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 Abstract: In this paper, we investigate the following problem 
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22DH

	
denote the 

��
Hilfer fractional 

derivative of order 21 ��
respectively.

1,021 ���

1,021 ��� 	�Ri   L  is a multivalued map on  

R�],[ ��
.By means of the multi-valued fixed point theorems, sufficient 

conditions for the existence of solutions for the 
��

Hilfer fractional differential 
inclusions with multi-point  boundary conditions are presented. We give an 
example to show the effectiveness of the main theorem. 
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1. Introduction 

Fractional calculus is a hot research field because of its wide and useful applications in 

real worlds, such that physics, fluid dynamics, engineering, electromagnetism, 

chemistry, and so on [1].  
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Recently, some attention has been focused on the generalized fractional derivative 

with respect to another function � . Almeida in [2] first introduced �� Caputo 

fractional derivative. Tayloy's Theorem, Fermat's Theorem, semigroup law, etc. were 

studied.  From then on, lots of definitions of that kind with respect to another function 

� have been proposed. In 2019, �� Riesz-Caputo derivative was defined by Yang 

and Bai in [3]. The authors studied the following problem involving �� Riesz-Caputo 

derivative: 

     )),(,())((DRC ssLsq ���
�
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Where .0)(']),,([,21, 2 ����� sCq ������ The existence of solutions 

results were presented. In 2018, Sousa and Oliveira gave a new definition of the ��
Hilfer factional derivative in [4]. The convergence properties and some results 

concerning fractional calculus were investigated. The key advantage of using the ��
Hilfer fractional derivative to construct a model is that multiple differential operators 

can be used by appropriately selecting the parameter values and the function � [5]. 

   In [6], Elkhateeb and Latha Maheswari et al. considered the following problem: 
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where ,D 11H ���
� 	

���
�

22DH
	 denote the �� Hilfer fractional derivative of order 

21 �� respectively. ,21 ��� � 1,021 ���� ],1,0[21 ����
  

,Ri

	� ,,i ba��
 

nm,
 are continuous functions on a Banach space. The 

authors presented some results about existence of solutions. 

Motivated by [6], we study the following
��

Hilfer fractional differential 

inclusions: 
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where ,D 11H ���
� 	

���
�

22DH
	 denote the �� Hilfer fractional derivative of order 

21 �� respectively. 1,021 ���
,

1,021 ���
,

	�Ri ,
L  is a multivalued 

map on  
R�],[ ��

.It is noticed that we generalize the single value result to the 

multivalued one. Three sufficient conditions for the existence of solutions are given.  

In order to cover the gap that there were few papers concerning
��

Hilfer fractional 

differential inclusions, we are willing to do our research. 

2. Preliminaries  

First of all, we recall some preliminaries about fractional calculus [1]and multi-valued 

maps [7-8]. 

Definition 1.  Let ,,1 nn��� and ,N�n $ if ,,1 nn��� ,�� �  

R���  and ),],,([, RCh n ��� �  )(s�  is increasing and ,0)(' �s�  

for all ],,[ ���s  then the �� Hilfer  fractional derivative ,DH ���
� 	

 of 

order  � of a function h  and type 10 ���  is defined 
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where 1,][n 	� � ][� is the integer part of the real number ][� . 

Lemma 1. Let 
),],,([ RCh ��� ,10 21 �� �� ,10 21 �� ��

  
	�Ri ,

��� ,i � , )1( 1111 ���� �	� , 0�� and 0� , then the solution of the 
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following problem 
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satisfies the equation 
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Proof. Taking 0�m  in Lemma 7 in [6], we get the result immediately. 

 Lemma 2.[7] Assume that )(Y d is a complete metric space. Suppose that

)(PY:M Ycl�  is a contraction, then .FixM ��   

Lemma 3. [8] Let A  be a Banach space, B  a closed convex subset of A , and 

E0� an open subset of B  with E.0� If )(PEH , Bcvc� is a upper 

semicontinuous compact map. Then either 

(i) H  has a fixed point in E , or 

(ii) there exists a ,Eu ��  and 1,0�� satisfying ).(uHu ��
 

3. Main results 

3.1 The Lipschitz case 

)(A1  L  is compact multivalued maps on R],[ ��� , such that for every 
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R],[ ��� ��L
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)(A2 For almost all ],[ ���s  such that 
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 Theorem 1. Suppose that 
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 Then problem (2) has at leas a solution on S, 

provided that 
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Proof. Denote the multivalued continuous operator T  as follows, if �� LS� :  
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We divide the proof into two parts. 

Part 1. If )(}{u 0nn �T�� and .uun  �� n   Then u  is a continuous 

function, and for each
],,[ ���s

 there exists �� ,Ln S�
 satisfying 
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By L has compact values, there exists a subsequence 
}{ n� converging to 

.],,[L1 R��� �
we have 

.u(s)un �s
 Thus, 
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Part 2. Suppose that ��  are continuous functions and
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 Define the multivalued operator ! by 

:{)( Rs ��! � |}.)()(|)(|)()(| 1 sssss ���� ��� �  

 As the multivalued operator )).(,(L ss ��! is measurable. Then there exits a 

measurable selection
)(2 s�

such that 2� ))(,(L ss ��
  we get 
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 Define (t)h2  as (t)h1 replacing s1�  with ,2 s�  and one has 

�� |||| 21 hh .|||||||| ���� �  

Interchanging �  and �   yields 
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 By the assumption inequality, T is a contraction. Thus, T  has a fixed point that is a 

solution to problem (2) by virtue of Lemma 2. 

3.2. The Caratheodory case 

)(A3  L  is Caratheodory  multivalued map which has nonempty compact and 

convex values on R],[ ���
 

)(A4  If 
)[0,)[0,  � "

  is a continuous nondecreasing function and l  is a 

positive integral function on ],[ �� such that  |:sup{|||:)L(s,|| �� �

||),(||l(s))}L(s, �"�� ��  R.],[),( �� ���s  

Theorem 2. Assume that )( 21 AA � hold. If there exists a constant
,0N �

satisfying 
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Proof. Consider the operator defined as T . All the assumptions of Lemma 3 are 

satisfied concerning T . 

Step 1. As �L,S  is convex, T  is convex for each continuous function .�
 

Step 2. For a positive 
,0�#

 let }||:||)],,[C({B #���# ���� R  be a 

bounded ball, then for  ,B),T(h #�� ��  there exists �� L,S�
  for

],,[ ���s
  

we have  
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which means T  is completely continuous. Thus, T  maps bounded set into 

equicontinuous sets. 

step 4.  Set
,*�� �n  

),( nn Th ��
and 

,*hhn �  Then, we have 

)(

))()((
)(

)(

))()()(('
)(

21

1

21

1 2121

��
����

��
��� ��

�

��

	�
�

	
	�
�

�
�	�	

�
sdtttstsh

s

nn

 

dssss
n

i
m

i
i

i
)(

)(

))()()(('
[

21

1

1

21

�
��
����

���

� 	�
�

�
�	

�
�


 

].)(
)(

))()()(('

21

1

1

21

dssss
n

m

i
i �

��
����

���

� 	�
�

�
�	

�
�


 

And we obtain *h
as nh

replacing n� with *� .Thus, we show that there exists 
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The continuous linear thoperator
)],,([],,[L1 RCR ���� �$

 

Is as follows: 
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some *,* �� LS�
 which means T  has a closed graph. 

 Step 5.  It follows from step2 that  
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T  is upper semicontinuous and completely continuous. By the definition of U ,  

there is no 
U���

 such that
)T(��� �

 for some .1,0�� Hence, we have 

ii  of Lemma 3 is not true and there exists a fixed point 
U��

 which is a 
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solution of problem (2). The proof is completed. 

4. Application 

Example 1. Consider the 
��

Hilfer fractional differential inclusion 
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that is .78041.2N � By Theorem 2,  
��

Hilfe fractional differential inclusion (5) 

has at least one solution on  
].1,0[

 

5. Conclusion  

The main aim of this paper is to generalize the recent single value problem to the 

multivalued one. We study the  
��

Hilfefractional differential inclusions with 

multi-valued conditions. Existence of solutions to the problem is discussed. Sufficient 

conditions of existence of solutions results are presented and an example involving 
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function xsin is given to illustrate our main results. It is noticed that if we take 

0�m  and the right hand of (1) the multi-valued function L , then (1) becomes the 

problem (2). The results are new and contribute to the existence results about this issue. 
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