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Abstract.

ReLU nodes are utilized commonly in neural networks as they look and act like
linear functions while providing nonlinearity. In spite of addressing the vanishing
gradient problem, they can lead to the dying ReLU problem which can be detri-
mental in terms of convergence and generalization performance. This paper pro-
poses antimatter networks, a new and simple solution to the dying ReLU problem
which involves combining ReLU nodes with their inverse, negative ReLU nodes,
together with activation swapping mechanisms. We tested the solution on six sep-
arate dataset-architecture combinations with the MNIST, CIFAR-10, and Flowers-
16 datasets for Convolutional Neural Networks (CNN) and Multi-Layer Perceptron
networks (MLP) and found that antimatter networks lead to consistent convergence
and generalization improvements compared to networks solely consisting of ReLU
or NReLU nodes.

Keywords. Antimatter Network, Rectified Linear Unit (ReLU), Negative Rectified
Linear Unit (NReLU), Multiple Activation Functions, Activation Swapping.

1. Introduction

A problem arises with utilizing ReLU activation functions (f(x) = max(0,x)), where if
a neuron in the network has a weighted sum less than or equal to zero for all input in-
stances, it will be perpetually inactive and thus cease to contribute to the learning pro-
cess, since all gradients backpropagating through the node will be multiplied by zero.
This phenomenon is commonly known as the dying ReLU problem. We propose a novel
solution to this problem: combining ReL.U nodes with their inverse, namely the negative
rectified linear unit (NReLU), which is defined by f(x) = min(0,x), together with dif-
ferent activation swapping mechanisms. Inspired by the complex relationship between
matter and antimatter in the universe, we propose the coining of a new informal term for
neural networks that primarily combine both ReLU and NReLU nodes, i.e.: antimatter
networks. Although the exclusive combination of ReLU and NReLU activation functions
has been explored before [1], to the best of our knowledge it has never been combined
with swapping mechanisms [2] and a multi-branch architecture.
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When one network uses both activation functions, the possibility for one function com-
pensating for the other is created. In this paper, we focus on activation swapping in a
two-branch architecture, where one branch consists of ReL.U nodes, and the other con-
sists of NReLU nodes. A two-branch architecture allows for a smaller number of weights
(compared to an equivalent single-branch architecture with the same number of nodes)
and also simpler and hence more efficient implementations of swapping mechanisms. It
is important to note that these branches do not share weights as in a Siamese network,
but rather can learn different representations. This paper proposes three different acti-
vation swapping variants as outlined in the methods section. The general hypothesis is
that networks that combine ReLLU and NReLU nodes, and implement an effective acti-
vation swapping mechanism, should demonstrate improved convergence and generaliza-
tion properties (e.g. faster and more consistent convergence, and better and more consis-
tent test accuracy), compared to baseline conditions. In this paper we equate faster con-
vergence to lower mean training loss, and better generalization to higher mean test accu-
racy, at the end of training. Moreover, we use improved-convergence as a proxy for tack-
ling the dying ReLLU problem, since the number of dead ReLUs is generally positively
correlated with the training loss (i.e. the more dead ReLLU nodes a network exhibits, the
harder it is for the network to converge).

2. Related Works

The key concept underlying the proposed solution pertains to the flexible adoption of
multiple activation functions in the same network (or layer), rather than the exclusive
adoption of a single activation function. This concept, although not mainstream, has a
long history, and has appeared in the literature under different terms, e.g.: mixture of
activation function networks [3], adaptive activation functions [4], neural diversity ma-
chines [5], activation ensembles [6], and others. As such, the proposed solution can be
defined as a special case within this broader category, where we focus exclusively on
ReLU and NReLU functions, and employ mechanisms that attempt to address limitations
of ReLU-only networks (e.g. dead ReLU problem). It should be noted that many varia-
tions of the ReLU activation function (e.g. Leaky ReLU) are also useful for addressing
the dead ReLLU problem, however, these variations are not the focus of this paper.

The concept of combining both ReLU and NReLU nodes in the same network, although
very rare, has some precedence in the literature. For example, the work in [1] as briefly
reviewed in [7], reports on an activation function solution, named concatenated ReLU
(CReLU), that doubles each node into two portions, corresponding to both positive and
negative linear responses (i.e. f(x) = (ReLU(x),ReLU(—x))). The work in [1] demon-
strated clear improvements in recognition performance for different convolutional neural
network (CNN) architectures incorporating CReL U, on CIFAR-10, CIFAR-100 and Im-
ageNet datasets. In spite of this similarity with our work, a crucial difference pertains to
the absence of activation swapping mechanisms in [1], which we explore in some detail,
and the fact that we incorporate both activation functions via a multi-branch architecture.

Although the notion of activation swapping or weight exchange can be found in dis-
tributed computing [8] and evolutionary contexts [9], to the best of our knowledge ac-
tivation swapping has not been employed as an integral part of the learning process fo-
cusing on activation function concerns. The closest mechanism we have found to this
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pertains to the swapping of node activations, which was explored in [2] under the name
swap-node. The authors explored swap-node in CNNs, with a regularization motivation
similar to dropout. However, our work distinguishes itself by the architecture and pro-
cedures within which we implement the concept (for the sake of clarity, we will refer to
our procedure “activation swapping”), the set of conditions it uses to modulate its oper-
ation (e.g. based on inactivity levels), and its motivation (i.e. addressing the dead ReLU
problem).

3. Methodology
3.1. Activation Swapping Mechanisms

Three variants of activation swapping, applied at each epoch, were experimented with:
(1) swap the most inactive ReLU node and the most inactive NReLU node’s values, (2)
swap all ReLU and NReLU nodes’ values that are inactive for more than 70% of data
instances, and (3) swap a random pair of ReLU-NReLU nodes’ values probabilistically
in a manner that is directly proportional to their inactivity levels. We define the “most
inactive node” as the node that is inactive for the largest number of data instances.

3.2. Datasets and Performance Metrics

For evaluation purposes three image-based classification datasets were used, namely
MNIST, CIFAR-10, and Flowers-16. To measure generalization performance the means
and standard deviations of test accuracies were computed for different experimental con-
ditions. To measure convergence performance, the mean and standard deviation of the
final training cross-entropy loss were computed for the same conditions.

3.3. Architectures and Training

The reported experiments utilized two control architectures per dataset: a standard multi-
layer perceptron (MLP) and a standard convolutional neural network (CNN) with single
activation functions. Both backbones adopted a simple two-branch design for baseline
conditions and were modified to incorporate the antimatter concept for the experimental
conditions.

For the MLP control network with the MNIST dataset, we used two branches, both of
which took input images through the first layer (28x28) and then processed the images
into 128 nodes for the first hidden layer, to which the activation function was then applied
(ReLU (C1), NReLU (C2), or both (C3-C6; with ReLLU in one branch, and NReLU in the
other). Then, the first hidden layer processes those 128 nodes into 32 nodes, applies the
same activation function again, which leads to a shared dense block whose input layer
takes in 64 nodes (32 from the first branch and 32 from the second branch), whose output
consists of the final ten nodes, to which is applied a log softmax function to determine
the final output.

For the CNN network, first a convolutional layer transforms the input to 32 channels, to
which the activation function of choice is then applied, and another convolutional layer
increases the channel to 64 channels. An activation function follows, followed by a max
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pooling layer that reduces the spatial dimensions to 14x14, and another convolutional
layer increases the channels to 128. Another activation function is applied; a max pooling
layer is used to reduce the spatial dimensions to 7x7, and another convolutional layer
is used to increase the channels to 256 with an activation function following. A final
max pooling layer reduces the spatial dimensions to 3x3; the layer gets flattened (256
x 3 x 3) and is inputted into a fully connected layer to reduce the number of nodes to
512. Finally, an activation function is applied to those 512 nodes, which gets inputted
into another layer, which reduces the number of nodes further to 256, and an activation
function is applied. The 256 nodes lead to a shared block that processes the input of 512
(256 nodes from the first branch and 256 nodes from the second branch) to 10 nodes (for
determining the output).

As for the training of our MLP and CNN networks, our MLP network was trained over
the course of 15 epochs, using a negative log-likelihood (NLL) loss function and stochas-
tic gradient descent (SDG) with a learning rate of 3 x 1073 and momentum of 0.9. On
the other hand, our CNN network was trained across 7 epochs, using a cross-entropy
loss function and Adam optimizer. Finally, no instances of dropout or other regulariza-
tion techniques were used in training our MLP or CNN networks as the primary goal
was to evaluate the core architectures and learning mechanisms without the influence of
additional constraints.

3.4. Experimental Design

The experimental design aims to answer the research question mentioned in the intro-
duction: can one or more variants of antimatter networks be shown to perform better
than baseline models, where performance is measured in terms of convergence and gen-
eralization properties? In other words, are any antimatter network variants superior to
common single-activation function networks in one or more of the adopted performance
metrics?

We developed several variations of antimatter networks and control groups to address the
question. All conditions use a two-branch architecture. Both control conditions adopt a
single activation function, C1 with ReLLU, and C2 with NReLU. Condition C3 combines
both ReLLU and NReLU (one in each branch) and does not use any swapping mechanism,
as a control antimatter network. Each branch implements non-linear transformations ac-
cording to its adopted activation function (ReLU or NReLU), and these non-linear map-
pings are then combined by the final linear layer (followed by a softmax function). Con-
ditions C4-C6 employ both ReLLU and NReLU activation functions (like C3), but employ
different activation swapping mechanisms. C4 swapping is done by identifying the single
most inactive ReLU node, and the single most inactive NReLU node, and swapping their
activations. C5 swapping is done by identifying which ReLU and NRelU nodes are inac-
tive for more than 70% of instances, and then swapping pairs of corresponding nodes. C6
swapping is done by selecting a ReLU-NReLU pair of nodes probabilistically, in a way
that is directly proportional to their level of inactivity (i.e. the more inactive a node is, the
larger the probability of it being selected), and then swapping activations. For each spe-
cific condition and combination, 10 experimental trials were repeated to make sure the
results were consistent across different trials and provided a robust basis for concluding
the effectiveness of our antimatter network configurations.
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4. Results

Table 1.Mean test accuracy across all conditions with the standard deviation in brackets.
C1: ReLU. C2: NReLU. C3: ReLU-NReLU no swapping. C4: ReLU-NReLU swap most
inactive. C5: ReLU-NReL.U swap > 70% inactive. C6: ReLU-NReLU swap probabilis-
tically.

Dataset - Architecture Combination

Condition = MNIST MNIST CIFAR-10 CIFAR-10 Flowers-16 Flowers-16
MLP CNN MLP CNN MLP CNN
Cl1 97.21% 99.05% 50.58% 76.53% 44.75% 58.91%
(0.18) (0.11) (0.38) (0.96) (1.52) (3.76)
Cc2 97.06% 98.77% 50.62% 69.84% 44.67% 61.02%
(0.16) (0.33) (0.28) (0.79) (1.67) (2.39)
C3 97.24% 99.23% 49.06% 77.23% 44.94% 61.33%
(0.13) (0.10) (0.26) (0.38) (1.38) (2.03)
C4 97.23% 98.96% 50.85% 77.34% 44.89% 60.43%
(0.15) (0.13) (0.22) (0.27) (0.91) (4.49)
C5 97.17% 99.0% 50.79% 78.11% 45.15% 58.66%
(0.17) (0.20) (0.23) (0.67) (1.67) (2.79)
C6 97.13% 99.09% 50.72% 75.63% 45.09% 59.79%
(0.14) (0.16) (0.40) (0.65) (1.60) (2.84)

The first section of this experiment compares the performance of antimatter networks in
general (C3-C6) against baseline conditions (C1 and C2), in terms of test accuracy. The
results, as depicted in Table 1 provide strong evidence in support of the favorable gener-
alization properties of antimatter networks. In all six architecture-dataset combinations
the best performer was always an antimatter condition (i.e. C3, C4 or C5).

Next, regarding convergence, as shown in Table 2, antimatter networks (i.e. C3-C6)
have consistently converged better than the non-antimatter control cases with ReLU and
NReLU alone (i.e. C1 and C2). In spite of convergence performance indicating a posi-
tive result for the antimatter concept, suggesting a partial addressing of the dying ReLU
issue, the results were not as consistent compared to the generalization results, indicating
that more work is required to refine the techniques.

Table 2.Mean and standard deviation of the final training losses across various archi-
tectures and datasets. C1: ReLU. C2 NReLU. C3: ReLU-NReLU no swapping. C4:
ReLU-NReLU swap most inactive. C5: ReLU-NReLU swap > 70% inactive. C6: ReLU-
NReLU swap probabilistically.

Dataset - Architecture Combination

Condition MNIST MNIST CIFAR-10  CIFAR-10  Flowers-16 Flowers-16
MLP CNN MLP CNN MLP CNN
C1 0.602 0.0211 1.431 0.3721 1.7404 1.2767
(0.0021) (0.0012) (0.0028) (0.0278) (0.0157) (0.0708)
c2 0.06 0.0254 1.4293 0.5922 1.7412 1.4285
(0.0015) (0.002) (0.0028) (0.039) (0.0271) (0.0763)
c3 0.0606 0.0206 1.427 0.0807 1.7328 1.3183
(0.0017) (0.0027) (0.0026) (0.1002) (0.0262) (0.0454)
c4 0.0613 0.0232 1.4285 0.0805 1.7357 1.3435
(0.0015) (0.0019) (0.0061) (0.0023) (0.0053) (0.0056)
Cs 0.0602 0.022 1.4276 0.0784 1.7590 1.3597
(0.0016) (0.0018) (0.0064) (0.0021) (0.0057) (0.0062)
c6 0.0611 0.0236 1.4298 0.0817 1.7217 1.3584

(0.0015) (0.0022) (0.0063) (0.0022) (0.0056) (0.0061)
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The second section of this experiment aims to discover whether antimatter activation
swapping variants (i.e. C4, C5 and C6) generally outperform non-antimatter networks
(CI and C2), or default antimatter networks with no activation swapping (i.e. C3). Ac-
cording to Table 1, it is clear that there were slight improvements for some dataset-
architecture variants on certain conditions. However, although swapping mechanisms
showed their promise, these effects were relatively variable and data-architecture spe-
cific, suggesting that new activation and/or weight swapping mechanisms should be ex-
plored in the future.

Finally, as shown in Table 2, our activation swapping variants only converged the best
in two of the six different dataset-architecture combinations. Overall, this indicates that
antimatter activation swapping conditions require further work to improve convergence
properties.

5. Discussion

The results demonstrate that antimatter networks produce consistent performance im-
provements compared to networks with single activation functions. Whether through ac-
tivation swapping (i.e. C4-C6) or the variant without activation swapping (i.e. C3), there
is a general increase in mean test accuracy and decrease in the corresponding standard de-
viation compared to single activation function conditions (i.e. C1 and C2), which means
generalization is better and more reliable in antimatter networks. Furthermore, our C3
condition, in most cases, performs better in terms of convergence, as measured by the
final training loss, in comparison to C1 and C2, proving that antimatter networks can
generally lead to convergence improvements, however this result is less consistent in the
case of activation swapping conditions, which implies that future work should continue
to explore how different mechanisms can be used to improve the synergy between ReL.U
and NReLU nodes.

If we take a higher-level perspective and aggregate the conditions into two categories,
i.e. non-antimatter conditions (i.e. C1 and C2) and antimatter conditions (i.e. C3-C6),
and compare these two categories in terms of the proportion of architecture-dataset com-
binations obtaining the best mean performance, we find a strong advantage for the an-
timatter category. For convergence properties, as measured by the mean final training
loss (Table 2), the antimatter category exhibited best performance in 66.6% of cases,
whereas for generalization properties (Table 1), it exhibited best performance in 100%
of cases. This broader perspective clearly demonstrates that the combination of ReLU
and NReLU nodes in the same architecture can have a reliable positive effect on both
convergence and generalization, across different architectures and datasets. The positive
convergence effect is suggestive that the antimatter architecture has a positive effect on
the dying ReLU problem, however additional experiments are required to measure the
effect more directly.

Future work should investigate a broader range of architectures through a more flexible
architectural design space with extensive hyperparameter tuning, and a more extensive
array of swapping mechanisms. This would allow one to draw stronger conclusions re-
garding the robustness and general applicability of the approach. Moreover, a broader
spectrum of performance metrics, including those involving continual learning and multi-
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task learning, should provide additional insights into the strengths and limitations of the
antimatter concept.
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