) as an example, we explored
the sparsification process (Figure 7). After 200 iterations, the graph’s initial 4556 edges
were reduced to 441 edges. Notably, these sparsified edges contained all the optimal so-

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions264



(a) Instance 1: wi29.TSP (b) Instance 2: dj38.TSP (c) Instance 3: st70.TSP

(d) Instance 1: wi29.TSP (e) Instance 2: dj38.TSP (f) Instance 3: st70.TSP

Figure 6. Optimal solution obtained by prediction model

lutions identified by the genetic algorithm at the 985th iteration. This result underscores
the effectiveness of the prediction model in identifying and predicting optimal edge se-
lections, significantly reducing problem complexity.

(a) Complete Graph (b) Sparse of the 200th (c) Optimum of 985th

Figure 7. Instance 3: st70.TSP sparsification process

4.4. Comparative Analysis of Algorithm Performance

Instances Experiments To assess the performance of our method, we tested it against
established optimization algorithms on 16 TSPLIB benchmark instances [15]. The al-
gorithms compared include Ant Colony Optimization (ANT), Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Tabu Search (TS).
We evaluated the optimum solution and the number of iterations required to achieve this
optimum. Figure 8 presents a scatter plot of these results, with the horizontal axis show-
ing the optimum found and the vertical axis representing the iteration at which the last
change occurred. The TSP instances are indicated as numbers within circles.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 265



Figure 8. Scatter plot of optimum and iteration counts for TSPLIB instances across various algorithms

Our method exhibits competitive efficiency, achieving optimal solutions in fewer itera-
tions compared to most other algorithms. For instance, our method reached the optimum
within the first 100 iterations for several instances (e.g., instances 1, 2, and 3), outper-
forming others in convergence speed.

While many algorithms achieve similar optimum values, our method consistently deliv-
ers near-optimal or optimal solutions. The clustering of brown markers at lower optimum
values indicates robust performance. Although algorithms like GA and SA also show
clusters of low optimum values, their higher iteration counts suggest a trade-off between
solution quality and computational effort.

Certain outliers in the scatter plot reveal instances where some algorithms either sig-
nificantly underperform or require more iterations to reach the optimum. For example,
instance 8 shows higher optimum values with ANT and PSO, indicating challenges in
those cases. Our method avoids such extreme outliers, demonstrating greater reliability
and consistency across diverse problem instances.

Numerical Experiments During testing, our model was evaluated using beam search
and demonstrated superior performance with the smallest error. Table 1 compares our
model against methods from existing literature, including GA, PSO, and SAA, as well as
heuristic methods like Nearest Insertion and Farthest Insertion for TSP50 problems [16].

The results reveal that while GA, PSO, and SAA provide competitive objective values
with minimal optimality gaps (ranging from 0.40% to 0.42%), they require slightly more
computational time compared to our model, which achieves the best balance between
solution quality and efficiency. Heuristic methods such as Nearest Insertion and Far-
thest Insertion, though fast, exhibit much higher optimality gaps (22.94% and 5.53%).
Our model excels by providing high-quality solutions with reduced computational time,
making it ideal for scenarios where both speed and accuracy are critical.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions266



Table 1. Comparison of results for 10,000 instances of TSP50 instances

Method Objective Optimality Gap Total Time Inference Time

Our Model 5.707 0.31% 13.7s 0.07s

GA [17] 5.3 0.40% 14.5s* 0.09s

PSO [18] 5.1 0.42%* 14.8s* 0.08s

SAA [19] 5.2 0.41%* 14.2s* 0.085s

Nearest Insertion 7.00* 22.94%* 0s* -

Farthest Insertion 6.01* 5.53%* 2s* -
* Approximate values.

5. Discussion and Conclusions

The proposed knowledge-driven hybrid method for predicting and sparsifying paths in
the TSP represents a notable advancement in optimizing algorithm efficiency. By lever-
aging insights from an intelligent evolutionary algorithm, the method effectively prunes
non-advantageous edges while retaining beneficial ones, leading to a more streamlined
solution space. This approach accelerates the TSP solution process and enhances solu-
tion quality.

A key strength of this method is its dynamic adaptation and learning from the evolution-
ary process, which reduces reliance on extensive pre-training datasets and improves gen-
eralization. However, challenges remain with high-dimensional and complex data struc-
tures, and future research should consider integrating advanced techniques such as graph
neural networks (GNNs) and topological structure analysis. In the work of Liu Bokai et
al. [20], a hybrid machine learning method was used to predict the thermal conductivity
of PNC. They combined ANN with PSO, which provides valuable insights and potential
directions for future research. Additionally, while efforts are made to avoid local optima,
the risk of knowledge solidification persists. Adaptive parameter adjustments and search
strategies could help maintain diversity and prevent premature convergence.

Overall, this study introduces a novel approach by combining knowledge-driven predic-
tion with intelligent evolutionary methods, demonstrating significant improvements in
efficiency and accuracy, particularly for TSP50 and TSP100 with Euclidean distances.
Future work should focus on refining feature extraction techniques and exploring adap-
tive strategies to enhance robustness and effectiveness. The promising results underscore
the potential of knowledge-driven approaches in solving complex combinatorial opti-
mization problems and suggest avenues for further advancement in this field.

References

[1] CK Joshi, Q Cappart, LM Rousseau, T Laurent, and X Bresson. Learning tsp re-
quires rethinking generalization. arxiv 2020. arXiv preprint arXiv:2006.07054.

[2] James Fitzpatrick, Deepak Ajwani, and Paula Carroll. Learning to sparsify trav-
elling salesman problem instances. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pages
410–426. Springer, 2021.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions 267



[3] Bokai Liu and Weizhuo Lu. Surrogate models in machine learning for computa-
tional stochastic multi-scale modelling in composite materials design. International
Journal of Hydromechatronics, 5(4):336–365, 2022.

[4] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The
traveling salesman problem: a computational study. Princeton University Press,
2006.

[5] Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems. Roskilde University,
Roskilde, 2017.

[6] Google. Or-tools: Google’s operations research tools, 2015.
[7] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks, 2017.
[8] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph con-

volutional network technique for the travelling salesman problem. arXiv preprint
arXiv:1906.01227, 2019.

[9] Yuan Sun, Andreas Ernst, Xiaodong Li, and Jake Weiner. Generalization of ma-
chine learning for problem reduction: a case study on travelling salesman problems.
Or Spectrum, 43(3):607–633, 2021.

[10] Yong Wang. An approximate method to compute a sparse graph for traveling sales-
man problem. Expert Systems with Applications, 42(12):5150–5162, 2015.

[11] Colin R Reeves. Genetic algorithms. Handbook of metaheuristics, pages 109–139,
2010.

[12] Noraini Mohd Razali, John Geraghty, et al. Genetic algorithm performance with
different selection strategies in solving tsp. In Proceedings of the world congress
on engineering, volume 2, pages 1–6. International Association of Engineers Hong
Kong, China, 2011.

[13] Samuel A Oluwadare, Bosede A Ogunsanmi, and John C Nwaiwu. Towards solving
travelling salesperson problem using hybrid of genetic algorithm and lin-kernighan
algorithm: A comparative evaluation with neural network model. International
Journal of Computer Applications, 975:8887.

[14] Bladimir Toaza and Domokos Esztergár-Kiss. A review of metaheuristic algorithms
for solving tsp-based scheduling optimization problems. Applied Soft Computing,
page 110908, 2023.

[15] G. Reinelt. Tsplib - a traveling salesman problem library, 1991.
[16] Xavier Bresson and Thomas Laurent. The transformer network for the traveling

salesman problem. arXiv preprint arXiv:2103.03012, 2021.
[17] Fei Liu and Guangzhou Zeng. Study of genetic algorithm with reinforcement learn-

ing to solve the tsp. Expert Systems with Applications, 36(3):6995–7001, 2009.
[18] Kang-Ping Wang, Lan Huang, Chun-Guang Zhou, and Wei Pang. Particle swarm

optimization for traveling salesman problem. In Proceedings of the 2003 interna-
tional conference on machine learning and cybernetics (IEEE cat. no. 03ex693),
volume 3, pages 1583–1585. IEEE, 2003.

[19] Xiutang Geng, Zhihua Chen, Wei Yang, Deqian Shi, and Kai Zhao. Solving the
traveling salesman problem based on an adaptive simulated annealing algorithm
with greedy search. Applied Soft Computing, 11(4):3680–3689, 2011.

[20] Bokai Liu, Nam Vu-Bac, and Timon Rabczuk. A stochastic multiscale method
for the prediction of the thermal conductivity of polymer nanocomposites through
hybrid machine learning algorithms. Composite Structures, 273:114269, 2021.

Y. Jiang et al. / Efficient Early Sparsification for Accelerating Solutions268


