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Abstract. Rayleigh wave inversion plays a role in near-surface exploration at high 
resolution. Conventional dispersion curve inversion methods require to extract the 
dispersion curves manually, and their success depends heavily on personal 
experience. Mode misidentification is easily occurred in frequency-velocity 
spectrum with complex geological conditions, which increases the difficulties to 
extract the accurate dispersion curve. Full waveform inversion (FWI) is a 
prospective approach to resolve complex stratigraphic inversions avoiding manual 
dispersion curve extraction. However, the current application of FWI is limited by 
several factors, such as cycle-skipping issues, seismic source estimation, 
dependence on the initial model. Frequency-velocity spectrum inversion (FVSI) is 
another potential approach for solving complex near-surface problems. The 
objective function of FVSI is the residual of frequency-velocity spectrum, which 
makes it unnecessary to extract the dispersion curve manually. In this paper, we 
present an improved particle swarm optimization (IPSO) for Rayleigh wave FVSI. 
Compared with traditional particle swarm optimization (PSO), we reduce the swarm 
size in the later iterations, which enhances the inversion efficiency; we replace the 
invalid particles with valid ones, which improves the global search capability. The 
application of both synthetic and field data has achieved good results, demonstrating 
the applicability and practicability of the IPSO method. 

Keywords. Rayleigh wave; improved particle swarm optimization; frequency-
velocity spectrum inversion; stochastic evolution; invalid particle eliminating 

1. Introduction 

Rayleigh wave exploration is considered to be an efficient method for reconstructing the 

near-subsurface at high resolution. The multichannel analysis of surface waves (MASW) 

method [1] is currently the most widely used Rayleigh wave exploration method. The 

MASW needs to obtain the dispersion curve manually and invert the S-wave velocity 

profiles by the extracted dispersion curve [2]. The extraction of dispersion curve depends 
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highly on subjective judgement and personal experience. Energy mixing and pseudo 

multi-mode are easily occurred in the spectrum with complex geological conditions, 

making it difficult to manually extract accurate dispersion curves [3]. Additionally, since 

the calculation of theoretical dispersion curves is based on the assumption of one-

dimensional layered model [4, 5, 6], dispersion curve inversion can only solve the 

problem of horizontal (or near-horizontal) layered medium, which is often not the case 

in real strata.  

Full waveform inversion (FWI) is an attractive geophysical exploration method of 

inverting the earth model by directly fitting the waveform [7]. FWI does not need to 

extract the dispersion curve manually and has no restriction on the media distribution, 

thus, it is considered a promising application and has rapidly developed in recent years 

[8, 9, 10]. However, FWI is a multi-parameter, multi-extremal and multi-modal problem, 

and the inversion is always non-linear and non-unique, which is presently limited in field 

data application [11]. FWI is currently challenged by several elements, such as a high 

dependence on the initial model, the cycle-skipping problem, and the difficulty of 

estimating the seismic source in field data. Many studies have been conducted on these 

issues [12, 13, 14], but the application of FWI in field data is still challenging at present. 

Frequency-velocity spectrum inversion (FVSI) is a method of constructing the earth 

model via fitting the frequency-velocity spectrum (FVS) directly [15, 16, 17, 18]. We 

convert the waveform to FVS via phase-shift transform [19] in this paper, which enlarges 

the details of the dispersion compared to the frequency-wavenumber spectrum [20]. 

Compared with MASW, the FVS contains richer Rayleigh wave propagation information, 

and there’s no need to extract the dispersion curve manually [21], thus, the inversion 

result of FVSI is more accurate and objective than that of MASW. Compared with FWI, 

the objective function of FVSI is less bumpy [22], and the relationship between FVS and 

S-wave velocity is more quasilinear than that between waveform and S-wave velocity 

[23]. 

The strategies used for FVSI can be divided into gradient-based local optimal 

algorithms and stochastic evolution-based global optimal algorithms. In general, local 

optimization is efficient but highly dependent on the initial model, and global 

optimization is inefficient but less dependent on the initial model. Particle swarm 

optimization (PSO), a typical stochastic evolution-based global optimal algorithm [24, 

25], has been successfully used in FVSI. In this paper, we propose an improved particle 

swarm optimization (IPSO) for FVSI based on the study of Le (2024) [26]. In IPSO, we 

set a large swarm size in the early iterations, which gives the algorithm a wide search 

space; we reduce the swarm size in the later iterations, which enhances the inversion 

efficiency. The particles are gradually concentrated in the later iterations, and we refer 

the particles with close parameters but larger misfits as invalid particles, because they 

have litter effect on the inversion result. We find the invalid particles and replace them 

with the same number of randomly generated valid particles. Compared with traditional 

PSO, IPSO has less computation, higher efficiency, and better capability of searching for 

globally optimal solutions. We obtain good results in both synthetic and field data 

inversion through the proposed IPSO strategy, which suggests that it is an effective and 

practicable tool for retrieving the subsurface structure. 
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2. Methodologies 

Since the FVSI via PSO strategy has been described in detail by Le (2024) [26], we 

briefly introduce it in this paper. The main process of FVSI in this paper can be 

summarized as follows: 

(1) Initial model generation. 

The gradient-based local optimal inverse strategies always require a fixed initial 

model, and their inversion results vary depending on the initial model settings, which 

always lead to inversion failure when the initial model settings are unreasonable. 

However, the PSO (or IPSO) algorithm has no need to manually set up the initial model, 

but generates it randomly within a given range. 

(2) Objective function calculation. 

Getting the waveform of the trial model via the finite-difference method [27, 28]; 

changing waveform to FVS through phase-shift transform [19]; the objective function 

(or misfit) is the root-mean-square error (RMSE) of the theoretical and observed FVS.  

(3) Iterative model updating. 

Updating the trial model iteratively until the objective function is sufficiently small 

or the iteration number reaches the maximum. 

2.1 PSO method 

PSO is a typical stochastic evolutionary algorithm inspired by the behavior of a flock of 

birds searching for food [24]. Each iteration of the PSO algorithm contains several 

hundred models, the individual model is called a particle, and all the particles called a 

swarm. We judge the merit of the particles by their objective functions, a particle with a 

small objective function will have a higher probability of participating in evolution. 

The objective function of FVSI is the l2-norm of the observed and predicted FVS 

(Eqs. (1) and (2)). 

2

2pre obs
S S                                 (1) 

( )S Ψ u
                                 (2) 

where Φ denotes the objective function; S is the FVS; Spre and Sobs are the predicted and 

observed FVS, respectively; u represents the time-domain waveform; The symbol Ψ 

denotes the phase-shift transform; the symbols 
2

 and  denote the l2-norm and 

modulus of a vector, respectively. 
Since other parameters are less important in Rayleigh wave inversion [1], we only 

invert the S-wave velocity and layer thickness. For instance, a 4-horizontal-layered 

model has 7 variables (4 velocities and 3 thicknesses). The PSO method does not need 

to manually set the initial model, which will be randomly and automatically generated 

by Eqs. (3) and (4). 
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where i

s
V  and i

Thk  are the S-velocity and layer thickness of the ith layer, respectively; 

min

s
V and max

s
V  are the minimum and maximum of the S-wave velocity, respectively; 

min

Thk  and max

Thk  are the minimum and maximum of the layer thickness, respectively; 

r is a random number uniformly distributed in the range (0, 1). We set min

s
V  and max

s
V  

to 100 m/s and 700 m/s respectively, and set min

Thk   and max

Thk   to 1 m and 12 m 

respectively. 

In PSO, a trial model is called positions (p), and each position contains a series of 

variables for velocity and layer thickness. Each position has a cost value equal to its 

objective function (Eq. (1)). The position is iteratively updated via Eqs. (5) and (6). 

1 1 

 

k k k

i i i
p p v                          (5) 

1

1 1 2 2
( ) ( )



    

k k k k k k

i i i i i
v v a r pbest p a r gbest p             (6) 

where i is the number of particles; k is the number of iterations; k
gbest  is the previous 

best position of the entire swarm at the kth iteration; k

i
pbest  is the previous best position 

of the ith particle at the kth iteration; k

i
p   and k

i
v   are the position and position-

increment of the ith particle at the kth iteration, respectively; ω is the inertia weight; 
1
a  

and 
2

a   denote the local and global factors, respectively; 
1
r   and 

2
r   represent the 

random numbers uniformly distributed in the range (0, 1). We set the PSO parameters as 

(
1 2

, , a a ) = (0.729, 1.494, 1.494) [29] in this paper. The setting of parameters is not 

unique, readers may need to set them reasonably according to the corresponding physical 

problems, there is no magical solution that is suitable for all cases [30, 31]. 

2.2 IPSO method 

The main steps of IPSO are the same as traditional PSO, the key difference is that the 

IPSO method improves the inversion efficiency by reducing swarm size in the later 

iterations, and improves the global optimal solution searching capability by replacing the 

invalid particles with the valid ones. 

We judge two particles to be similar if their cost (equal to the objective function, Eq. 

(1)) and RMSEV (the RMSE of the model’s S-wave velocities) are close to each other, 

and the particle with the larger cost is called invalid particle. Performing similarity 

determination on all particles in the swarm, and the particles retained after eliminating 

all invalid particles are called valid particles. The particles tend to concentrate as the 

number of iterations increases, and invalid particles take up a large number in the later 

iterations. The invalid particles contribute little to the iteration, but have the same 

computation with the valid ones, thus need to be replaced with the newly generated valid 

ones. Since the particle similarity judgement is computationally huge, we need to do it 

after the particles have converged sufficiently, therefore, we perform one invalid particle 

judgement and replacement every several iterations (N). 
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We record the S-wave velocity at depth intervals of 0.1 m for the strata model within 

a depth of 40 m, and calculate the RMSE of the S-wave velocities between the inverted 

and true models (Eq. (7)). 

2 1/2

1

=( ( ) / )

D

V true inv

i i

i

RMSE V V D



                        (7) 

where V
RMSE   is the RMSE of the model’s S-wave velocities; true

i
V   and inv

i
V   are 

the S-wave velocities of the true and inverted models at the ith depth point, respectively; 

D is the number of depth points. 

The main step of IPSO method for FVSI are briefly described below: 

(1) Importing the initial parameters. 

Importing the necessary parameters, such as early iteration number (K1), later 

iteration number (K2), swarm number in the early iterations (M1), swarm number in the 

later iterations (M2), iteration number for each particles replacement (N), iteration 

termination cost (ΦT), and the weighting factors (
1 2

, , a a ). 

(2) Generating the initial particles and calculating their properties. 

Randomly and automatically generating M1 initial particles within the searching 

space ( min

s
V  , max

s
V  , min

Thk  , max

Thk  ), and calculating the corresponding properties 

such as position (p), position-increment (v), cost (Φ), gbest and pbest. The initial 

position-increments (v) are set to zero, pbest is the particle itself, gbest is the particle 

with the minimal cost in the swarm. 

(3) Iteratively updating the particles for K1 times. 

Calculating new particles basing on the particles’ properties (v, Φ, pbest, gbest) of 

the last iteration, and repeatedly updating the particles (via Eqs. (5) and (6)) for K1 times. 

(4) Selecting M2 new initial particles. 

Selecting M2 particles with the smaller cost as the new initial particles. 

(5) Iteratively updating the particles for K2 times. 

We firstly perform the particle similarity judgement, and eliminate the invalid 

particles. If the number of the remained valid particles is less than M2, we will randomly 

generate the corresponding number of new particles (via Eqs. (3) and (4)). We then 

calculate the new particles’ properties, and repeatedly update the particles (via Eqs. (5) 

and (6)) for K2 times. 

In addition, during the performance of steps (3) and (5), if the cost of a particle is 

less than the termination cost (ΦT), the iteration will be terminated prematurely. The 

flowchart of IPSO is shown in Figure 1, the parameters using in this study is shown in 

Table 1. 
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Figure 1. The flowchart of IPSO. 

Table 1. Parameters of IPSO. 

K1 K2 M1 M2 N � a1 a2 

20 80 128 64 20 0.729 1.494 1.494 

Table 2. Parameters of the M1 model. 

Layer No. S-wave velocity (m/s) Thickness (m) Poisson’s ratio Density (g/cm3) 

1 300 5 0.35 2.0 
2 200 10 0.35 2.0 
3 300 10 0.35 2.0 
4 400 ∞ 0.35 2.0 

3. Effectiveness analysis 

We set up a theoretical model (denoted as M1 model) in Table 2, and we will use its 

theoretical FVS (shown in Figure 2) as the observed data for all the following synthetic 

examples. To reduce the influence of the source energy differences on inversion, the FVS 

has been normalized between 0 and 1. Since density and Poisson’s ratio are less important 

in Rayleigh wave inversion, we set them to fixed values. We perform the FVSI via PSO 

method with the same weighting factors (
1 2

, , a a ) as the IPSO method (shown in Table 

1). We set the other parameters in PSO inversion with the number of the maximum 

iterations of 100 (K), and the number of particles in the swarm of 128 (M). 

We judge two particles are similar if the absolute value of the cost difference (ΦR) 

is less than 0.02, and the absolute value of the RMSEV difference (RMSEV-R) is less than 

10 m/s. The similar particles take up a lot of computational resources but have little effect 
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on the inversion results. We show two groups of particles with similarities in Table 3 and 

Figure 3. 

 

Figure 2. The FVS of M1 model. 

Table 3. Parameters of the similar particles (corresponding models). 

Model Vs
1
 Vs

2
 Vs

3
 Vs

4
 Thk

1
 Thk

2
 Thk

3
 Φ Φ

R
 RMSE

V-R
 

T1 172 219 359 554 5.1 3.0 3.2 0.1506 

0.0017 7.6 

T2 169 223 360 552 5.2 3.0 3.1 0.1523 

T3 170 218 351 572 5.4 2.9 3.3 0.1482 

0.0145 7.5 

T4 167 213 358 573 5.4 2.8 3.4 0.1627 

 

Figure 3. The comparisons of the similar particles (corresponding models). 

In Table 3, the Vsi and Thki are the S-wave velocity and thickness of the ith layer 

respectively (i = 1, 2, 3, 4); Φ is the cost equal to the RMSE of FVS; ΦR is the absolute 

value of the cost difference; RMSEV-R is the absolute value of the RMSEV difference. We 

can see that the cost of T2 (Φ = 0.1523) is larger than that of T1 (Φ = 0.1506), so the 

particle corresponding to T1 model is called valid particle, and the particle corresponding 

to T2 model is called invalid particle. Similarly, the particle corresponding to T3 model 

is called valid particle, and the particle corresponding to T4 model is called invalid 

particle. 

 

 

(a) (b) 
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The invalid particles will be eliminated, and the particles that remain after 

eliminating all the invalid particles are called valid particles. We respectively regard the 

cost and RMSEV as the horizontal and vertical coordinates, and the particles spatial 

distribution during PSO inversion is shown in Figure 4. It is obvious that as the iterations 

increase, the particles tend to concentrate and the valid particles gradually decrease. In 

other words, there is a large number of invalid computations performed in the later 

iterations in traditional PSO inversion. Therefore, it is reasonable and efficient that we 

eliminate the invalid particles and supplement them with randomly generated valid 

particles. 

 

 

 

Figure 4. The particles spatial distribution that changes with iteration. (a), (b), (c), (d), (e) and (f) denote the 

particle distributions of the 1st, 20th, 40th, 60th, 80th and 100th iterations. The blue points represent all the 

particles of the swarm, which are 128 in each iteration. The red circles represent the valid particles, which are 

128, 88, 61, 42, 26 and 14, respectively. 

We take the 60th and 80th iterations in Figure 4 as an example to show the effect of 

supplementing the randomly generated valid particles, and their results are shown in 

Figure 5. We see that the particles supplementation increases the valid particles 

significantly, which improves the capability of the algorithm to search for globally 

optimal solutions. 

 

(e) (f) 

(a) (b) 

(c) (d) 
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Figure 5. The particles spatial distribution before and after particles supplementation. (a) and (c) represent 

the particle distributions of the 60th and 80th iterations before particles supplementation. (b) and (d) represent 

the particle distributions of the 60th and 80th iterations after particles supplementation. The blue points 

represent all the particles of the swarm, which are 128 in each iteration. The red circles represent the valid 

particles, which are 42, 64, 26 and 64, respectively. 

4. Synthetic example 

We perform a comparison between PSO and IPSO inversions to verify the superiority of 

the IPSO method. We use the theoretical FVS (Figure 2) as the observed data, and then 

perform the FVSI via PSO and IPSO methods respectively. The PSO and IPSO inverted 

FVS are shown in Figure 6 and Figure 7, respectively; the model parameters are shown 

in Table 4; the model and iterative error curve comparisons are shown in Figure 8. 

 

(a) (b) 

(a) 

(c) (d) 
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Figure 6. The FVS of PSO inversion in synthetic data. (a) is the comparison of observed and inverted FVS, 

where the background colors and overlapped contour lines represent the observed and inverted FVS, 

respectively. (b) is the absolute of the FVS residuals. 

 

 

(b) 

(a) 

(b) 

Figure 7. The FVS of IPSO inversion in synthetic data. (a) is the comparison of observed and inverted FVS, 

where the background colors and overlapped contour lines represent the observed and inverted FVS, 

respectively. (b) is the absolute of the FVS residuals. 
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Figure 8. The model and iterative error curve comparisons for PSO and IPSO in synthetic data inversions. 

(a) is the model comparison, where M1-True represents the true model, M1-PSO represents the PSO inverted 

model, and M1-IPSO represents the IPSO inverted model. (b) is the iterative error curves comparison, where 

M1-PSO represents the PSO inverted result, and M1-IPSO represents the IPSO inverted result. 

Table 4. The comparison of model parameters in synthetic data inversion. 

Model Vs
1
 Vs

2
 Vs

3
 Vs

4
 Thk

1
 Thk

2
 Thk

3
 

Φ 

RMSE
V
 

M1-True 300 200 300 400 5 10 10 0 0 

M1-PSO 302 203 298 403 4.8 9.9 10.1 0.0683 13.4 

M1-IPSO 299 202 298 401 4.9 10.2 10.2 0.0436 11.3 

In Table 4, the RMSE of the spectrum for IPSO inversion (Φ = 0.0436) is less than 

that of PSO inversion (Φ = 0.0683), and the RMSE of the models’ S-wave velocities for 

IPSO inversion (RMSEV = 11.3) is also less than that of PSO inversion (RMSEV = 13.4), 

which indicates that the inversion result of IPSO is more accurate than that of PSO. In 

Figure 8, the PSO inversion converges at the 55th iteration, and the IPSO inversion 

converges at the 50th iteration, which means the IPSO method is more efficient than the 

PSO method. 

In addition, for the PSO inversion, the number of particles is 128 (M), the number 

of iterations is 100 (K), and the total number of forward modeling is 12928 (= 128 + 128 

* 100). In contrast, for the IPSO inversion (adopting the parameters in Table 1), the 

number of particles is 128 (M1 = 128) for the early iterations (K1 = 20), and reduces to 

64 (M2 = 64) for the later iterations (K2 = 80), thus, the total number of forward modeling 

is 7808 (= 128 + 128 * 20 + 64 * 80). Compared to traditional PSO, IPSO method is less 

computational and more efficient. 

5. Field data application 

In order to further test the effectiveness of the IPSO method for field data application, 

we acquire the seismic data from Wuhan, Hubei Province, China, over a wide area of 

undisturbed stratigraphy. We collect the seismic records by a 24-channel seismograph 

with 4.5 Hz vertical geophones, and using an 18-pound hammer as the seismic source. 

The geophones are arranged at equal intervals with a spacing of 1 m, and the minimum 

distance between the geophones and the source is 4 m. Each channel has 2048 sampling 

points with a sampling interval of 0.2 ms. 

 

 

(a) (b) 
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According to the available borehole data, the stratigraphy of the survey area is 

roughly divided into three layers, i.e., the 1st layer of loose clay (depth from 0 to 7.1 m), 

the 2nd layer of coarse sand (depth from 7.1 to 12.2 m), and the 3rd layer of sandstone 

(depth greater than 12.2 m). To improve the inversion difficulty, we set the inversion 

model to 4 layers and test the effect of the IPSO method when the number of inversion 

layers is unknown. The field seismic records and corresponding FVS are shown in Figure 

9. We respectively perform the FVSI via PSO and IPSO methods, the FVS comparisons 

are shown in Figure 10 and Figure 11, the corresponding model comparisons are shown 

in Figure 12, and the model parameter statistics is shown in Table 5. We see that the PSO 

and IPSO inverted FVS match well with the measured FVS (Figure 10 and Figure 11), 

and the inverted models also agree well with the borehole (Figure 12), which suggests 

that the IPSO method is accurate and reliable. 

 

Figure 9. The waveform and FVS of the field data. (a) is the waveform. (b) is the corresponding FVS. 

 

 

(a) 

(b) 
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In addition, the first layer of the real stratigraphy is divided into two layers with 

similar velocities in the inverted model, which shows that the IPSO method still performs 

well when the number of inversion layers is unknown. As shown in Figure 12(b) and 

Table 5, the PSO inversion converges at the 60th iteration with a minimum misfit value 

of 16.56, while the IPSO inversion converges at the 52th iteration with a minimum misfit 

value of 13.65, which suggests the IPSO method is more accurate and efficient than the 

PSO method. 

 

Figure 10. The FVS of PSO inversion in field data. (a) is the comparison of observed and inverted FVS, 

where the background colors and overlapped contour lines represent the observed and inverted FVS, 

respectively. (b) is the absolute of the FVS residuals. 

(a) 

(b) 
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Figure 11. The FVS of IPSO inversion in field data. (a) is the comparison of observed and inverted FVS, 

where the background colors and overlapped contour lines represent the observed and inverted FVS, 

respectively. (b) is the absolute of the FVS residuals. 

 

Figure 12. The model and iterative error curve comparisons for PSO and IPSO in field data inversions. (a) 

is the model comparison, where the black dashed lines and texts represent the borehole, the blue lines and 

texts represent the PSO inverted model, and the red lines and texts represent the IPSO inverted model. (b) is 

the iterative error curves comparison, where the red dots and lines represent the PSO inverted result, and the 

blue dots and lines represent the IPSO inverted result. 

(a) 

(b) 

(a) (b) 
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Table 5. The comparison of model parameters in field data inversion. 

Model Vs
1 Vs

2 Vs
3 Vs

4 Thk
1 Thk

2 Thk
3 Φ 

Borehole — — — — — 7.3 5.1 — 

PSO 190 198 289 582 3.5 3.8 4.1 0.1656 

IPSO 186 205 272 569 3.6 3.7 5.1 0.1365 

6. Conclusions 

We propose an IPSO method for Rayleigh wave FVSI, and achieve good results in both 

synthetic and field examples. Compared with traditional PSO, the IPSO has a large 

swarm size in the early iterations, and a smaller swarm size in the later iterations. A large 

swarm size helps to improve the capability of searching for globally optimal solutions, 

and a smaller swarm size helps to make the inversion more efficient. We introduce a 

criterion for judging similar particles in FVSI, and the similar particles have equal 

amounts of computation but have litter effect on the inversion results. We enhance the 

ability of searching for global solutions by eliminating invalid particles and randomly 

generating valid particles, which makes the inversion results more accurate. The good 

results from synthetic and field examples indicate that the IPSO is an effective and 

practicable method for Rayleigh wave FVSI, and the application in this paper is just one 

of the scenarios of the method, and we look forward to more people using the IPSO 

method in more areas. 

Acknowledgements 

This study is funded by the National Natural Science Foundation of China (No. 

41674142). 

References 

[1] Xia, J., Miller, R.D., Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh 
wave. Geophysics. 1999; 64: 691–700. 

[2] Xia, J. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis 
of surface-wave methods. Journal of Applied Geophysics. 2014; 103: 140–151. 

[3] Zhang, S.X. Effective dispersion curve and pseudo multimode dispersion curves for Rayleigh wave. 
Journal of Earth Science. 2011; 22: 226–230. 

[4] Knopoff, L. A matrix method for elastic wave problems. Bulletin of the Seismological Society of America. 
1964; 54: 431–438. 

[5] Chen, X. A systematic and efficient method of computing normal modes for multi-layer half-space. 
Geophysical Journal International. 1993; 115: 391–409. 

[6] Wang, J., Wu, G., Chen, X. Frequency-Bessel transform method for effective imaging of higher-mode 
Rayleigh dispersion curves from ambient seismic noise data. Journal of Geophysical Research: Solid 
Earth. 2019; 124: 3708–3723. 

[7] Tarantola, A. Inversion of seismic reflection data in the acoustic approximation. Geophysics. 1984; 49: 
1259–1266. 

[8] Groos, L., Schäfer, M., Forbriger, T., et al. Application of a complete workflow for 2D elastic full-
waveform inversion to recorded shallow-seismic Rayleigh waves. Geophysics. 2017; 82: R109–R117. 

H. Yan et al. / IPSO for Rayleigh Wave Frequency-Velocity Spectrum Inversion 307



 

 

[9] Pan, Y., Gao, L., Bohlen, T. Time-domain full-waveform inversion of Rayleigh and love waves in presence 
of free-surface topography. Journal of Applied Geophysics. 2018; 152: 77–85. 

[10] Yan, Y., Wang, Z., Li, J., Huai, N., et al. Elastic SH- and Love-wave Full-Waveform Inversion for shallow 
shear wave velocity with a preconditioned technique. Journal of Applied Geophysics. 2020; 173: 103947. 

[11] Le, Z., Song, X., Zhang, X., et al. Multi-objective particle swarm optimization for Rayleigh wave full 
waveform inversion. Journal of Applied Geophysics. 2023; 215: 105096. 

[12] Yuan, Y.O., Simons, F.J., Bozdağ, E. Multiscale adjoint waveform tomography for surface and body waves. 
Geophysics. 2015; 80 (5): R281–R302. 

[13] Gao, L., Pan, Y. Source signature estimation from multimode surface waves via mode-separated virtual 
real source method. Geophysical Journal International. 2018; 213: 1177–1186. 

[14] Wang, T., Guan, J., Yang, Z., et al. Utility tunnel detection by 2D elastic PSV/Rayleigh-wave multi-
parameter full waveform inversion. Journal of Applied Geophysics. 2023; 214: 105087. 

[15] Solano, C.P., Donno, D., Chauris, H. 2D surface wave inversion in the F-K domain. In 75th EAGE 
Conference and Exhibition incorporating SPE EUROPEC. 2013. 

[16] Pérez Solano, C., Donno, D., Chauris, H. Alternative waveform inversion for surface wave analysis in 2-
D media. Geophysical Journal International. 2014; 198(3): 1359–1372. 

[17] Dal Moro, G., Moura, R.M.M., Moustafa, S. Multi-component joint analysis of surface waves. Journal of 
Applied Geophysics. 2015; 119: 128–138. 

[18] Zhang, Z., Saygin, E., He, L., et al. Rayleigh Wave Dispersion Spectrum Inversion Across Scales. Surveys 
in Geophysics. 2021; 42: 1281–1303. 

[19] Park, C.B., Miller, R.D., Xia, J. Imaging dispersion curves of surface waves on multi-channel record. SEG 
Technical Program Expanded Abstracts. 1998; 1377–1380. 

[20] Foti, S., Hollender, F., Garofalo, F., et al. Guidelines for the good practice of surface wave analysis: a 
product of the Inter PACIFIC project. Bulletin of Earthquake Engineering. 2018; 16 (6): 2367–2420. 

[21] Li, J., Hanafy, M.S. Skeletonized inversion of surface wave: active source versus controlled noise 
comparison. Interpretation. 2016; 3: 11–19. 

[22] Li, J., Feng, Z., Schuster, G. Wave-equation dispersion inversion. Geophysical Journal International. 2017; 
208 (3): 1567–1578. 

[23] Zhang, Z., Schuster, G.T., Liu, Y., et al. Wave equation dispersion inversion using a difference 
approximation to the dispersion-curve misfit gradient. Journal of Applied Geophysics. 2016; 133: 9–15. 

[24] Kennedy, J., Eberhart, R.C. Particle Swarm Optimization. Proceedings of the IEEE International 
Conference on Neural Networks. 1995; 4: 1942–1948. 

[25] Shi, Y., Eberhart, R.C. Parameter selection in particle swarm optimization. Evolutionary Programming. 
1998; VII: 591–600. 

[26] Le, Z., Song, X., Zhang, X., et al. Particle swarm optimization for Rayleigh wave frequency-velocity 
spectrum inversion. Journal of Applied Geophysics. 2024; 222: 105311. 

[27] Virieux, J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. 
Geophysics. 1986; 51 (4): 889–901. 

[28] Bohlen, T. Parallel 3-D viscoelastic finite-difference seismic modeling. Computers & Geosciences. 2002; 
28: 887–899. 

[29] Clerc, M.A., Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional 
complex space. IEEE Transactions on Evolutionary Computation. 2002; 6 (1): 58–73. 

[30] Fernández Martínez, J.L., García Gonzalo, E., Fernández Álvarez, J.P., et al. PSO: a powerful algorithm 
to solve geophysical inverse problems: application to a 1D-DC resistivity case. Journal of Applied 
Geophysics. 2010; 71: 13–25. 

[31] Ai, H., Essa, K.S., Ekinci, Y.L., et al. Magnetic anomaly inversion through the novel barnacles mating 
optimization algorithm. Scientific Reports. 2022; 12: 22578. 

H. Yan et al. / IPSO for Rayleigh Wave Frequency-Velocity Spectrum Inversion308


