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Abstract. Machine Learning (ML) models often operate as black-boxes, lacking
transparency in their decision-making processes. Explainable Artificial Intelligence
(XAI) aims to address the rationale behind these decisions, thereby enhancing the
trustworthiness of ML models. In this paper, we propose an extension of the Ex-
plainable ML Workflows ontology, which was designed as a reference ontology
with OntoUML, and implemented as an operational ontology with OWL. The Ex-
plainable ML workflows ontology reuses ML-Schema, which is a core ontology
for representing ML algorithms. We have identified four main issues in the concep-
tualization of this ontology, namely the lack of feature categorization, the lack of
data pre-processing methods, the shallow description of metadata related to train-
ing and testing, and the lack of detailed representation of XAI approaches and met-
rics. We addressed these four issues in the so-called Explainable ML Pipeline On-
tology (XMLPO), which aims to provide a comprehensive description of the ML
pipeline for XAI. XMLPO offers a deeper understanding of the entire ML pipeline,
encompassing data input, pre-processing, model training and testing, and explana-
tion processes. XMLPO was validated through a case study on the prediction of
specific performance indicators in a manufacturing company, and the results of this
validation showed that the ontology helps data scientists to better comprehend a
ML pipeline and the features that influence the ML prediction model the most.

Keywords. Ontology, Explainable AI (XAI), Machine Learning pipeline, Semantics

1. Introduction

Organizations are increasingly turning to Machine Learning (ML) models to develop pre-
dictive or classification models for their data [1]. However, especially when these mod-
els are based on complex structures like neural networks or deep learning they are com-
monly referred to as black-boxes due to their inherent opacity. The lack of transparency
in black-box ML models makes it difficult for their users to understand why the model
predicts or classifies certain outcomes, and to correct erroneous feature selections, cre-
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ating uncertainty about the reliability of the predictions and classifications [2,3]. More-
over, the complexity inherent in these black-box models poses significant challenges for
humans to comprehend the reasoning and methods behind their outcomes [5,6].

Explainable Artificial Intelligence (XAI) encompasses methods and techniques de-
signed to make ML models explicable, interpretable, transparent, and understandable for
humans [7]. Understanding ML models is crucial as it enables users to recognize nec-
essary adjustments in data pre-processing, model training, and testing procedures when
the output is incorrect [8,9]. As stated by Adadi and Berrada (p. 52155, [10]): “It is not
enough to just explain the model, the user has to understand it”.

An ontology can serve as an effective tool for precisely and clearly establishing the
semantics of the essential components of a ML pipeline and explanation processes of an
XAI approach [11]. In the Explainable ML workflows ontology [13], which is based on
an ontological analysis of ML-Schema [14], we described the ML pipeline and model
explanation for the post-hoc approach, in which ML results are explained. However,
from the lessons learned in the first version reported in [13], we have identified four
main issues: (1) the ontology categorizes data as either input or pre-processed without
revealing characteristics such as whether features are numerical or categorical, dependent
or independent; (2) it focuses solely on pre-processed data, ignoring details on data pre-
processing methods such as data cleaning, feature scaling, and encoding; (3) the ‘Specific
Module’ [13], which refers to the implementation of ML models, is too simple, covering
only metadata related to training and testing without considering other ML aspects like
specific models, libraries, and evaluation techniques; (4) the ‘Explanation Module’ [13]
lacks a categorization of XAI approaches, as well as the usage of metrics for evaluating
the generated explanation from the XAI models.

The goal of this paper is to address these limitations with the Explainable ML
Pipeline Ontology (XMLPO), as an extension of the Explainable ML workflows ontol-
ogy [13]. In XMLPO, we improved the description of data input and pre-processing, of
the characteristics of the ML model, of the usage of ML model evaluation techniques,
and of the categorization of the XAI approaches and metrics, providing a comprehensive
description of the entire ML pipeline and XAI techniques. We validated XMPLO through
a case study to predict the performance indicators of an automotive manufacturing com-
pany, in particular the prediction of specific attributes of a product line. The validation
results showed that the ontology properly addressed its requirements, and achieved its
goals. By leveraging this ontology, users can gain a holistic insight into the decision-
making process of the ML model, fostering trust and transparency.

This paper is structured as follows: Section 2 provides background information on
XAI. Section 3 discusses related work. Section 4 presents the ML pipeline architecture,
the ontology specification and the conceptual model as a reference ontology. Section 5
describes the implementation of the operational ontology, and the metadata attributes.
Section 6 describes the validation of the ontology, and finally, Section 7 discusses the
contributions, limitations, and future work.

2. Background

Explainable Artificial Intelligence methods can be categorized into three main categories
based on their scope, implementation, and forms of explanations [2]. The scope of ex-
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plainability is either global or local. Global explanations encompass the whole model
by showing which features affect the model output the most, whereas local explana-
tions only apply to specific instances [2]. Explanations in XAI can be achieved through
ante-hoc or post-hoc approaches. The ante-hoc approach consists of constructing an in-
trinsic explainable model before the ML training process, facilitating an understanding
of outcomes through semantic resources [2,15]. While ante-hoc solutions ensure model
transparency, they may not detail every step leading to the outcome, and are model-
specific, as explainability is integrated into the model architecture [2,12]. In contrast,
the post-hoc approach applies semantic resources to predictions generated from black-
box ML models after the training process [13]. Post-hoc solutions offer the advantage
of separating explanations from the ML model, making them model-agnostic and ap-
plicable to various ML models [2]. Some popular model-agnostic models are Local In-
terpretable Model-Agnostic Explanations (LIME), and SHapley Additive exPlanations
(SHAP). LIME provides explanations by manipulating the input data of the model, con-
structing a surrogate model, and analyzing changes in predictions to identify the most
influential features [2]. In contrast, SHAP uses an approach based on game theory for
explaining the output of a ML model by assigning a weight, known as the Shapley value,
to each feature of a trained model [2].

Forms of explanations in XAI typically vary based on user needs and concerns [2].
However, four common forms of explanation are numerical, visual, rule-based, and tex-
tual explanations [3]. Numerical explanations consist of values, vectors, or matrices elu-
cidating the model’s outcome, visual explanations are graphical (e.g., heatmaps) [2], tex-
tual explanations are often used for individual predictions (local scope), and rule-based
explanations employ if-then rules or trees with and/or operators to explain model predic-
tions (global scope) [3].

Understanding the ML pipeline can also give some insight into ML models and
results, by showing its various influencing factors, including dataset preparation, pre-
processing steps, variable configurations, and dataset split for training and testing, all
of which influence the behavior and outcomes of ML models. The processes of a ML
pipeline include several stages that are essential for developing and deploying a ML
model. According to the CRISP-DM (Cross-Industry Standard for Data Mining) method-
ology [4], the ML pipeline undergoes six phases: (1) Business Understanding, (2) Data
Understanding, (3) Data Preparation, (4) Modelling, (5) Evaluation, and (6) Deployment.
Moreover, insights from the ML pipeline are crucial for users to comprehend how expla-
nations were derived. This encompasses whether explanations are provided for specific
instances (local explanations) or the entire dataset (global explanations), and whether
they accurately reflect the rationale behind the ML model, thereby building trust among
users.

3. Related Work

By studying literature, we identified some ontologies related to XMLPO that cover ele-
ments regarding Machine Learning algorithms. The OntoDM-core [16] ontology aims to
provide semantic annotations for Data Mining (DM) algorithms and to describe the fun-
damental elements of data mining and their characteristics, such as dataset and datatype,
data mining tasks, and data mining algorithms. The Expose [17] ontology focuses on ML
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experiments and provides support to the analysis of ML algorithms and the exchange of
DM experiments and workflows. The primary emphasis of this ontology lies in apply-
ing supervised ML techniques on propositional datasets (i.e., i.e., datasets organized in a
simple, two-dimensional table format with fixed attributes and instances, as opposed to
relational datasets which involve multiple related tables).

ML-Schema [14] is a top-level ontology that provides a comprehensive set of
classes, properties, and constraints for representing machine learning algorithms, includ-
ing details about their inputs, outputs, primary steps, dependencies, implementations, and
executions. ML-Schema is built upon existing ontologies like Expose and OntoDM-core,
by providing a better coverage of provenance metadata for both data and ML models.

However, none of the existing ontologies fully covers all the aspects of a ML pipeline
and explanation approaches, as these ontologies only cover the semantics of data mining
algorithms, ML experiments, or ML workflows and algorithms. The XMLPO ontology
aims to provide semantic representation also for data input, data preparation and pre-
processing, ML approaches, and XAI techniques.

4. XMLPO Conceptual Model

This section describes the processes of an ML pipeline through an architecture defined
with the ArchiMate2 language and introduces the ontology requirements along with the
XMLPO modules.

4.1. ML pipeline

In this research, we developed XMLPO to represent an ML pipeline consisting of the
following four phases (1) setting goals, (2) data preparation, (3) data pre-processing, and
(4) training & testing of the ML model. Considering the CRISP-DM methodology [4],
we combined data preparation and modeling into one phase, and we did not consider
model deployment in the production environment.

Figure 1 represents the main processes of the ML pipeline. In the first phase (‘Set-
ting Goals’) the project goals are defined. The second phase (‘Data Preparation’) includes
feature selection, the execution of queries for extracting data, data selection, and data
merging (i.e., in case data is selected from different databases). The third phase (‘Data
Pre-processing’) includes data cleaning by dropping rows with many missing values or
by using imputation techniques to replace missing values, feature encoding (i.e, a tech-
nique used to transform the categorical features into numerical ones so that they can be
used in regression models), and feature scaling (i.e., a technique used to normalize the
range of the independent features).

The fourth phase (‘Train & Test Split’) includes the optimization of the used hyper-
parameters (i.e., external configuration variables used in model training) in the ML mod-
els, K-fold cross-validation, training, and testing of the ML models. Hyper-parameter op-
timization refers to the process of selecting the optimal values for the hyper-parameters
of a ML model to maximize its performance on a given dataset. K-fold cross-validation
is used to assess predictive models, where the dataset is partitioned into k subsets or
folds. The post-hoc XAI approach implies the application of XAI models on top of the

2https://pubs.opengroup.org/architecture/archimate3-doc/index.html.
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Figure 1. ML pipeline and post-hoc explanation

black-box models that were generated from the third phase of the ML pipeline. The last
step (process) includes the evaluation of the explainability by using XAI metrics.

4.2. XMLPO Requirements

The Explainable ML Pipeline Ontology (XMLPO) has been designed by following the
Systematic Approach for Building Ontology (SABiO) methodology [18], which con-
sists of five phases: (1) purpose identification and requirements elicitation, (2) ontol-
ogy capture and formalization, (3) design, (4) implementation, and (5) testing. The first
phase of SABiO consists of identifying the purpose of the ontology and the ontology
requirements, which are divided into non-functional requirements as qualitative aspects
or characteristics of the ontology, and functional requirements, which are expressed as
competency questions (CQ). The purpose of this ontology is to provide information and
metadata on how the ML pipeline is built, including the input data, data preparation and
pre-processing, ML models, ML model evaluations, XAI models, and XAI model evalu-
ations. The intended users of the ontology are data scientists. Table 1 shows the Compe-
tency Questions (CQ) of the XMLPO ontology which are categorized as data input, data
pre-processing, ML model and ML model evaluation, and XAI model and XAI model
evaluation. These competency questions are used to address the four issues that we iden-
tified with the Explainable ML workflows ontology [13] that we identified before.

4.3. XMLPO Modules

The second phase of SABiO (‘Ontology Capture and Formalization Phase’), focuses on
the development of the conceptual model, for example, by employing the OntoUML
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Table 1. Competency questions of the XMLPO ontology

• Data Input

• CQ1: Which are the independent (input) features?
• CQ2: Which are the dependent (output) features?
• CQ3: Which are the categorical features?
• CQ4: Which are the numerical features?

• Data Pre-processing

• CQ5: How many values are missing?
• CQ6: How is data cleaning done?
• CQ7: How is the train and/or test split done?
• CQ8: What feature scaling and/or feature encoding is done?

• ML model and evaluation

• CQ9: Which libraries are being used (for a specific model)?
• CQ10: Which ML model is used?
• CQ11: What visualizations are performed?
• CQ12: What are the parameters of a model?
• CQ13: How is the ML model evaluated?

• XAI model and model evaluation

• CQ14: Which XAI model is used?
• CQ15: If a local explanation is applied, for which instances is the model tested, and what is the

predicted value?
• CQ16: Which features have a positive or negative impact?
• CQ17: Which XAI metrics are used for evaluating the XAI model?

language for representing concepts based on the Unified Foundation Ontology (UFO).
Figure 2 shows that XMLPO is structured in four modules (General Module, Data Input
and Pre-Processing, ML model, and the Explanation module), in accordance with the
processes shown in Figure 1.

The General Module describes the main concepts that are needed to represent algo-
rithms and experiments based on the ML-Schema vocabulary [14,13]. Every Experiment
has some characteristics and is used to realize a specific goal (e.g., prediction of target
feature). The Goal is addressed by the MLAlgorithm (e.g., Regression models are used
for predicting target features). An Operation is an activity (also known as Task in ML-
Schema) that refers to the execution of an Implementation. There are different kinds of
implementations, such as the supervised ML model approach implementation, unsuper-
vised ML model approach implementation, ML model implementation, etc. An opera-
tion generates an output which could be a ML Model, a Model Evaluation Technique, or
a Result from the implementation of the ML model.

According to the Expose ontology [17], model evaluation techniques are classified
into categories such as Predictive Model Evaluation Measures and ClusteringEvaluation
Measures, which are related to the used ML model (as shown in Figure 3). Predictive
Model Evaluation Measures include numerical prediction, graphical, or class prediction
evaluation measures. Some Numerical Prediction Evaluations are Error-Based Evalu-
ations (for example, Mean Absolute Error, Mean Squared Error, Root Mean Squared
Error), Information Criteria, and Correlation Coefficients.
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Figure 2. Conceptual Model of the XMLPO ontology
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The Data Input and Pre-Processing module describes data and its features, data
cleaning, feature encoding techniques, etc. A dataset comprises data that undergoes var-
ious phases, including Uncleaned Data and Processed Data, where the latter represents
the data on which data cleaning procedures have been performed. Data cleaning is de-
fined as an event as it involves actions such as removing features or rows with substantial
missing values or employing imputation techniques to address missing feature values.
The Dataset Split is defined as an event as it occurs within the Processed Data phase and
includes the split of the dataset into a training set and a test set. These sets are specifically
used for training and testing ML models.

A dataset encompasses features categorized as either Categorical Features, with
string data types, or numerical features, taking on integer or double data types. In exper-
iments using regression models, such linear regression models where all features must
be numerical, data scientists employ feature encoding methods like target encoding or
dummy encoding to convert categorical values into numerical ones. Depending on the
experiment, a feature may function as an independent (input) or dependent (output) vari-
able, the latter being influenced by the former. Typically, data scientists apply feature
scaling techniques to the independent features to restrict their values within a consis-
tent range, and harmonize their influence on the results. Commonly used techniques for
feature scaling are standardization and normalization methods.

The ML Model module describes the main characteristics of implementing the ML
model, which takes Processed Data as input. ML Approaches are categorized as a su-
pervised Learning Approach (e.g., regression or classification algorithms) which uses
a labeled dataset, and an Unsupervised Learning Approach (e.g., clustering algorithm)
which uses an unlabeled dataset. Multiple code libraries (e.g., Python libraries), are used
during the implementation of the ML model such as the pandas library used for working
with the dataset, and the sci-kit learn library used for implementing the ML models. The
output of an ML model implementation like the Cat boost model implementation is a
Black-box ML model, which can be evaluated by using ML model Evaluation Techniques.

The Explanation Module describes the explanation techniques that can be used. The
explanation is composed of an Explanation Approach, which is categorized as Ante-
hoc Approach and Post-hoc Approach, and Explanation Format, which is categorized as
numerical, textual, visual, and rules explanation. The Post-hoc Implementation takes as
input the ML black box model from the previous module and gives as output the XAI
model (e.g., the SHapley Additive exPlanations model), which is evaluated by using
XAI Evaluation Metrics. The Explanation Scope refers to the scope of the generated
explanation and is categorized as Local Scope (explanation for a specific instance of the
model) or Global Scope (explanation at the model level).

5. XMLPO Implementation and Metadata

5.1. Operational Ontology Implementation

The aim of the Ontology Design (phase 3 of SABiO) and Ontology Implementation
(phase 4 of SABiO) is to generate an operational version of the ontology. Figure 2 shows
the XMLPO conceptual model obtained after performing the two first steps of SABiO.
During the Ontology Design phase, we specified the technical details of the ontology and
its implementation environment using OWL.
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Figure 3. Conceptual Model on Model Evaluation Techniques

The conceptual models shown in Figure 2 and in Figure 3 were designed using
OntoUML. These models were exported then to gUFO (a lightweight implementation
of UFO in OWL) by using the OntoUML plugin, and imported in the Protégé ontology
development tool (in OWL). This plugin offers an automated transformation that maps
OntoUML kind and subkind elements onto OWL classes and subclasses respectively,
OntoUML associations onto OWL object properties, and OntoUML quality elements
onto OWL quality characteristics.

The XMLPO ontology was implemented in the context of a manufacturing company
whose goal was to understand the behavior of the ML models and its generated output.
Therefore, we illustrated the usage of XMLPO here with a case study that aimed to
predict specific performance indicators, in particular, to predict specific attributes of a
product line. First, we conducted some ML experiments by using the CatBoost model,
Extreme Gradient Boosting (XGBoost), Random Forest, and Light Gradient Boosting
Model (LGBM) in Jupyter Notebook in Python language, and applied XAI models such
as SHAP on the results of the black-box models.

After that, we defined instances (individuals in Protégé) of the XMLPO ontology
concepts to represent the steps taken and the outputs from the processes of the ML
pipeline and explanation approach. Figure 4 shows the individuals of the RegressionAl-
gorithm class, which is a subclass of the SupervisedLearningApproach class. For each
of the implemented regression algorithms, we checked the evaluation scores for these
evaluation methods, namely Root Mean Square Error (RMSE), R-squared (R2), Mean
Absolute Error (MAE) and Mean Squared Error (MSE). Lower values of RMSE, MAE,
and MSE indicate better model performance, while values closer to one of R2 indi-
cate that a larger proportion of the variance in the dependent (output) feature is ex-
plained by the model. Figure 4 shows the evaluation scores of the XGBoost Experiment1
(RMSE=1.66; R2=0.8; MAE=1.13 and MSE=2.75). These values indicate that the model
performs reasonably well, with relatively low error metrics (RMSE, MAE, and MSE)
and a high R2 value, which indicates that 80% of the variance in the dependent feature is
explained by the model, indicating a good fit.

Figure 5 shows the individuals of the ‘Characteristics of XAI model1’ class. In this
model, we used the SHAP values for identifying the feature importance (i.e., which are
the features that had a positive or negative impact on the target feature). The features with
positive impact contribute positively to the prediction (i.e., if the value of these features
increases then also the predicted feature will have a higher value) while the features
with negative contribute negatively to the prediction (i.e., if the value of these features
increases then the predicted feature will have a lower value). Its worth mentioning that
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Figure 4. Individuals of the ‘Regression Algorithm’ class in XMPLO in Protégé

even if the dependency among the features is not linear, SHAP values would still provide
a robust method for identifying feature importance.

5.2. XMLPO Metadata Attributes

In the XMLPO ontology, we defined many metadata attributes for providing semantic
information about the elements (i.e., concrete individuals such as kind, and subkind),
which are represented as quality attributes in the conceptual model of the ontology (see
Figure 2).

Firstly, metadata attributes have been defined for all the individuals by complying
with rdfs3 schema, and Dublin Core4 metadata schema. For example, every concrete
individual has a rdfs:comment attribute, which is used to describe the attribute, and a

3https://www.w3.org/TR/rdf12-schema/#ch classes.
4https://www.w3.org/wiki/DublinCore.
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Figure 5. Individuals of the ‘Characteristics of XAI model’ class in the XMPLO

rdfs:label attribute, which is its human-readable name. All the event elements have these
metadata attributes: 1) dc: creator, which provides information about the name of the
creator, 2) a begin date point (hasBeginDatePoint), which refers to the start date of the
event, and 3) an end date point (hasEndDatePoint), which refers to the end date of the
event, as shown in the Annotations tab in Figure 4.

Secondly, for each individual defined in Protégé, we provided information on its
name, description, and technique name (e.g., ML technique name, data cleaning tech-
nique name, etc.). Besides the dataset name, the metadata about the Dataset Character-
istic is enriched with the download description, which refers to the URL of the website
where the dataset was found or the description of the database where it was found), ac-
cess time, which refers to the date of retrieval, number of features and instance in the
dataset.

6. Validation

XMLPO was validated by checking whether it fulfills the functional requirements shown
in Table 1. To validate whether the XMLPO ontology can answer the competency ques-
tions of Table 1 we tested the ontology in Turtle (ttl) format with SPARQL.
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Figure 6. SPARQL results for obtaining the evaluation scores

For example, to answer CQ13, which refers to how the ML model is evaluated, we
formulated the SPARQL code shown in Figure 6. This query shows that the implemented
ML models were evaluated by using different evaluation measures such as Root Mean
Square Error, R2, Mean Absolute Error, and Mean Squared Error. Figure 6 shows some
of the evaluation scores of the models.

Moreover, XMLPO was validated in a case study in a manufacturing company. The
goals of this case study were (1) to provide understandable insights into the processes of
the ML pipeline so that the produced models can be reused and changed in the future if
needed (i.e., it would be easy for other data scientists to understand how the current mod-
els were built by considering data input, pre-processing, and model training and testing),
(2) to provide appropriate prediction models, and (3) to show the features that affected
the predictions the most. To demonstrate this, we presented the results from the SPARQL
queries to a group of stakeholders in the company. The stakeholders confirmed that this
ontology gives a better understanding of the decision process within the ML pipeline,
and that the top features identified with the SHAP model that affected the predictions the
most align with their intuitive understanding of the domain. The second goal of provid-
ing good prediction models is fulfilled by checking the evaluation scores of the models
(Figure 6), which indicate that the models perform well, with relatively low error metrics
(RMSE, MAE, and MSE) and high R2 values (close to 1).

7. Conclusion

In this paper, we introduce the Explainable ML Pipeline Ontology (XMLPO), which
extends the Explainable ML workflows ontology [13]. In this research, we have improved
the representation of a Machine Learning (ML) pipeline and explanation approaches, by
addressing the four gaps that we identified regarding the information and provenance
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metadata about data input, and pre-processing, characteristics of ML approaches and
categorization of XAI.

XMLPO is designed as an OntoUML conceptual model, and implemented as an
OWL-based operational ontology based on gUFO. The ontology covers main metadata
attributes about various aspects of data components in the ML pipeline. This operational
ontology was implemented with the OntoUML plug-in and modified in Protégé by as-
serting object properties and data properties. We validated the operational ontology by
analyzing how the competency questions are answered through a case study with a ML
pipeline, which generates a model that predicts specific performance indicators in a man-
ufacturing context.

Due to confidentiality constraints imposed by the company in which the case study
was performed, we are not allowed to give more details about the case study. In addition,
we were not able to check the evaluation of the XAI models by using XAI metrics (refer
to CQ17), as in our case study we implemented the SHAP model on top of the ML mod-
els. The output generated from the SHAP model indicated the top features that have the
strongest relation with the prediction of the performance indicators. However, we pre-
sented the outputs to the stakeholders and they confirmed that the top features align with
their intuitive understanding (i.e., this refers to context explainability). In other cases, it
might be necessary to evaluate the explanations by using metrics regarding the XAI eval-
uation properties. In addition the stakeholders stated that this ontology provides a better
understanding of the whole ML pipeline and it makes it easier for them to comprehend
the decision making of the ML models.

For implementing this ontology in practice in other user cases, people must have on-
tology engineering knowledge as well as knowledge of ML. For a person with experience
in both, it took around two days to implement XMLPO in a case study. However, it also
depends on the size of the case, because the instances in Protégé must be entered man-
ually, which is time-consuming. In general ML engineers are not familiar with ontology
engineering, hence, it would be beneficial to couple someone with domain knowledge
with someone with ontology engineering knowledge.

As future work, this ontology can be extended to cover the XAI evaluation proper-
ties, by providing a more comprehensive evaluation of explainability. The Co-12 recipe
[19] classifies these properties into 3 categories based on: (1) content (i.e., checking
the correctness, completeness, consistency, continuity, and covariate complexity), (2)
presentation form (i.e., checking the compactness, composition, and confidence), and
(3) end-users (i.e, checking the context, controllability, and coherence). In addition, the
reusability of this ontology can be assessed and possibly improved by applying it to other
case studies with different scopes such as the usage of unsupervised ML approaches
and/or ante-hoc approaches, and can also be extended to cover concepts of good practises
in ML engineering such as the split of the data into also validation set in order to prevent
overfitting. The ontology can also be extended to also cover the concepts of deploying
the ML models in a production environment, which is the last phase of the ML pipeline
in the CRISM-DM methodology [4].
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