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Abstract. Surface defect detection plays a pivotal role in ensuring product quality 
in industrial production, as defects like cracks, scratches, and dents can compromise 

product performance and durability. Traditional detection methods, such as manual 

inspection and Non-Destructive Testing (NDT), are limited by inefficiency, reliance 
on human expertise, and susceptibility to errors, which restrict their application in 

large-scale production. With advancements in artificial intelligence, deep learning 

models, particularly Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN), have emerged as promising solutions for automated surface defect 

detection. This paper provides a comprehensive review of surface defect detection 

technologies, starting from traditional methods to modern deep learning-based 
techniques. The advantages and limitations of each approach are analyzed, 

highlighting key advancements in deep learning, including recent models like Faster 

R-CNN, Cascade R-CNN, and YOLOv4. Furthermore, challenges such as handling 
complex defects and improving detection accuracy in real-world industrial 

environments are discussed, along with potential directions for future research. 

Experimental evaluations using the Few Steels Classification (FSC) dataset 
demonstrate the effectiveness of modern detection methods in industrial 

applications, offering insights into enhancing defect detection systems. 
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1. Introduction 

In industrial production, industrial products surface defect detection is crucial because 

product quality often depends on the integrity of the surface. If defects such as cracks, 

scratches, or dents occur, they can significantly reduce the performance and durability 

of products, creating potential safety hazards in critical areas such as automotive and 

aerospace. Ensuring surface quality is therefore essential to guarantee product reliability. 

Traditional defect detection primarily relies on manual inspection and Non-Destructive 

Testing (NDT), such as ultrasonic testing and eddy current testing. While these methods 

are somewhat effective, they require significant manpower, have low efficiency, and are 
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prone to human error, leading to the risk of misjudgment. These limitations greatly 

restrict the application of such detection methods in large-scale production [1]. 

In recent years, the rapid advancement of artificial intelligence technology [2] has 

sparked growing interest among researchers in exploring deep neural network models, 

such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 

[3]. CNNs excel at image recognition and classification tasks by effectively handling 

large datasets and minimizing manual intervention [4]. Meanwhile, RNNs perform 

strongly in sequential data processing, making them ideal for applications like natural 

language processing and time series forecasting [5]. As newer models are developed, the 

capabilities of these architectures and methods continue to improve. 

The purpose of this research is to study the development of defect detection 

technology on the surface of industrial products and to understand the development from 

traditional manual detection methods to advanced deep learning-based methods. First, to 

understand the development of defect detection techniques and analyze the advantages 

and disadvantages of various methods; second, to understand the advantages of various 

models and algorithms used in current research, from traditional methods to deep 

learning methods in defect detection; and finally, to analyze the relevant methods through 

experiments on a specific dataset. 

This review covers both traditional and deep learning-based defect detection 

methods to offer insights for enhancing defect detection in industrial production. 

Additionally, while deep learning applications in industrial products surface defect 

detection are relatively new, there is considerable potential for further development [6]. 

2. Traditional defect detection method 

Industrial products surface defect detection has always been a critical process in the 

manufacturing industry, and traditional methods form the basis of quality control. These 

traditional methods include manual visual inspection, and NDT [7]. 

2.1.  Manual Visual Inspection 

Throughout the history of surface defect detection technology, manual inspection has 

remained a common and direct approach. Skilled inspectors visually assess industrial 

product surfaces for defects like scratches, dents, cracks, or corrosion. While this method 

is simple and widely employed, it is prone to subjectivity and can be easily influenced 

by human factors. In large-scale production settings, the fatigue resulting from extended 

work periods can significantly diminish defect detection accuracy [8]. 

 

2.2. NDT 

NDT allows for the inspection of materials without causing damage or affecting their 

performance, utilizing techniques such as Ultrasonic Testing (UT), Eddy Current Testing 

(ECT), Magnetic Flux Leakage Testing (MFLT), and Infrared Testing (IRT) [9]. UT 

detects internal and surface defects by analyzing the propagation and reflection of 

ultrasonic waves within materials, with inspectors interpreting the reflected signals to 

determine the defect's location, size, and nature [10]. ECT, based on electromagnetic 

induction, identifies material defects by observing changes in the impedance of an 
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induction coil [11]. MFLT is used to detect surface and near-surface flaws in 

ferromagnetic materials, where defects like cracks or corrosion cause magnetic flux to 

leak when the material is magnetized [12]. IRT identifies surface and subsurface defects 

by measuring temperature distribution or changes on the material's surface, utilizing 

infrared radiation to detect anomalies [13]. 

3. Modern Detection Methods 

Early methods for detecting surface defects in products primarily relied on manual visual 

inspection and nondestructive testing technology. Although effective under certain 

conditions, these methods are subject to subjective factors and low efficiency due to their 

dependence on human operation. Consequently, with advancements in computer 

technology, machine learning has increasingly become a significant alternative, 

especially in large-scale production environments. 

3.1. Simple Machine Learning Methods 

Statistical pattern recognition technology in machine learning is one of the fundamental 

methods for detecting surface defects in products. Using a limited number of sample sets 

and a known statistical model or discriminant function, the model learns based on 

specific criteria. To improve classification accuracy, image preprocessing techniques are 

often employed to reduce noise, and feature extraction and selection technologies 

optimize the sample feature space to meet the requirements of the classification model. 

Finally, a classifier, such as a Bayesian classifier, decision tree, K-nearest neighbor 

method, or support vector machine, is used to identify product defects.

Pernkopf [14] proposed a method for detecting three-dimensional defects on the 

surface of steel blocks with oxide layers. The surface range data of the steel block were 

obtained using light sectioning technology, which addressed the problem of depth map 

recovery caused by vibrations of the steel block on the conveyor belt. Classification was 

performed using a Bayesian network classifier. 

Aghdam et al. [15] introduced a method for classifying steel surface defects using 

decision trees combined with Principal Component Analysis and Bootstrap Aggregating. 

Local Binary Patterns are employed for feature extraction. The accuracy and speed of 

the decision tree classifier are enhanced by reducing dimensionality with PCA and 

improving performance through Bagging. Additionally, for multi-class classification 

tasks, the method incorporates a cascaded Support Vector Machine (SVM), further 

enhancing its real-time applicability in automatic surface inspection systems. 

Li et al. [16] proposed a K-Means clustering image segmentation algorithm based 

on particle swarm optimization for detecting surface defects in automobile engine high-

pressure oil circuit seals. The Speeded-Up Robust Features (SURF) algorithm was used 

to extract feature points from the seal image. Particle swarm optimization was then 

employed to optimize the initial clustering centers of the K-Means algorithm, thereby 

improving its clustering efficiency. 

However, in real industrial production environments, defect detection is easily 

affected by factors such as product shape, position, lighting, and variations in industrial 

camera equipment. As a result, simple machine learning methods are only applicable in 

specific environments. 
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3.2. Methods Based on Deep Learning 

With the advancement of deep learning technology, CNN-based classification networks 

have become crucial for surface defect detection. Surface defect classification using deep 

learning typically involves employing pre-trained networks such as VGG, ResNet, 

DenseNet, and SENet as backbone networks. A new network structure is then developed 

for specific detection tasks. An image of the product to be tested is input, and the network 

outputs its defect classification. Classification networks can be categorized into three 

methods based on their implementation: direct network classification, defect localization 

using the network, and feature extraction. 

Masci et al. [17] used a maximum pooling CNN to classify steel surface defects. In 

seven defect classification tasks collected from actual production lines, this method 

achieved a 7% error rate. Compared with support vector machine (SVM) classifiers 

trained on common feature descriptors, this method performed at least twice as well. 

Soukup et al. [18] used CNN to detect rail surface defects. They also applied 

regularization methods, including unsupervised hierarchical pre-training and data set 

augmentation. The study found that both unsupervised pre-training and data set 

augmentation significantly improved the classification performance. 

3.3. Advanced methods in recent years 

Ren et al. [19] proposed a Faster R-CNN classification network, which can improve 

efficiency by sharing full-image convolutional features, achieving almost zero-cost 

region proposal, and achieving the best object detection accuracy on multiple datasets 

through experiments. 

Cai et al. [20] proposed a new detector architecture, Cascade R-CNN, which can 

extend R-CNN to solve common detection problems through a multi-stage approach. 

Each stage of the detector builds on the output of the previous stage to gradually improve 

the detection accuracy and alleviate the overfitting problem. The architecture improves 

the detection performance while only slightly increasing the computational requirements. 

Li et al. [21] proposed an improved version of the YOLOv4 algorithm specifically 

for defect detection on steel strip surfaces. They integrated a convolutional block 

attention module into the backbone network and replaced the augmented path 

aggregation network with a design similar to that of sensory wild blocks. 

Zhu et al. [22] developed AutoAssign, a new anchorless frame detection architecture 

that reduces the need for extensive manual adjustments. The method adaptively refines 

the label assignment strategy based on the features of different classes and instances. 

During training, a center-weighting and confidence-weighting module is combined to 

enable the assignment strategies for positive and negative samples to be tailored to each 

category's specific attributes and appearance. 

Chobola et al. [23] proposed a method that combines migration learning with 

optimal migration mapping in the latent space. The method normalizes the feature space 

generated by the backbone network and uses the Sinkhorn algorithm to implement the 

optimal migration mapping. 

Xiao et al. [24] use modules to embed the feature structure and align the distribution 

of new categories during inference. Effective migration classification is also enhanced 

by minimizing the Wasserstein distance. 
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Lu et al. [25] improved AutoAssig by proposing a new detection architecture, CA-

AutoAssign, which has a streamlined channel-space adaptive feature pyramid network 

to mitigate the interference of complex backgrounds. The network is particularly 

effective in detecting defects of different sizes.

Li et al [26] proposed a novel feature map reconstruction network emphasizing 

foreground information. The network uses ridge regression to reconstruct query features 

from supporting features. It applies foreground weights to compute weighted distances, 

which are then used to predict the category distribution of the query image.

4. Experiments

4.1. Description of Few Steels Classification (FSC) Dataset

The FSC dataset [27] comprises 1,000 high-definition images organized into 20 

categories, with each category containing 50 images of a specific defect type. The dataset 

includes 10 types of surface defects for cold-rolled steel and 10 types for hot-rolled steel.

Examples of various types of surface defects in the FSC dataset are shown in Figure 1.

Figure 1. Examples of Each Type of Surface Defect in the FSC Dataset

4.2. Performance Evaluation

It is important to focus on critical metrics like accuracy and precision to effectively 

evaluate the proposed method's performance and identify its strengths and weaknesses.

Accuracy is a crucial measure of a model's classification ability, representing the 

ratio of correctly classified samples to total samples. Precisely, it reflects the proportion 

of True Positives (TP) and True Negatives (TN) among all samples. The calculation 

formula is shown in equation (1). A False Positive (FP) occurs when a negative sample 

is mistakenly identified as positive, while a False Negative (FN) refers to a positive 

sample being misclassified as unfavorable.
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Precision quantifies the proportion of samples identified as positive by the model 

that are truly positive. Specifically, it is the TP to the total number of samples predicted 

as positive, including both TP and FP. Precision offers insight into the accuracy of the 

model's predictions, with its calculation formula presented in equation (2). 
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4.3. Experiment Setting and Results 

4.3.1. Experimental Setting 

In experimental Setting 1, both the training and test datasets are derived from the same 

source. The purpose of this experiment is to assess the model's defect recognition 

capabilities within that dataset. Only one of the cold-rolled steel or hot-rolled steel 

categories is selected, and ten defect samples are randomly selected as the training set 

(DTrain), and the remaining ten defect samples are used as the test set (DTest).  

In experimental setting 2, the training and test datasets are sourced from distinct 

datasets to assess the model's generalization capability across different domains. For 

instance, ten cold-rolled steel defect samples are selected as the training set (DTrain), and 

ten hot-rolled steel defect samples are designated as the test set (DTest). 

4.3.2. Performance in Same-Domain Setting (Experimental Setting 1) 

Table 1 shows the specific results of setting 1. The CA-AutoAssign method achieved a 

classification accuracy of 75.76% in the 5way 1-shot and 82.36% in the 5way 5-shot. 

Compared with other methods, CA-AutoAssign improves the classification accuracy of 

5way 1-shot by at least 2.07%. It improves the classification accuracy of 5way 5-shot by 

at least 4.23%. This suggests that the CA-AutoAssign method is highly effective in 

environments where the training and testing data share similar characteristics, 

reinforcing its robustness in controlled settings. 

Table 1. Accuracy of recent advanced methods on the FSC dataset using experimental setting 1 

Method Backbone 5-way 1-shot 5-way 5-shot 

Faster R-CNN [19] ResNet-50 68.43%+0.11% 73.61% 0.13% 

Cascade R-CNN [20] ResNet-50 69.54%+0.12% 75.13% 0.11% 

YOLOv4 [21] CSPDarknet 71.36%+0.11% 76.21% 0.16% 

AutoAssign [22] CSPDarknet 73.26%+0.13% 78.13% 0.12% 

PTNET [23] WRN 71.28% 0.16% 73.68% 0.16% 

GEDT [24] WRN 73.69% 0.10% 75.69% 0.10% 

CA-AutoAssign [25] CSPDarknet 75.76% 0.13% 82.36% 0.13% 

FRN [26] ResNet-12 72.26% 0.12% 74.26% 0.12% 

4.3.3. Performance in Cross-Domain Setting (Experimental Setting 2) 

Table 2 shows the specific results of setting 2. The CA-AutoAssign method achieved a 

classification accuracy of 77.12% in the 5way 1-shot scenario and 85.86% in the 5way 

5-shot scenario. Although the performance gains are more modest compared to the same-

domain setting—1.43% in 5-way 1-shot and 0.74% in 5-way 5-shot—the results still 
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affirm the model's ability to generalize across different domains. The ability to maintain 

high accuracy in cross-domain settings underscores the model's adaptability and 

robustness  

Table 2. Accuracy of recent advanced methods on the FSC dataset using experimental setting 2 

Method Backbone 5-way 1-shot 5-way 5-shot 

Faster R-CNN [19] ResNet-50 69.24%+0.12% 74.38% 0.13% 

Cascade R-CNN [20] ResNet-50 69.89%+0.11% 76.25% 0.11% 

YOLOv4 [21] CSPDarknet 73.17%+0.16% 77.36% 0.16% 

AutoAssign [22] CSPDarknet 74.27%+0.18% 79.38% 0.12% 

PTNET [23] WRN 73.68% 0.16% 77.98% 0.11% 

GEDT [24] WRN 75.69% 0.10% 82.00% 0.10% 

CA-AutoAssign [25] CSPDarknet 77.12%+0.21% 85.86% 0.13% 

FRN [26] ResNet-12 74.26% 0.12% 85.12% 0.11% 

4.4. Comparative Analysis 

The comparison between the two experimental setups reflects important aspects of the 

performance of each model. In the same-domain setup, this contributes to the model's 

accuracy due to the similarity between the training and test data. However, in cross-

domain experiments, the accuracy of the models is more indicative of the potential of the 

models in real-world applications, where the models may need to process data from 

different sources. The relatively small performance gains in the cross-domain setup 

suggest that while CA-AutoAssign is effective, there is still room for further 

improvement, especially in improving generalization across different domains. Several 

challenges remain in the area of surface defect detection, particularly in terms of how to 

improve the ability of models to generalize across different production environments. 

Future research should focus on developing more adaptive algorithms. 

5. Conclusion 

In conclusion, this study provides a comprehensive overview of traditional and modern 

methods for surface defect detection, with a particular focus on deep learning techniques. 

The experiments conducted on the FSC dataset validate the effectiveness of advanced 

models such as CA-AutoAssign in identifying defects, even in challenging few-shot 

learning scenarios. With continued advancements in neural network architectures and 

adaptive learning techniques, surface defect detection is poised to become more accurate 

and efficient, significantly improving product quality in industrial production. 
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