
A Graph Neural Network-Based 
Community Search System over Dynamic 

Graph 

Yixin Song, Lihua Zhou1 

 Information Science and Engineering, Yunnan University, Kunming 650091, China 

Abstract. Community search (CS) aiming to find a densely connected subgraph 

containing given query vertices, is an important research topic in social network 

analysis and is widely used in similar recommendation, team organization, 

friendship recommendation and other practical applications. The purpose of the CS 
system is to display searched community in a visual form to users. It can help users 

better understand and analyze networks, making better decisions. However, the exist 

CS systems are mostly designed for static graphs, they cannot capture the dynamic 
attributes and cannot intuitively display the dynamic changes of the community. In 

this paper, we develop a CS system over dynamic graph based on graph neural 

network (GNN), aiming to locate the community with cohesive attributes over 
dynamic graph and visualize the community to intuitively display the dynamic 

changes of vertices and the relationships between them. We design a GNN-based 

method to capture the dynamic changes of attributes and design a friendly front-end 
interface that visualizes the result community in the form of a timeline. It allows 

users to view the status of the result community at any snapshot and fine-tune the 

result community according to their own conditions. 

Keywords. Community search system, graph neural network, dynamic graphs, 

attribute cohesiveness 

1. Introduction 

Community search (CS)[1-3] is an important research topic in graph analysis, aiming to 

search for a structure cohesive subgraph with query vertices that satisfies the given 

conditions. However, the results of CS are relatively abstract, and it’s difficult to intuitively 

compare the advantages and disadvantages of two result communities. CS system is a 

system that uses visualization technology to graphically display the community. It receives 

the query conditions specified by users and displays the result community to users visually. 

Thus, CS systems can help researchers and users to explore the graph data and the result 

community. For this reason, Chen and Gao[4] proposed a visual interactive system (VICS-

GNN) for CS with similar attributes via GNN. VICS-GNN is the first system to support 

interactive, flexible CS guided by user’s labeling. However, VICS-GNN cannot display 

the dynamic changes of the communities, because it is designed for static graphs.  

In this paper, we develop a CS system over dynamic graph to search for a community 

with similar attributes and allows users to intuitively explore the dynamic changes of 

 
1  Corresponding Author: Lihua Zhou, Information Science and Engineering, Yunnan University, 

Kunming 650091, China; E-mail: lhzhou@ynu.edu.cn. 

Fuzzy Systems and Data Mining X
A.J. Tallón-Ballesteros (Ed.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241413

143



attributes and relations between vertices. To the best of our knowledge, our proposed 

system is the first CS system over dynamic graphs.  

Our proposed system contains a front-end and a back-end. The front-end designs a 

friendly visualization interface for users to explore result community easily and intuitively. 

Generally, a dynamic graph is a sequence of static graphs (snapshots), which represents the 

dynamic changes of edges, vertices and the related attributes. To visualize the dynamic 

changes of vertices and edges, we design a timeline to show the community at each 

snapshot, which allows user to explore the result in any snapshots. The back-end aims to 

search community with similar attributes by capturing the dynamic change of vertices’ 

attributes. The dynamic changes of vertices’ attributes reflect more comprehensive 

characteristics of real entities in real-world applications. For example, a user prefers action 

movies for a while, and then prefers science fiction movies after a while. So how to capture 

the dynamic changes of vertices’ attributes is of great significance for CS. 

Unfortunately, the most of CS methods over dynamic graphs are only consider the 

structure, ignoring the attributes of vertices. Although attribute community search 

(ACS)[5-7] can consider the attributes of vertices for CS, they cannot handle the dynamic 

changes of attributes. In addition, most of ACS methods are searching communities 

based on specified keywords, which means they cannot handle the non-linear attributes. 

For example, the keywords “Natural Language Processing” and “Machine Learning” are 

totally different, although both are closely related to the “Artificial Intelligence”. 

Due to the effectiveness of GNN in handling the non-linear attributes, we design a 

GNN based method as the default method of the back-end to capture the dynamic 

changes of attributes. Of course, other CS methods over dynamic graphs can also be used 

in the back-end.  

2. System Overview 

In this section, we give the framework of the CS system we proposed and introduce each 

module of it. The framework of the proposed CS system is shown in Figure 1, which consists 

of front-end and back-end. The front-end is used for a user to configure the parameters and 

visualize the results of CS. The parameters configured by the front-end are provided to the 

back-end for preprocessing and conducting subsequent community searches. The back-end 

is used to mine the dynamic changes of attributes, and performing the community search. 

 

Figure 1. The framework of our CS system. 

2.1. Front-end 

We design a friendly visual interface for users to explore the dynamic community in a 

form of timeline. Figure 2(a) shows the front-end of the CS system we proposed, which 

includes 3 panels, namely configuration panel (box 1), graph panel (box 2) and 

information panel (box 3). Each panel is described as below. 

Configuration Panel

Graph Panel

Data Module

GNN Module

Front-end Back-end

User
Information Panel CS Module

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System144



Figure 2. The front-end of our CS system (a) and the list of vertices and edges (b-c). 

Configuration Panel. It allows users to set the parameters of CS and visualization. 

Once the user creates a new query, he/she needs to upload the dataset (a dynamic graph), 

set the query vertex and the meta-paths (if the uploaded dynamic graph is heterogeneous), 

and these three parameters will not change in this query. Then, the user sets the 

community size and the parameters of visualization to driving the back-end for CS. The 

community size constraint is commonly used in practical applications[8], such as only 

accepting a certain number of people to join a team due to the budget constraints. 

Graph Panel. It provides users with a visual interface for exploring the result 

community in a form of timeline. It displays the result community in a static graph by 

default. The static graph contains the vertices and edges of all snapshots. Different colors 

in the graph represent different attribute categories of vertices. Floating below the graph 

panel is the timeline. It arranges all snapshots in chronological order. Users can choose 

to view the community status of any snapshot.  

Information Panel. It shows the detail information of the vertex that the user 

selected in graph panel and the query vertex. It shows statistical information on the 

vertices and edges of the result community, which can help users judge the reliability of 

the results on a macroscopic level. In addition, the information of all vertices and edges 

in result community are also displayed to the user in the form of a list (Figure 2(b-c)). 

2.2. Back-end 

The back-end contains three modules and it does not involve the database, because the 

data is uploaded from users. Each module of the back-end is described as below. 

Data Module. This module is responsible for processing the data uploaded by the 

user into a unified dynamic graph data structure. A dynamic graph data structure is a 

sequence of snapshots, and every snapshot is a static graph with vertices and edges in a 

specific time. If the snapshots in a dynamic graph are heterogeneous graphs, it will 

transform the heterogeneous graph into a homogeneous graph based on multiple 

symmetric meta-paths, i.e., only retain one type of vertices and edges, the edges represent 

the relationships between vertices with respect to multiple symmetric meta-paths. 

GNN Module. This module aiming to capture the dynamic changes of attributes and 

calculates the attribute similarity between each vertex by GNN-based method. GNN[9] 

can learn high-dimensional embeddings of vertices by capturing attributes and structural 

information over a static graph. GNN has many variants, such as GCN[10], GAT[11] etc. 

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System 145



To capture the dynamic changes of attributes and structures over a dynamic graph, 

this module uses a two-level (spatial- and temporal-level) GAT model to fuse the 

embeddings of vertices from spatial and temporal perspectives respectively. 

Specifically, let 
t N MH  represents the initial embeddings of vertices, where N  

is the number of vertices and M  is the dimension of the initial embedding. The spatial-

level GAT is responsible for learning the embedding of vertex u based on the initial 

embedding of u and its neighbors v in the t-th snapshot. Firstly, the spatial-level GAT 

calculates the importance [ , ]t u v  of v to u by Eq. (1): 

( ( , ))t t
spa

tsoftmax att A H  (1) 

where Nt N , ( )softmax  is the normalized exponential function, ( )spaatt  is the 

attention mechanism in spatial-level GAT, t N NA  is the adjacency matrix of the t-
th snapshot. Then, it fuses the embeddings of each v according to the importance to obtain 

the spatial embedding 1[ ] Ft uZ  of vertex u, shown in Eq. (2). 

( )t t tZ H  (2) 

where Ft NZ , F is the dimension of embedding, ( )  denotes the activation 

function. Finally, the temporal-level GAT calculates the importance of each snapshot to 

vertex u and obtains the final embedding 
1[ ] FuZ  of vertex u by fusing the 

embeddings of each snapshot: 

1 2( ( ( , , , )) )tem
T tsoftmax attZ Z Z Z Z  (3) 

where N FZ , ( )tmpatt  is the attention mechanism in temporal-level GAT. To 

calculate the attribute similarity between each vertex, we classify all vertices into two 

categories (category 1 is the vertices with similar attributes to the query vertex, category 

2 is the vertices with dissimilar attributes to the query vertex) based on the final 

embeddings Z , and finally we will obtain the probability that each vertex belongs to 

category 1, e.g., the attribute similarity. To this end, we use an MLP to calculate the 

attribute similarity (denote as 1NAS ), shown in Eq. (4). To optimize ( )spaatt , 

( )tmpatt  and MLP, we choose cross-entropy to define the loss function, shown in Eq. (5). 

MLP( )AS Z  (4) 

. log( [ ]) (1 . ) log(1 [ ])
u

loss u label u u label uAS AS  (5) 

where .u label  is the label of vertex u, . 1u label  if u belongs to the same category as the 

query vertex, otherwise . 0u label . After all networks converge (the loss function is no 

longer decreased), the output of MLP is the desired attribute similarity. Of course, this 

module can also use other GNN based methods to calculate the attribute similarity, such 

as CS-TGN[12], DySAT[13], TGAT[14], etc. 

CS Module. This module aims to complete the process of CS and return the target 

community C  to the front-end in the form of dynamic graph data. In general, C  is a 

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System146



connected graph. In a dynamic graph , if a vertex has no edges connected to other 

vertices in any snapshot, then the vertex is an isolated vertex. Thus, if there are no 

isolated vertices in C , then C  is connected. This means that verifying whether C  is a 

connected graph requires traversing all snapshots, which is time-consuming. In order to 

improve the efficiency, this module will construct a union graph G  based on . The 

union graph G  contains all vertices and edges on all snapshots, it preserves the 

connectivity between vertices in . Formally, this module is designed to locate a target 

community C  in a union graph G  that meet the following conditions: (1) C  contains 

q  and is connected in G ; (2) | |C s ; (3) 
, qvq v C

 is maximum, where q  is the 

query vertex, s  is the community size and qv  is the attribute similarity between vertex 

q  and v . To locates the target community, we can use BFS based CS algorithms such 

as the CS algorithms in ICS-GNN[15], CS-TGN[12] etc. 

3. Effectiveness Evaluation 

To verify whether our proposed system can search for a community with similar attributes 

over dynamic graph, we choose three representative baseline methods, including two ACS 

methods over static graph (BASCS[5] and Greedy-T[15]) and one CS method over 

dynamic graph (BU-Search[16]). We apply all methods on three real-world datasets (ACM, 

IMDB and DBLP)[17] and use the accuracy metric (calculated by 'C C CV V V , 

where CV  is the set of vertices in the result community, 'CV  is the set of vertices belonging 

to the same category as the query vertex) to evaluate the result community C searched by 

each method.  

We implement each algorithm by using Python-3.7.15. For datasets, we divide each 

dataset into multiple snapshots by the timestamps in it to apply each dataset to the methods 

over dynamic graphs. For GNN, we set the number of iterations to 200, learning rate to 

0.001, and use the Adam optimizer. To avoid the coincidence of experimental results, we 

randomly use 20 query vertices for experiments and calculate the average value of each 

metric for each algorithm. Codes of our proposed system are publicly available on GitHub 

(https://github.com/yixiso/CS-System). The results are shown in Table 1. 

Table 1. The accuracy values for different methods 

Dataset BASCS BU-Search Greedy-T Our Method 

ACM 0.34674 0.42111 0.53500 0.99667 
IMDB 0.23438 0.36082 0.51833 0.81000 
DBLP 0.24833 0.59859 0.60667 0.99833 

On three datasets, the accuracy values of our method are 57.56%, 64.99% and 75% 

higher than the best accuracy values of all the baseline methods respectively. This is 

because the baseline methods are not considering the dynamic changes of attributes, 

while our method can capture the dynamic changes of attributes, thereby improving the 

attribute cohesion of the resulting community. 

4. Demonstration Scenario 

In this section, we illustrate the CS system we proposed in a scenario of recommending 

similar users. For example, a user named Peter found that he/she was very interested in 

the research direction and articles written by “Michael J. Carey” when he/she was 

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System 147

https://github.com/yixiso/CS-System


reading the literature. So, he/she wanted to find more authors similar to “Michael J. 

Carey”. To this end, the following steps maybe required.

Step 1. Configure Query Parameters. Peter click the “new query” button in the 

“parameter panel”, and then upload the dataset (take ACM as an example), set “Michael 

J. Carey” as the query vertex, and set the meta-paths to initialize the query (users can

leave the meta-paths out to use default parameters) in the pop-up dialog box (Figure 3(a)).

Step 2. Seach and Explore the Community. Peter inputs the community size and 

click “Query” button (Figure 3(b)) to execute the CS. Then, the result community will be 

visualized as a static graph in the “Graph Panel” in Figure 2(a) by default. There is a 

timeline float below the “Graph Panel”, and Peter can view each snapshot individually. 

Each snapshot in this scenario is shown in Figure 4. It can be observed that “Michael J. 

Carey” has no relations with other authors in snapshot 1 and has many relations in 

snapshots 2-6. In addition, Peter can also observe which authors “Michael J. Carey” has 

relations with on each snapshot and discover which authors “Michael J. Carey” has the 

most frequent relations with. In addition, Peter also can check the details of all vertices and 

edges in the “Information Panel” as shown in Figure 2(b-c). 

(a) The pop-up dialog box (b) The parameters of community search

Figure 3. The pop-up dialog box.

Step 3. Fine-tune the Community. Peter may not be satisfied with the current result 

community. For example, there are too few/many authors in the result community. Peter 

can increase/decrease the community size parameter appropriately and click the “Query” 

button again to re-search the community. The results are shown in Figure 5(a)/(b). Notice 

that the process of re-searching the community takes very little time. This is because the 

back-end only need to re-execute the CS module rather than re-execute the whole back-

end. So, Peter can adjust the result community easily and quickly. However, if Peter 

wants to change the query vertex to search for the community, he/she needs to create a 

new query and re-execute the whole back-end, which means that the efficiency of the 

system is not ideal for changing the query vertex. 

Figure 4. The status of the community at each snapshot.

(a) The community size is 60                       (b) The community size is 10

Figure 5. The result community with different community size.

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System148



5. Conclusion 

We design a CS system over dynamic graph based on graph neural network, making up for 

the limitation that existing CS systems cannot handle dynamic graphs. Our CS system uses 

the GNN based methods to capture the dynamic changes of attributes. In addition, it 

provides users with a friendly interface to conduct CS in dynamic graphs intuitively and it 

can quickly respond to users' fine-tuning of the results. 

Acknowledgments 

This research is supported by the National Natural Science Foundation of China 

(62062066, 62266050 and 62276227), Yunnan Fundamental Research Projects 

(202201AS070015); the Block-chain and Data Security Governance Engineering 

Research Center of Yunnan Provincial Department of Education; the Postgraduate 

Research and Innovation Foundation of Yunnan University (KC-22222861). 

References 

[1] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin. A survey of community search 

over big graphs. The VLDB Journal, 2020; 29: 353-392. 
[2] Y. Fang, K. Wang, X. Lin, and W. Zhang. Cohesive subgraph search over large heterogeneous 

information networks. Springer, 2022. 

[3] Y. Fang, K. Wang, X. Lin, and W. Zhang. Cohesive subgraph search over big heterogeneous information 
networks: Applications, challenges, and solutions. In: 2021 International Conference on Management of 

Data, 2021, pp. 2829-2838. 

[4] J. Chen, and J. Gao. VICS-GNN: A visual interactive system for community search via graph neural 
network. In: 38th International Conference on Data Engineering, 2022, pp. 3150-3153. 

[5] J. Wang, L. Zhou, X. Wang, L. Wang, and S. Li. Attribute-sensitive community search over attributed 

heterogeneous information networks. Expert Systems with Applications, 2024; 235: 121153. 
[6] Y. Fang, C. Cheng, S. Luo, and J. Hu. Effective community search for large attributed graphs. 

Proceedings of the VLDB Endowment, 2016. 

[7] X. Huang, and L. V. Lakshmanan. Attribute-driven community search. Proceedings of the VLDB 
Endowment, 2017; 10(9): 949-960. 

[8] B. Liu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang. Efficient community search with size constraint. In: 

37th International Conference on Data Engineering, 2021, pp. 97-108. 
[9] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. 

IEEE Transactions on Neural Networks, 2008; 20(1): 61-80. 

[10] T. N. Kipf, and M. Welling. Semi-supervised classification with graph convolutional networks. 
International Conference on Learning Representations, 2017. 

[11] 
International Conference on Learning Representations, 2018. 

[12] F. Hashemi, A. Behrouz, and M. Rezaei Hajidehi. CS-TGN: Community search via temporal graph neural 

networks. In: Companion Proceedings of the ACM Web Conference, 2023, pp. 1196-1203. 
[13] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural representation learning on 

dynamic graphs via self-attention networks. In: 13th International Conference on Web Search and Data 

Mining, 2020, pp. 519-527. 
[14] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on temporal 

graphs. arXiv preprint arXiv:2002.07962, 2020. 

[15] J. Gao, J. Chen, Z. Li, and J. Zhang. ICS-GNN: Lightweight interactive community search via graph 
neural network. Proceedings of the VLDB Endowment, 2021; 14(6): 1006-1018. 

[16] L. Li, Y. Zhao, Y. Li, F. Wahab, and Z. Wang. The most active community search in large temporal 

graphs. Knowledge-Based Systems, 2022; 250: 109101. 
[17] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph attention network. 

In: World Wide Web, 2019, pp. 2022-2032. 

Y. Song and L. Zhou / A Graph Neural Network-Based Community Search System 149


	1. Introduction
	2. System Overview
	2.1. Front-end
	2.2. Back-end

	3. Effectiveness Evaluation
	4. Demonstration Scenario
	5. Conclusion
	Acknowledgments
	References

