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Abstract. Everyday life problems, armed conflicts, pandemics, and
catastrophes – these are situations that are always accompanied by
stress. Its chronic form can lead to so-called stress-related illnesses.
Despite the development of health prevention, many people still get
sick due to stress. Therefore, it is important to seek detective and
classificatory solutions for stress, which may influence its reduction
or control in the future. The example of this can be the thermographic
stress registration presented in this article, combined with classifica-
tion using lightweight CNN and Choquet fuzzy ensemble learning.
The article proposed new ensemble frameworks for stress classifica-
tion based on Choquet fuzzy integral, serving as an aggregation func-
tion. In the study, three pre-trained lightweight CNN models were
used: MobileNetV2, Xception, and EfficientNet. The proposed fuzzy
ensemble model achieves a classification accuracy above 90%. This
work is of a prospective nature, with the possibility of implementing
solutions in biomedical-psychological activities.

1 Introduction

Stress accompanies human daily life. Due to emerging armed con-
flicts, pandemics, natural disasters, concerns and fears arise among
society, leading to stress. In research literature, stress is defined in
various ways. The main definition of stress comes from Hans Selye
[1]. He regarded stress as the body’s reaction to various difficulties
and challenges that require adaptation and mobilization of resources
[2]. Seyle introduced the concept of the stress syndrome [3] as well
as the General Adaptation Syndrome(GAS)[4]. Stevan E Hobfoll [5]
presented another definition of stress, referring to the impact of inter-
personal relationships on the experience of stress (relational context).
Other definitions focus on an individual’s reaction to a given experi-
ence of stress, as evidenced by changes in physiological or psycho-
logical signals [6, 7, 8]. Various types of stress can also be classified.
The most commonly identified types of stress include: emotional,
cognitive, social, behavioral, and physical [9, 10, 11]. It is also im-
portant to distinguish between eustress (positive stress) and distress
(negative stress) [12]. Symptoms of stress can manifest in various
forms [13], such as physical (feeling cold, body aches) and cognitive
(tension, resignation, inability to relax).
Frequent or prolonged exposure to stress can lead to stress-related
illnesses [14, 15]. To prevent them, it is important to focus on health
prevention and create solutions that allow for monitoring and coping
with stress. Due to the specific nature of stress and its individual im-
measurability (inability to express in units such as pressure or pulse),
detecting and classifying stress is a challenging task that requires
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an interdisciplinary approach. Given the individuality of people and
the differences in their traits, it is important to highlight the most
discriminating features when classifying stress. Objective and auto-
mated methods, which researchers are working on, can assist in this.
Physiological and psychological signals can be helpful in stress de-
tection [16, 17, 18]. Many researchers use popular but expensive de-
vices, such as EEG [19], EKG [20], EMG [21], GSR [22], and wear-
able electronics [23]. Certainly, thermal stress detection represents
a research niche, but there is noticeable interest in this direction. It
is worth emphasizing, however, that strictly industrial thermal cam-
eras are most commonly used, while their smartphone counterparts
are less frequent. Smartphone cameras such as FLIR ONE Pro [24],
Seek Thermal Compact [25], or InfiRay [26] can serve as low-cost
research devices, providing accuracy and measurement sensitivity.
In case of stress, thermographic recording of the subject’s face helps
to detect temperature changes and subtle facial expressions. This is
particularly important when there are no visible signs of stress on
the subject’s face, yet the analysis of recorded images indicates the
presence of stress and its concealment by the subject. Suppressing or
concealing emotions can be detected through changes in temperature
distribution and correlated with physiological signals such as blood
pressure and pulse.
The development of image processing is connected with the advance-
ment of object classification systems. Psychological stress detection
through observations, surveys, and questionnaires is labor-intensive,
error-prone, time-consuming, and dependent on the examiner’s expe-
rience [27]. Computer methods can provide reliable results while en-
suring cost-effectiveness and analysis speed. Image processing may
include, among others: measuring morphological features, surface
textures, object shapes, and color intensities in individual channels
[28].
The dynamic development of machine learning contributes to the
creation of increasingly accurate classification systems. Neural net-
works can operate on both small and large datasets, yielding the best
results. However, with large datasets, models are often complex and
require better computational resources. At the same time, deep net-
works can extract deeper feature representations, resulting in bet-
ter object recognition. In the case of image classification, convolu-
tional neural networks [29] play a crucial role. When limited com-
puter resources and the desire to avoid time-consuming processes
are present, lightweight convolutional networks [30] are used, such
as: MobileNet, ShuffleNet, EfficientNet, and CondenseNet.
Researchers are creating increasingly larger and deeper deep learn-
ing models, with a large number of parameters and training samples.
However, this is associated with computational burden [31]. There-
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fore, it is considered appropriate to search for and create less de-
manding but equally effective networks In the case of stress classi-
fication, it can be observed that many methods rely on a single net-
work. The performance of a single classifier may exhibit high ran-
domness and instability. The solution to this problem is to use an
approach based on ensemble learning [32]. By adding Choquet in-
tegral to ensemble learning[33], one obtains aggregation of multiple
models. Furthermore, Choquet ensemble learning preserves the in-
terpretability of the final model. The Choquet integral is described
by the formula:

∫
X

f(x)dμ =
n∑

i=1

[
f(x(i))− f(x(i−1))

]
μ(A(i)) (1)

where: f is a measurable function, X is the domain of integration,
and mu is a non-additive measure.

The Choquet integral as an aggregation operator allows for
combining forecasts from multiple base models into one optimal
model. In this way, it is possible to achieve better results than
individual base models, especially in challenging classification
tasks. To determine the importance of each base model and assign
them appropriate weights in the aggregation process, the Choquet
measure is used [34].

μ(A) = sup
E⊆A,μ(E)<∞

μ(E) (2)

where: A is a subset of X, and mu is a non-additive measure

Ensemble methods can, among other things, increase accuracy,
resistance to overfitting, enhance model stability, and improve pre-
diction reliability. Therefore, they are increasingly used in solving
complex machine learning problems. It is worth noting that static
aggregation functions are often used, where input data are indepen-
dent of each other for the purpose of simplifying calculations and
defining parameters. The fuzzy aggregation function is used when
a more general aggregation function is needed, and the researcher
intends to pay attention to the relationships between input data dur-
ing aggregation. Fuzzy aggregation functions allow for combining
data in a way that takes into account uncertainty and ambiguity,
characteristic of many problems. At the same time, it allows for
the consideration of subjective assessments and preferences in the
process of data fusion. The application of fuzzy set theory enables
a more precise alignment with the data fusion problem, especially
when the data is atypical or very similar. Overall, this translates into
obtaining more flexible and accurate results.
This article presents a proposal for stress classification using
lightweight CNN networks and Choquet ensemble learning based
on thermographic imaging. Pre-trained lightweight network models:
MobileNet, EfficientNet, and Xception were modified with addi-
tional layers to extract the most useful features and functions, as
well as to protect against overfitting. The fully connected layer was
used for stress classification and result generation for each class.
These results were then combined using Choquet integral to obtain
the final results.
The main contributions of this work are as follows:

• A technique for stress classification using Choquet fuzzy ensem-
ble learning has been proposed to achieve better results,

• Modified lightweight convolutional networks were enhanced by
adding layers: Global Average Pooling, Batch Normalization,
Dropout, and Dense, in order to increase classification capabili-
ties and avoid overfitting

• As an aggregation function, the choquet fuzzy integral was used
to combine the results of lightweight deep learning models for the
final classification of stress.

This article consists of six parts: the first chapter is an introduc-
tion, the second chapter indicates the research literature related to the
subject matter, chapter 3 presents the research project and the dataset
used, and chapter 4 describes the proposed method. Chapter 5 con-
tains the results of the research carried out along with the analysis.
The whole thing is finalized by a summary.

2 Related Work

In scientific literature, we can find many stress detection techniques.
In the introduction, the use of EEG, EKG, EMG, GSR, and wear-
able electronics was mentioned most frequently. These are expen-
sive devices primarily used in laboratory conditions. Thermographic
stress recording constitutes a developing research niche. Appropri-
ate research work can be divided into those using industrial, expen-
sive cameras and those using smartphone, low-cost thermal cam-
eras. In the study [35], researchers used the FLIR A40 MuSE base
to investigate multimodal interactions between stress and affective
expressions. The stressors included Question-Answer sessions and
emotion-inducing videos. The research group consisted of 28 indi-
viduals. Stress classification was conducted using RNN and CAs,
achieving an accuracy of 59.9%. Stress, recognized through EKG
measurement, NIRS - near-infrared spectroscopy, and NST - nose
skin temperature, was presented in the work [36]. Random forest,
SVM, and STEP method were also utilized, achieving 76.5%. 10
participants performed arithmetic mental tasks during which ECG
and OEG-Sp02 were measured. In [37], the FLIR SC7600 camera
imaged hyperspectral oxygen saturation of facial tissues in five ROI
areas. Stressor for 20 particpants was a physical stress test - squats.
In this article, the HSI system was used, as well as the methods: LD,
LR, kNN, DT, EL, SVM, achieving the highest accuracy of 82.11%.
The analysis of inflammatory activity in the body and peripheral fa-
cial temperature was described in [38]. Researchers utilized FLIR
A310 and the TSST test, while measuring interleukin-6 and blood
pressure. The work itself consisted of analyzing biotermic biomark-
ers Researchers [39], using the Microsoft webcam, FLIR SC620, and
the ANUStressDB dataset, conducted a study among 45 individuals
watching stressful and non-stressful films. They used SVM, LBP-
TOP, and HDTP for classification, achieving the highest accuracy of
72%. The entire work boiled down to proposing a method for record-
ing dynamic thermal patterns on histograms. The measurement of
the interaction between stress and emails was presented in the work
[40]. The reactions of 63 participants were recorded using the Tau
640 thermal camera and the HD Pro Webcam C920, while the pro-
posed technique was the GLM model. Other researchers [41] consid-
ered stress reactions during driving on a driving simulator.Ten people
were registered by the FLIR Boson 320LW camera and the Intel Re-
alSense D415. SVR with an RBF kernel was used in the analysis,
achieving a final accuracy of 77%. Psychological and physical stress
among 42 individuals was described in [42]. St02 levels were mea-
sured using the FLIR SC7600, PixFly camera, and Specim VNIR as
research tools. The tests conducted were TSST and SCWT, with the
highest accuracy being 95.56%. The search for specific correlations
between temperature patterns and stress markers is discussed in the
work [43]. Researchers proposed the DEFP algorithm and used FLIR
SC760, Garmin Miroxi HBR heart monitor, and the TSST test for
their studies. As seen, the aforementioned works utilized more ex-
pensive industrial thermal cameras. However, the use of smartphone
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thermal cameras in stress detection is still uncommon but promising.
In medical areas, this type of camera has been used in challenging
tasks, including limb surgery [44], burn diagnosis [45], assessment
of diabetic foot [46], early detection of cancer stages [47], sleep
apnea diagnostics [48], and groin vein bypass surgery [49]. When
it comes to stress detection through smartphone thermal cameras,
there is a noticeable decrease in research articles. This may result
from the beginnings of this detection technique and its initial de-
velopment. Considering the trends in mhealth, artificial intelligence,
device miniaturization, and improving their parameters, the author
observes the necessity of creating an interdisciplinary research foun-
dation for mental and physical health monitoring purposes. When an-
alyzing research works using a smartphone thermal imaging camera,
it is noticeable that researchers utilize the readily available but unre-
liable FLIR ONE camera In their study [50], the researchers tracked
breathing patterns and temperature changes around the nostrils of 8
participants. They used FLIR ONE, respiratory variability spectro-
gram (RVS), the Stroop Color-Word Test (SCWT), and computer-
based mental tasks, as well as CNN networks. In binary classifica-
tion, they achieved 84.59%, while in 3-class classification - 56.52%.
In [51], FLIR ONE and PPG were also used. The group consists of
17 people. The stressor was the Stroop test and mathematical tasks.
The VAS (Visual Analog Scale) was also used. Parameters were cor-
related, k-means clustering was applied, and the LOSO method was
used. Ultimately, an accuracy of 78.33% was achieved. In the works
[52, 53, 54], the FLIR ONE camera was also used. In [52], 10 par-
ticipants solved mathematical tasks while researchers monitored the
thermal variability of the nose and calculated the thermal variabil-
ity metric. They proposed the Thermal Gradient Flow method. In
[53], correlations between thermal changes dynamics and physiolog-
ical and psychological signals were investigated. The dynamics of
changes in a selected color were analyzed using OpenCV. The stres-
sor was a stressful video. In [54], researchers analyzed the nostril
area and measured the frequency of breaths using a thermal camera
and a breath sensor Depending on the stage of the study, the size
of the research group varied. The tasks performed by the partici-
pants were various, including walking and reading news. Analyzing
the presented work, one can observe that the topic of stress detec-
tion and classification has many areas still in development. It would
be worthwhile to consider the diversity of research approaches, re-
search conditions, the use of data sets (pre-existing or self-acquired),
as well as the accuracy of detection systems in laboratory and real-
world conditions. Certainly, in the coming years, due to increasing
social concerns, stress will continue to rise, along with the demand
for modern stress detection and control systems. As for the corre-
lation of stress detection methods, ensemble learning has recently
seen a growth in interest. Several stress detection models were de-
veloped at work [55] using ensemble learning. They were based on a
video-based plethysmographic application that analyzes a person’s
face and captures physiological signals. Additionally, information
from a research questionnaire was collected. The pilot study lasted
for 3 months and involved 28 individuals. Ensemble learning allowed
for achieving an accuracy of 86.8% and an F1 score of 87% in bi-
nary prediction: stress/no stress. Researchers in [56] focused heavily
on anxiety disorders, and thus psychological disorders. They pro-
posed an automatic and intelligent system for identifying anxiety
based on physiological signals. Basic machine learning algorithms
were tested, and then compared with ensemble learning models for
better metric identification. In the work [57], five algorithms were
used for stress classification: random forest, SVM, decision tree, lo-
gistic regression, and naive Bayes algorithm. Then, the ensemble

learning algorithm was applied, achieving an accuracy of 94.25%.
It is worth noting that stress was detected through behavior during
sleep. In stress research using EEG [58], researchers proposed a CIS-
based KNORA-U dynamic ensemble selection (DES) model for hu-
man stress identification. They utilized, for instance: discrete wavelet
transform (DWT), extreme gradient boosting (XGBoost), and linear
discriminant analysis (LDA), extra tree (ET). They achieved 99.14%
accuracy. If we analyze works related to thermal stress detection, no-
ticeable is the predominant use of transfer learning [59, 60].

3 Research project and dataset

As part of the research program Recognition of Stress Using Ther-
mography and Neural Networks, stress studies were conducted
among college students. A total of 100 individuals aged 20-24 par-
ticipated in the research sessions. Twelve individuals reported visual
impairments such as astigmatism, nearsightedness, and farsighted-
ness. However, during thermographic recording, these individuals
wore contact lenses instead of glasses. The research was conducted
in laboratory conditions. For research purposes, a windowless labo-
ratory room with subdued lighting was adapted. The study was car-
ried out according to the research procedure specified in the research
project approved by the Ethics Committee. The examination involved
recording the tested participants using an InfiRay smartphone ther-
mal camera during exposure to a stressor (the distance between the
participant and the camera was 50 cm). For the purpose of obtaining a
diverse database for further multiclassification, the subjects were ex-
posed to various stressors The entire group was divided into 4 teams,
each with a different stressor: a stressful film, an arithmetic task, the
Stroop test, and a recording of a heated argument. Due to the spe-
cific requirements of thermal cameras, the research room was main-
tained at a constant temperature, free from drafts, reflections, etc.
Additionally, during recordings, the blood pressure and pulse of the
subjects were measured for control and observation purposes. The
acquired recordings were processed to extract images. Then these
images were compared with reference images of the subjects, in a
relaxed state, in order to divide them appropriately according to the
specified stress level. It is worth noting that the smartphone thermal
camera featured adjustable focus, thermal sensitivity of ≤ 60mK,
thermal accuracy of 2%± 2%, a refresh rate of 25Hz, and a field of
view of 44.9◦ × 33.4◦.
An important aspect of the work was the processing of thermographic
images. The first step was to scale the images to a size of 256 x 256.
It was decided to use the standard value in order to avoid further loss
of information. Each photo was scaled and adjusted to the accepted
size. This is defined by the mathematical formula:

l(x, y) =
3∑

i−0

3∑
j−0

(aijm
inj) (3)

where:
n - pixel height,
m - pixel width,
aij - square area of the images.

The next steps in image processing were: transforming thermal
images to grayscale using a linear function, contrast stretching, and
image sharpening. Then, based on the observation of physiological
results, expert observation, and analysis of thermal image his-
tograms, the data was divided into three stress levels: low, medium,
and high. Additionally, stress absence was taken into account. In
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specifying stress levels, the works [61, 62, 63] were helpful in
determining stress levels. Additionally, after registration of the
research participants (during exposure to the stressor), they were
asked about the level of stress they felt. The PSS-10 psychological
test conducted during the study was also helpful. Also important
was control emotions on participants face to additional control
predtiction of stress level. Positive emotions corelate with low
stress level, negative emotions - with high stress level. After many
thermal analyses, psychological consultations, reviewing scientific
papers, and a thorough analysis of the feelings of the participants,
the following labels were assigned: no stress, low stress, medium
stress, high stress. These levels mainly referred to the size of the
intensity changes in the designated ROIs: forehead, nasal septum,
cheeks (left, right), eye area (left, right), jaw with mouth. The fol-
lowing percentage ranges of pixel intensity changes for stress levels
(relative to the value in the relaxed state) were adopted: no stress
0-10, low stress 10-30, medium stress 30-50, high stress 50-100.
The designated ROIs are the areas that provide the most information
about thermal changes. In these areas, temperature changes due to
stress are most often noticeable, visible in the thermal image through
a change in color or its intensity.
In the next part of preparations for neural calculations, the size
of the datasets was balanced so that each class contained 5000
images. Next, for neural calculations, the data was divided into
training, testing, and validation sets using an 80-10-10 split. All
coding operations were done in Google Colab: backend - Keras
with TensorFlow, disk space - 78GB, GPU RAM - 15GB, Windows
11, Python - version 3.10. Table 1 presents information about
the basic parameters used during model training. Figure 1 shows
sample thermal images of faces from our own database (before
pre-processing).

Table 1. Basic parameters using during model training.

Parameter Value

Epochs 50
Batch size 32
Learning Rate 0.001
Optimizer Adam
Loss Function Categorical Cross Entropy
Weights Imagenet

Figure 1. Thermal images of faces - examples (before pre-processing)

4 Proposed Method

The classification based on the implementation of Choquet integral
within ensemble methods for integrating the results of lightweight

convolutional networks: MobileNet, EfficientNet, Xception, is pre-
sented in this work. Ensemble methods involve combining different
networks and classifiers, taking into account all uncertainties in or-
der to make a final classification decision. In the case of lightweight
CNNs, additional layers were added to their structure: Global Aver-
age Pooling, Batch Normalization, Dropout, and Dense. GAP aimed
to reduce the spatial dimensions of object maps while preserving
their spatial information. This helped decrease the number of param-
eters and improve the model’s generalization ability. The Batch Nor-
malization layer was designed to improve the training of deep neural
networks by reducing the internal variation of the co-variables that
can occur during training. Batch normalization normalizes the input
data for each layer so that they have zero mean and unit variance.
Dropout is responsible for regularization and preventing overfitting
in a neural network. It is applied to the outputs of the neural network
layer and helps reduce co-adaptation of neurons in the network. The
Dense layer can learn complex relationships between inputs and out-
puts In the next stage, fuzzy ensemble learning with Choquet integral
is implemented. This allows for data integration, leading to final clas-
sification Figure 2 illustrates the concept of the proposed method’s
architecture.

Figure 2. Architecture of proposed model.

5 Results

In Tables 2-5, classification reports have been compiled. As can be
observed, the use of fuzzy ensemble learning improved the results of
model quality metrics.

Table 2. Classification Report with Fuzzy Ensemble Learning

Category Precision Recall F1-score Support

No-stress 0.98 0.97 0.98 1000
Low-stress 0.98 0.99 0.99 1000
Medium-stress 0.90 0.92 0.91 1000
High-stress 0.94 0.90 0.92 1000

Accuracy 0.95 4000
Macro avg 0.95 0.95 0.95 4000
Weighted avg 0.95 0.95 0.95 4000

Analyzing the metric values in Tables 2-5, it can be observed that
low stress and no stress were classified the best. Another levels of
stress obtained lower metric values, which is associated with greater
uncertainties in image recognition and assignment to the appropriate
group. In the case of the fuzzy ensemble learning model, an accuracy
of 95% was achieved, which is a very good result. Classification by
single lightweight CNN model is associated with an accuracy level
of 89-96%. The difference between the accuracy values in both cases
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Table 3. Classification Report for MobileNet

Category Precision Recall F1-score Support

No-stress 0.96 0.94 0.95 1000
Low-stress 0.94 0.99 0.96 1000
Medium-stress 0.83 0.81 0.82 1000
High-stress 0.85 0.83 0.84 1000

Accuracy 0.89 4000
Macro avg 0.89 0.89 0.89 4000
Weighted avg 0.89 0.89 0.89 4000

Table 4. Classification Report for EfficientNet

Category Precision Recall F1-score Support

No-stress 0.96 0.96 0.96 1000
Low-stress 0.96 0.99 0.98 1000
Medium-stress 0.83 0.85 0.84 1000
High-stress 0.88 0.82 0.85 1000

Accuracy 0.91 4000
Macro avg 0.91 0.91 0.91 4000
Weighted avg 0.91 0.91 0.91 4000

confirms the validity of the proposed method. However, it is worth
emphasizing that it would be beneficial to work on improving the
classification of images depicting a stress-free state and those with
moderate stress. One can consider using different classifiers or a dif-
ferent aggregation function for this purpose.

Figure 3. Confusion matrix

On Figure 3, graphical confusion matrix for Ensemble Learning
model was presented. The best prediction was for "low stres" class.
Also, "no stress" class has high true prediction. Some bad predic-
tions are for "medium stress" and "high stress" - the reason may be
the greater level of diversity of photos in these classes, which is re-
lated to the variety of thermal patterns on the human face (individual
human features). Thermal patterns in photos of faces without stress
coincide between people. In the case of low stress, a change in ther-
mal patterns is noticed, especially around the eyes, mouth and nose.

Table 5. Classification Report for Xception

Category Precision Recall F1-score Support

No-stress 0.98 0.98 0.98 1000
Low-stress 0.99 1.00 0.99 1000
Medium-stress 0.92 0.93 0.93 1000
High-stress 0.95 0.92 0.93 1000

Accuracy 0.96 4000
Macro avg 0.96 0.96 0.96 4000
Weighted avg 0.96 0.96 0.96 4000

In the case of medium or high stress, thermal changes are more dy-
namic and may differ from person to person, for example: in one
person, due to high stress, a thermal change will be noticed in the
forehead, and in another person - in the jaw. So, report classification
results and confusion matrix confirm this statement.
In order to check the model, it was decided to test it also on other
databases. Due to the lack of public availability of thermal images
databases of stressed people taken with a smartphone thermal cam-
era, it was decided to use databases with images taken with indus-
trial versions of thermal cameras. The following databases were used
for comparative studies: DBnew [64], Tufts Face Database [65], SF-
TL54 [66]. DBnew contains images of faces of people in various
emotional states: neutral, happy, sad. Tufts Face Databases includes
4 facial expressions: neutral, smiling, closed eyes, shocked. SF-TL54
contains thermal images with marked facial landmarks and pairing
with a visual image. Before testing the model, images from indi-
vidual databases were subjected to pre-processing and labeling de-
scribed in Chapter 3. The same number of input images was also
taken care of using data augmentation. The division of images by
emotion facilitated correlation with the stress level. It is worth noting
that individual databases were created based on different procedures
and guidelines, e.g.: different distance of the camera from the sub-
ject, registration of the head and not just the face, different angle of
the face. Due to the fact that only the face was taken into account
in the author’s database, when testing on other databases, the pho-
tos were modified so that they also showed only the face. Table 6
summarizes the accuracy results of the proposed model obtained for
individual databases.

Table 6. Model accuracy for datasets - comparison

Dataset Accuracy

DBnew 0.78
Tufts Face Database 0.91
SF-TL54 0.90
Author dataset 0.95

Comparing the obtained accuracy results from Table 6, it can be
stated that the model provides high classification accuracy also on
databases other than the author database. However, it is worth em-
phasizing that the precise and thorough pre-processing of thermal
images plays an important role, which translates into the enhance-
ment of details and ultimately into the recognition and classification
of the image. Thermal registration is also important - the distance
of the examined person from the thermal imaging camera, the type
and technical parameters of the thermal imaging camera, as well as
the area of body being registered together with the positioning of
the camera in relation to the body. Thermal imaging stress detec-
tion has many advantages, including: non-invasiveness, ease of use,
comfort of examination, safety, mobility - the ability to record in var-
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ious conditions (laboratory, home, outdoor, indoor - with appropriate
setting of recording parameters. However, there are also disadvan-
tages of this method, especially when using smartphone cameras, for
example: the need for regular calibration to ensure the accuracy of
measurements, the need for complex data interpretation if the ex-
amined person has a disease factor or physical exertion (the need
to use advanced algorithms to distinguish the cause of a given ther-
mal change - stress or illness), limited accuracy depending indirectly
on the distance between the recorded object and the camera (opti-
mally 50 cm), as well as on the correctness of the recording settings
(emission, palette, distance, etc.). However, with the currently still
developing machine learning algorithms, the disadvantages of this
method can be eliminated. This requires increasingly complex com-
puter analysis and a thorough evaluation of the obtained results.

6 Conclusion

Continuous development of machine learning and improvement of
research devices allows for the advancement of stress detection and
classification techniques. Using single neural network models for
stress recognition is problematic due to the potential for model
generalization and lower classification efficiency. Basic CNNs have
many parameters and hardware requirements, which results in time-
consuming and computationally intensive calculations. Therefore,
to minimize this, in this article, a fuzzy ensemble method based
on lightweight CNNs was applied. Lightweight CNNs such as Mo-
bileNet, EfficientNet, and Xception were used as base models, while
Choquet fuzzy integral was used to integrate the results for the final
classification of human stress from thermographic images. The re-
sults indicate that the proposed method achieves 95% accuracy.
It is worth mentioning that thermographic registration of the subjects
was associated with strict adherence to the research procedure and
ensuring almost ideal measurement conditions. Additionally, due to
its specific nature, the smartphone thermographic camera required
frequent calibration and test recordings. Equally important was fa-
miliarizing the participants with the research setting and avoiding
any additional stress. Therefore, before the studies, the participants
underwent relaxation.
In the context of the conducted calculations, it has been noticed that
lightweight CNN networks perform well with not very large datasets
and complex tasks. For greater complexity and large datasets, the
consideration remains to use larger and deeper neural networks. Fur-
thermore, it would be worthwhile to perform data augmentation on
the dataset to ensure greater diversity and a larger quantity of images
for neural computations.
The use of Choquet integral and fuzzy ensemble learning is con-
sidered effective in the context of stress classification. However, it
would be worth considering the use of other classifiers, taking into
account the test accuracy. The research space also includes searching
for optimal weights or voting schemes to combine the results of in-
dividual models. The ensemble performance may be sensitive to the
choice of weights or voting scheme. Therefore, it is worth creating in-
creasingly advanced neural networks, focusing on more accurate data
processing, and developing the idea of fuzzy ensemble learning in
further research. In the future, the author plans to conduct advanced
stress studies, focused on further correlating thermography with neu-
ral networks. However, it should move towards cost-effectiveness,
adaptation to average computer resources, integration with mHealth
solutions, and comprehensibility for the average person.
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