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Abstract. The multi-source partial discharge PRPD pattern can realize the pattern 

recognition of multi-source partial discharge types through the target detection al-

gorithm training and identification of shape features. However, when the 

characteristics of different discharge pattern overlap, the small target is easily 

blocked by the large target, resulting in false detection and missed detection. 

Therefore, this paper proposes a multi-source partial discharge PRPD pattern iden-

tification algorithm with optimized non-maximum suppression. The Soft-NMS 

algorithm was introduced to solve the missed detection caused by overlapping tar-

gets; GIoU was used to replace the traditional IoU to calculate the similarity 

between targets and the loss function was optimized; the YOLOv7 network model 

was further built to identify the PRPD pattern of four typical discharges shape 

features. After cross-validation between simulation experiments and charged field 

data, the results prove that the average detection accuracy of the algorithm can 

reach 98.2% in simulation experiments and 88.4% in field experiments, effectively 

reducing the false detection rate and successfully identifying the characteristics of 

multi-source local discharge PRPD pattern when the targets overlap. 

Keywords: Multi-source partial discharge; Target detection; PRPD Pattern; 
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1. Introduction 

Gas Insulated Switchgear (GIS) is an indispensable component of the power system, 

renowned for its high voltage resistance, stability, and compact size [1]. Its introduction 

has supplanted numerous conventional and aging substations [2]. In most conventional 

substations, the majority of conductors are exposed, directly connecting electrical 

equipment [3]. This exposed connection method entails significant potential safety 

risks. In contrast to traditional substations, GIS offers advantages such as small foot-

print, extended maintenance cycles, minimal environmental interference, and 

exceptional stability, which are not inherent in traditional substations [4]. 
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However, despite the significant advantages of GIS mentioned above, long-term 

practical operation has revealed that there are still deficiencies and potential hazards 

associated with GIS in substations due to various factors such as dust, metallic particles, 

corona discharge, gas voids, and bubbles [5]. These issues are difficult to avoid during 

the manufacturing, processing, transportation, and installation of GIS equipment. In the 

complex environment of high temperature and high pressure in the power system, var-

ious forms of partial discharge (PD) will occur in high-voltage equipment during 

long-term operation [6]. According to statistics from the China Electric Power Re-

search Institute, the proportion of power system accidents caused by partial discharge 

increased annually, reaching 17.6%, 35.7%, and 45.0% from 2021 to 2023, respectively. 

Therefore, early detection of partial discharge occurrences and the identification of 

partial discharge types based on the characteristics of partial discharge signals associ-

ated with different insulation defects can guide the troubleshooting and operation 

management of GIS equipment [7].  

The pattern recognition of partial discharge types has always been a fundamental 

issue in GIS Partial Discharge diagnosis, as identifying the type of PD occurring assists 

maintenance personnel in making timely targeted interventions [8]. Traditional pattern 

recognition algorithms typically involve manual feature extraction and classification, 

which heavily rely on human expertise, are subject to strong subjectivity, and exhibit 

low efficiency [9]. Currently, research in this field mainly focuses on single-source PD 

pattern recognition, essentially relying on the application of image classification algo-

rithms [10]. However, image classification algorithms are unable to classify a single 

Phase-Resolved Partial Discharge (PRPD) pattern into multiple PD types [11]. Refer-

ence first proposed using object detection algorithms instead of image classification 

algorithms for training and recognition of PRPD pattern, achieving multi-source PD 

recognition at the PRPD pattern level [12]. However, when partial overlap occurs 

among the PD features in the pattern, it poses significant challenges to object detection, 

leading to cases of missed detections [13-15]. 

Therefore, to address the recognition challenges posed by overlapping targets (i.e., 

overlapping features in the PD pattern) in the current field of multi-source PD recogni-

tion, this paper proposes an optimized multiple-source PD PRPD pattern recognition 

algorithm by integrating the advantages of Soft Non-Maximum Suppression 

(Soft-NMS) algorithm with progressive suppression [16]. The Soft-NMS algorithm is 

introduced to resolve missed detection caused by overlapping targets [17]. Moreover, 

Generalized Intersection over Union (GIoU) is employed to replace traditional evalua-

tion metrics for calculating the similarity between targets, optimizing the loss function. 

Furthermore, a You Only Look Once version 7 (YOLOv7) network model is con-

structed to identify the shape features of PRPD pattern for four typical discharges, 

reducing the missed detection rate when PD features overlap in the pattern and im-

proving the reliability of multi-source PD pattern recognition. 

2. Object Detection Algorithm 

YOLO is a deep learning-based object detection algorithm, and its core idea is to treat 

the entire image as input and predict the classes and bounding boxes of multiple objects 

simultaneously using a single neural network [18]. As an end-to-end algorithm, it can 

be directly trained from raw PRPD pattern, avoiding the cumbersome manual feature 
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extraction process typically associated with traditional pattern recognition methods. 

This simplifies the implementation and training process of the algorithm [19]. 

Different from the partial discharge pattern recognition based on image classifica-

tion algorithms, the object detection algorithm defines the partial discharge pattern 

features in the PRPD pattern as detection targets. It detects each partial discharge fea-

ture in the pattern and generates prediction boxes at the corresponding locations [20]. 

Since the YOLO algorithm can simultaneously predict the categories and positions of 

multiple objects, it can detect various types of partial discharge features simultaneously, 

thereby achieving the goal of detecting different partial discharge features in mul-

ti-source PRPD pattern. The specific algorithm principle is as follows: 

The YOLO algorithm first divides the input PRPD pattern into S×S grids. For 

each grid, it predicts B bounding boxes and the probabilities of the classes of objects 

contained within these bounding boxes. Each bounding box is represented by five pa-

rameters: the center coordinates (x, y), the width (w), the height (h), and the confidence 

score indicating the presence of an object. Finally, NMS algorithm is applied to elimi-

nate duplicate bounding boxes in the prediction results, yielding the final object 

detection results. 

   

(a)                 (b) 

Fig.1 Non-maximum Suppression 

In Figure 1, a multi-source PRPD pattern, which has undergone grayscale pro-

cessing and removed coordinate axes and grids, is depicted. Figure 1(a) illustrates the 

preliminary prediction boxes generated after algorithmic initial detection. Subsequently, 

based on the confidence score of each prediction box, redundant prediction boxes are 

eliminated using the NMS algorithm to obtain the final prediction results. However, in 

cases of target overlap, where two targets' prediction box positions are too close, the 

NMS algorithm may mistakenly classify the prediction box of the other target as re-

dundant and remove it, resulting in missed detections. 

3. The PRPD Pattern Recognition Algorithm based on Soft-NMS 

This paper presents an optimized algorithm for multi-source partial discharge PRPD 

pattern recognition. It employs the YOLOv7 object detection algorithm for training and 
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recognizing multi-source partial discharge features. The workflow of the algorithm is 

depicted in Figure 2. The algorithm workflow includes: 

1.Establishing an experimental platform, designing four types of partial discharge 

defects, training the model using single-source partial discharge PRPD pattern, and 

testing the algorithm using multi-source PRPD pattern. 

2.Preprocessing the data, including grayscale conversion, normalization, and di-

mensionality reduction. 

3.Employing the YOLOv7 algorithm for object detection, replacing traditional 

image classification algorithms. 

 

Fig.2 Algorithm Process 

3.1. YOLOv7 

Target detection is a critical task in recognizing pattern features in multi-source partial 

discharge PRPD pattern [21]. YOLOv7 is an efficient target detection algorithm, 

known for its improved accuracy and speed. In this paper, we focus on analyzing the 

advantages of YOLOv7 when dealing with overlapping targets. 

YOLOv7 introduces Anchor-Scaled YOLOv7, where "Anchor" refers to predicted 

boxes. These boxes cover potential positions and sizes of pattern features. YOLOv7 

treats each predicted box as an anchor, predicting the positions and sizes of partial dis-

charge features [22]. The network structure the algorithm is depicted in Figure 3 Its 

network structure includes Input, Backbone, Neck, and Head networks. The Input sec-

tion involves Mosic data augmentation and adaptive anchor box computation. Mosic 

randomly selects and processes multiple PRPD pattern to enrich the dataset and im-
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prove robustness. During training, predicted boxes are generated based on initial an-

chor boxes and compared with ground-truth boxes to calculate the loss function. 

 

Fig.3 YOLOv7 network structure 

The Backbone network is responsible for extracting image features, the Neck 

network merges these features, and the Head network predicts the position, size, and 

class information of target objects. YOLOv7 also introduces a technique called Spatial 

Pyramid Pooling (SPP) for feature extraction at different scales, as shown in Figure 4. 

SPP is a spatial pyramid pooling structure that uses max-pooling with kernels 

k={13×13, 9×9, 5×5, 1×1}, followed by concatenation of multi-scale feature maps. 

This effectively increases the receptive field of the backbone features, separating spa-

tial features. These features, after multiple convolutions and pooling, are fed into the 

Head network for object detection. Additionally, YOLOv7 introduces techniques such 

as weakly supervised learning, label smoothing, and MixUp to further enhance the ac-

curacy and robustness of the model. 

When multiple overlapping feature maps are present, traditional object detection 

algorithms often encounter issues such as false positives or missed detections. However, 

YOLOv7 offers several advantages for better handling overlapping targets: 

Firstly, YOLOv7 employs the Anchor-Scaled YOLOv7 algorithm, utilizing multi-

ple prior boxes of different sizes and aspect ratios for detecting targets. This allows the 

algorithm to be more sensitive to variations in target sizes, thus better adapting to over-

lapping targets. 

 

Y. Fang et al. / Optimized Non-Maximum Suppression98



 

 

Fig.4 SPP network structure 

Secondly, the Head network in YOLOv7 incorporates a branch structure designed 

to handle targets of different sizes. This branch structure can dynamically adjust detec-

tion accuracy and speed, thereby improving the handling of overlapping targets. 

To accurately determine the confidence of detection boxes, this paper introduces 

an IoU prediction mechanism in YOLOv7. This mechanism predicts the IoU value for 

each detection box during object detection. During model training, YOLOv7 utilizes 

CIoU-loss to optimize the model, a loss function that better handles overlapping targets, 

further enhancing the model's accuracy. 

3.2. Soft-NMS Algorithm 

In object detection algorithms, when multiple detection boxes predict the same object, 

overlapping targets occur. Traditional (NMS) algorithms typically employ hard sup-

pression to address overlapping targets. This involves comparing the overlaps of 

detection boxes to select the best one and suppressing redundant boxes. The principle is 

illustrated in Equation 1, where boxes with an IoU greater than a threshold have their 

scores set to 0. IoU represents the intersection over union ratio between different 

bounding boxes. However, when overlapping targets are severe, hard suppression 

methods have drawbacks such as being prone to missing detections and inaccurate 

suppression. This is because they only consider the confidence and overlap of individ-

ual detection boxes, disregarding correlations between multiple detection boxes. 
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In the equation, Si represents the score of the i-th predicted box; M represents the 

box with the highest score; bi represents the -th predicted box; N represents the set 

threshold. 

3.3. GIoU Similarity 

GIoU (Generalized Intersection over Union) is a widely used performance evaluation 

metric in object detection. It is based on a simple and intuitive principle that in the case 

of two overlapping shapes, the area of overlap should be the sum of the areas of the 

two shapes minus their intersection area. Therefore, the GIoU calculation formula 
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comprises three parts: IoU, GIoU, and an IoU compensation term, as shown in Equa-

tion 2: 

( )
o o

C A B
GI U I U

C


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∪
                         (2) 

In the equation, C represents the bounding box that encloses both predicted box A 

and predicted box B. 

Firstly, IoU stands for Intersection over Union, and it is used to measure the ratio 

of the intersection area of two shapes to their union area. Specifically, IoU is calculated 

as the intersection area of the two shapes divided by their union area, as shown in 

Equation 3: 

o

A B
I U

A B


∩

∪
                             (3) 

In the equation, A and B represent two different predicted boxes. 

Next, GIoU stands for Generalized Intersection over Union, which improves IoU 

by considering the distance between the bounding boxes of two shapes. GIoU is calcu-

lated as IoU minus the difference between the area of the minimum enclosing bounding 

box (the smallest rectangle that completely encloses both shapes) and their union area, 

divided by their union area. 

Finally, the IoU compensation term refers to the compensation term in the GIoU 

formula, which is used to avoid unfairness when calculating overlapping targets. Tradi-

tional IoU measurements may lead to inaccuracies in cases of overlapping targets. 

Therefore, the IoU compensation term adjusts the IoU value to reduce errors between 

overlapping targets, mitigating penalties for predicting targets beyond the boundaries. 

This can improve the stability and accuracy of the model. 

4. The Experimental Analysis 

4.1. The Pre-processing 

The pre-processing procedure for collected PD signals is as follows: initially, PD sig-

nals within a 10-second timeframe are acquired using a UHF data acquisition system. 

These signals are then subjected to a specific pattern generation program, resulting in 

the generation of a PRPD map with a resolution of 256×64. In this map, dark regions 

represent the occurrence frequency of signals, while light regions indicate background 

noise, as illustrated in Figure 5(a). Subsequently, the raw PRPD map undergoes de-

noising treatment. By identifying the maximum amplitude of pulses greater than 0 

within each phase interval, a total of 64 values are obtained. The minimum value 

among these 64 values is designated as the baseline noise threshold. Any pulse ampli-

tude below this threshold is then set to 0, effectively eliminating noise signals present 

at the bottom end. The denoising outcome is depicted in Figure 5(b). Following de-

noising, the PRPD map is subjected to phase resolution normalization, pulse count 

normalization, and amplitude normalization, as demonstrated in Figure 5(c). Finally, 

amplitude resampling is performed on the map. The amplitude axis, normalized 

post-resampling, is re-quantized according to a resolution of 64, resulting in the PRPD 

map shown in Figure 5(d), which is saved as a 64×64 two-dimensional array. 
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（a）The original PRPD pattern   （b）The denoised PRPD pattern    

   

（c）The normalized PRPD    （d）The resampled PRPD 

Fig.5 Signal pre-processing 

Due to the color requirements of target detection algorithms for datasets (e.g., if 

the training set uses green pattern images, it can only recognize green pattern images), 

and because pattern saved by different manufacturers may have different colors, di-

rectly using pattern from one manufacturer as the training set would result in a model 

that cannot recognize pattern from other manufacturers, limiting its applicability. To 

enhance the algorithm's generalization and practical utility in engineering applications, 

we opted to standardize the pattern by converting them to grayscale. The grayscale 

representations of four typical partial discharge PRPD pattern are shown in Figure 6. 

        

(a) corona             (b) suspend       

        

 (c) internal            (d) particle 

Fig.6 Grayscale results 
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4.2. Simulation Experiment Analysis 

The PRPD pattern collected from experiments include a total of 756 images, with 154 

images of corona discharge + floating discharge, 126 images of corona discharge + 

internal discharge, 184 images of corona discharge + particle discharge, 137 images of 

floating discharge + internal discharge, and 155 images of floating discharge + particle 

discharge, as shown in Table 1. Due to variations in color and format preservation 

among different manufacturers for PRPD pattern, in order to mitigate the impact of 

color differences on model detection, both the training and testing sets were trans-

formed into grayscale images, and the corresponding channel numbers within the 

model were adjusted accordingly. 

Table 1 presents the distribution statistics of the dataset. A total of 1033 PRPD 

pattern from multiple sources of discharge were collected using the GIS simulation 

experimental platform. Among them, there were 154 images of corona discharge + 

floating discharge, 126 images of corona discharge + internal discharge, 184 images of 

corona discharge + particle discharge, 137 images of floating discharge + internal dis-

charge, and 155 images of floating discharge + particle discharge. Through 

augmentation by Generative Adversarial Networks (GANs), the dataset was expanded 

to include 1540 images of corona discharge + floating discharge, 1260 images of coro-

na discharge + internal discharge, 1840 images of corona discharge + particle discharge, 

1370 images of floating discharge + internal discharge, and 1550 images of floating 

discharge + particle discharge. 

Table 1 Data set distribution 

 Discharge Types 
Number of Samples 

Collecte 

Number of Augmented 

Samples 

Muti-source 

corona+suspend 154 1540 

corona+internal 126 1260 

corona+particle 184 1840 

suspend+internal 137 1370 

suspend+particle 155 1550 

All 756 7560 

The YOLOv7 network was trained using PyTorch on the specified hardware set-

up: GPU GeForce RTX 2060 Ti, CPU AMD Ryzen 7 4800H, running Windows 10 

with CUDA 10.1 and OpenCV 4.5.5. 

The training utilized a dataset split of 80% for training and 20% for validation. 

Training parameters included 300 epochs, with a learning rate of 0.01 for the first 100 

epochs and 0.001 for the remaining 200 epochs. Each batch contained 16 sample im-

ages. 

After training, the network successfully detected objects in the test set, displaying 

bounding boxes and labels for various patternl features, aligning with the experiment's 

objectives.
 

The experimental results are shown in Figure 7.
 

Successful identification of 

different types of partial discharge in multi-source PRPD pattern. 
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(a) corona+suspend         (b) corona+internal 

     

(c) internal+suspend         (d) corona+particle  (e) suspend+particle
 

Fig.7 Detection effect 

Define the following evaluation metrics: mean Average Precision (mAP), Preci-

sion, Recall, and Loss function. The specific formulas are as follows: 
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Define the following evaluation metrics: mean Average Precision (mAP), Preci-

sion, Recall, and Loss function. The specific formulas are as follows: 

Where: 

NTP, NFP, and NFN represent the numbers of true positives, false positives, and 

false negatives respectively. 

AP is the area under the Precision-Recall curve (P-R curve). 

N is the number of detection categories. 

Figure 8 compares the results of using the NMS algorithm and the Soft-NMS al-

gorithm with the YOLOv7 network. As shown in the figure, before optimizing the 

NMS algorithm, the accuracy exhibited large fluctuations and poor convergence, oscil-

lating around 93%; the recall gradually converged after 150 epochs, reaching 97%; the 

loss function steadily decreased, reaching 0.017 after completing 300 training epochs. 

After optimizing Soft-NMS, the accuracy significantly improved to 98%; the recall 
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also reached convergence after 150 epochs with a slight improvement; the loss function 

decreased to 0.013. In summary, all evaluation metrics of the proposed algorithm have 

been improved, and the convergence speed has been accelerated. 

 

(a) mAP              (b) Precision   

 

  (c) Recall          (d) Loss 

Fig.8 Before and after joining Soft-NMS 

Table 2 Comparison of versions 

Model  mAP 

Yolo  0.82 

Yolov2  0.85 

SSD  0.952 

YOLOv5  0.965 

YOLOv7  0.964 

The algorithm proposed in this 

paper 
 0.982 

Table 2 presents the training and prediction results of various object detection al-

gorithms on the dataset. Yolo and Yolov2, being relatively early algorithms, exhibit 

some shortcomings in detection accuracy, with mAP values of only 82% and 85%, re-

spectively. The SSD model shows a significant improvement in detection accuracy, 

reaching up to 95.2%. YOLOv5 and YOLOv7 perform similarly, with the proposed 

algorithm in this paper achieving a mAP of 98.2%. 

5. Conclusion 

This paper proposes an optimized multi-source partial discharge PRPD pattern recogni-

tion algorithm by enhancing NMS using Soft-NMS algorithm to address missed 
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detections caused by overlapping targets. It utilizes GIoU to compute the similarity 

between targets, improving the loss function. Furthermore, a YOLOv7 network model 

is constructed to recognize the characteristic shapes of PRPD pattern for four typical 

discharge types, reducing missed detections caused by overlapping features and en-

hancing the reliability of multi-source partial discharge pattern recognition. 

The effectiveness of the algorithm is validated using a pattern library collected 

from a 220kV field. It successfully detects multiple sources of partial discharge defects, 

achieving an average detection rate of 88.4%, demonstrating robustness. 
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