
Federated Online Learning for Heavy Hitter Detection

Paula Silvaa,b,*, João Vinagrec and João Gamaa,d

aINESC TEC, Porto, Portugal
bFEUP - University of Porto, Porto, Portugal

cJoint Research Centre - European Commission, Seville, Spain
dFEP - University of Porto, Porto, Portugal

ORCID (Paula Silva): https://orcid.org/0000-0002-3144-3600, ORCID (João Vinagre):
https://orcid.org/0000-0001-6219-3977, ORCID (João Gama): https://orcid.org/0000-0003-3357-1195

Abstract. Effective anomaly detection in telecommunication net-
works is essential for securing digital transactions and supporting
the sustainability of our global information ecosystem. However, the
volume of data in such high-speed distributed environments imposes
strict latency and scalability requirements on anomaly detection sys-
tems. This study focuses on distributed heavy hitter detection in tele-
phone networks – a critical component of network traffic analysis and
fraud detection. We propose a federated version of the Lossy Count-
ing algorithm and compare it to its centralized version. Our experi-
mental results reveal that the federated approach can detect consid-
erably more unique heavy hitters than the centralized method while
enhancing privacy. Furthermore, Federated Lossy Counting does not
need a large amount of centralized processing power since it can
leverage the networked infrastructure with minimal impact on band-
width and computing power.

1 Introduction

The fast-growing volume and data speed in network environments
creates substantial challenges for conventional data processing archi-
tectures. Centralized systems often struggle with scalability, latency,
and privacy issues, especially when handling sensitive information.
To address these challenges, Federated Learning (FL) has emerged
as a distributed machine learning paradigm designed to address the
increasing demands for data privacy and efficient data processing
across decentralized sources [3]. Unlike traditional centralized learn-
ing, FL enables multiple clients, such as smartphones, IoT devices,
or various institutions, to train a global model collaboratively with-
out sharing their raw data. This is achieved by exchanging model
updates rather than the actual data, thereby preserving the privacy of
each client’s dataset [4]. Given their distributed nature and the high
volume and speed of traffic, FL applications have a high potential for
solving problems related to network diagnosis and operation.

Interconnect bypass fraud, referred to as toll bypass fraud, inter-
connect fraud, GSM Gateway fraud, or SIM Boxing, involves unau-
thorized traffic rerouting through another carrier’s network to avoid
termination fees. This fraud typically leverages low-cost IP connec-
tions to forward international calls, resulting in substantial finan-
cial losses within the telecommunications sector. Moreover, fraud-
sters employ increasingly sophisticated strategies to circumvent tra-
ditional detection mechanisms. Typically, interconnect bypass fraud
∗ Corresponding Author. Email: paula.r.silva@inesctec.pt

manifests as a sudden surge in call volume, complicating detection
and mitigation efforts [17]. Effective detection and mitigation strate-
gies are crucial to counter these fraudulent activities. Two powerful
analytical approaches that can be leveraged to address this issue are
frequent itemset mining and heavy hitter detection. These method-
ologies can uncover patterns and anomalies in data that are not easily
detectable through conventional means.

Heavy hitter detection focuses on identifying the few items that
account for some significant fraction of the activity in a dataset. In
telecommunications, this method can effectively spot the number of
connections that generate unusually high traffic, indicative of inter-
connect bypass fraud. For example, a phone number frequently ap-
pearing in call logs with a high volume of international connections
made over short periods might be flagged as a heavy hitter. The im-
plementation of heavy hitter detection algorithms, such as the Lossy
Counting algorithms [16], allows for real-time analysis of streaming
data, making it possible to detect and respond to potential fraud cases
as they occur.

This manuscript delves into applying the Lossy Counting algo-
rithm within a federated framework to detect heavy hitters in net-
work traffic—key elements or patterns frequently occurring within
a data stream. This method leverages federated learning to enhance
the detection of anomalous traffic patterns across various network
nodes while preserving the privacy and security of the data involved.
In essence, our approach consists of counting heavy hitters locally at
each participating node in the network and then combining the con-
tributions of each node in a central node that estimates the network’s
heavy hitters.

This process does not require sharing raw data, potentially im-
proving privacy and reducing bandwidth requirements. Furthermore,
since the system is distributed, computation and communication
overhead is more straightforward to accommodate within the existing
network resources, with potential savings in computational power,
network bandwidth, maintenance actions, and economic and envi-
ronmental benefits.

The main contributions of this manuscript are as follows:

• Aggregation Method: We propose an aggregation method focused
on ranking aggregation within discrete bucket windows. This tech-
nique is particularly adept at summarizing and synthesizing in-
formation over specified intervals, which is crucial for timely
decision-making in dynamic environments.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241065

4689



• Comparative Experimental Setup: Our experimental framework
directly compares the performance of centralized and federated
learning approaches. This setup demonstrates the efficacy of our
integrated solutions and provides valuable insights into their prac-
tical applicability and advantages in various scenarios.

2 Related Works

This section delves into the intricacies of frequent itemset mining
within online and federated learning realms. Each subsection ad-
dresses theoretical frameworks and discusses practical implementa-
tions and challenges, providing a comprehensive overview of how
frequent itemset mining is adapted to these learning paradigms.

2.1 Online Learning and Frequent Itemsets

Frequent Itemset Mining (FIM) is a fundamental task in larger scale
data stream mining, aimed at discovering sets of items that appear
frequently together in a given dataset [7, 2]. The body of research on
Frequent Itemset Mining (FIM) includes algorithms designed to un-
cover the hidden patterns of frequent itemsets more efficiently, aim-
ing for reduced runtime and lower memory usage as data volumes
grow [9, 22].

The Lossy Counting algorithm addresses the need for efficient,
scalable, and accurate streaming data processing to extract meaning-
ful patterns with reduced computational overhead in environments
characterized by high velocity and volume. The primary application
of this algorithm is finding heavy hitters in network traffic, which
addresses the need for effective network management and monitor-
ing [8]. The algorithm provides a way to approximate the frequen-
cies of different itemsets without keeping the entire data history, thus
conserving memory and processing resources. The authors discuss
enhancements to the traditional Lossy Counting method, offering
probabilistic guarantees on accuracy and reducing false positives and
memory consumption in network traffic analysis.

Veloso et al. [15] explore using advanced heavy-hitter algorithms
to identify interconnect bypass fraud in telecommunications. The re-
searchers employ the Lossy Counting algorithm, demonstrating its
ability to manage and analyze large data volumes effectively, thus
accurately identifying fraudulent activities. Further developing this
approach, Veloso et al. [17] integrates a fast forgetting technique
with Lossy Counting to better detect unusual patterns, such as sud-
den spikes in calls from particular numbers. This innovation en-
hances the algorithm’s ability to uncover fraud patterns character-
ized by repeated and mirrored behaviours across various destination
numbers. The authors highlight that their method not only supports
but also enhances the performance of existing telecom fraud detec-
tion processes regarding speed, memory efficiency, and sensitivity.
The River framework [13], a specialized machine-learning library
designed for real-time, online learning, supports the implementation
of these methodologies.

Even though the Lossy Counting algorithm is not a new addition to
the field of data stream mining, it continues to hold significant rele-
vance and is actively used to address contemporary challenges in on-
line learning. Researchers and practitioners find it an indispensable
tool in the era of big data, where the demand for real-time analyt-
ics and efficient data processing mechanisms is ever-growing. Thus,
while it may not be a new tool, Lossy Counting remains a corner-
stone in the toolkit of algorithms for online learning and data stream
processing [21, 18, 14].

2.2 Frequent Itemsets in Federated Learning

Frequent itemsets in federated learning focus on identifying patterns
or item combinations that commonly appear across decentralized
data sources while adhering to privacy principles and maintaining
data locality. The main challenge is modifying traditional itemset
mining algorithms for a federated context where data does not leave
its local environment. These algorithms must efficiently aggregate
results from each node to reflect the global training accurately.

Li et al. [11] introduce a novel algorithm, FIML, which mines
frequent itemsets within local differential privacy standards. FIML
combines a padding-and-sampling-based frequent oracle with an in-
teractive method, achieving high accuracy while preserving privacy.
However, its complexity and the need for precise parameter tuning
may limit its practicality.

A novel framework for frequent pattern mining (FPM) tasks that
preserve user privacy while maintaining high data utility was in-
troduced in [19]. FedFPM operates under a federated analytics
framework, which employs an interactive query-response approach,
leveraging the Apriori property and Hoeffding’s inequality to refine
queries and aggregate data across clients. The framework performs
better than existing methods but requires careful parameter configu-
ration and assumes stable network conditions.

Hei et al. [10] introduces an intrusion detection framework that in-
tegrates blockchain with Federated Learning (FL) to secure Internet
of Things (IoT) devices while preserving user privacy. This approach,
however, may encounter issues such as increased computational and
storage demands on IoT devices and potential latency introduced
by blockchain, which could impede real-time detection capabilities.
Similarly, Wu et al. [20] presents an FL framework tailored for indus-
trial IoT, employing a "pre-large concept" to reduce data scans and
bolster privacy. Despite its advancements, this framework struggles
with synchronising local models and aggregation of parameters, par-
ticularly in dynamic settings where real-time responses are essential.

The paper [6] propose the framework FedFIM that leverages FL
combined with local differential privacy and use of a non-Apriori
algorithm for pattern discovery. The computational demands and
the complexity of managing cryptographic keys could challenge the
practical deployment. Additionally, the increased complexity of the
system could affect scalability and real-time performance, particu-
larly in environments with stringent response time requirements.

The paper [1] discusses a method to enhance data privacy in cyber-
physical systems (CPS) using federated learning for frequent itemset
mining. The complexity and computational demands of maintain-
ing an attention-based model and FL system could be significant,
especially in systems with constrained resources. Additionally, the
reliance on local data processing and the need for effective synchro-
nization across distributed networks pose challenges in ensuring con-
sistency and reliability of the learning process.

3 Frequent Itemsets with Lossy Counting

Manku and Motwani [12] present the Lossy Counting algorithm, a
one-pass algorithm for computing frequency counts that exceed a
user-specified threshold on data streams. While the results are ap-
proximate, the algorithm ensures that the error does not surpass a
parameter specified by the user. Lossy Counting requires two user-
specified parameters: a support threshold s ∈ [0, 1], and an error
parameter ε ∈ [0, 1] such that ε � s. The algorithm can produce a
list of item sets and their estimated frequencies at any time.

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection4690



Let N represent the current length of the stream. The results gen-
erated will adhere to the following assurances:

• All items whose true frequency exceeds s × N are output. There
are no false negatives;

• No item whose true frequency is less than (s− ε)×N is output;

• Estimated frequencies are less than the true frequencies by at most
ε×N .

The pseudo-code is presented in Algorithm 1 [12]. The process
begins by segmenting the incoming data stream into discrete units,
or buckets, each containing w =

⌈
N
ε

⌉
transactions. These buckets

are sequentially assigned unique identifiers, bucket ids. Let bcurrent

represent the identifier for the current bucket. As each element is
processed, it checks whether it is already in the data structure. If it is,
increment its count. If not, add it with an initial count and a δ value
to account for potential errors. For any given element e within the
stream, fe represents its true frequency up to the current point in the
stream. At the end of each bucket (a stream segment defined by w),
the algorithm reviews each item in the data structure to determine if
it should be removed based on its count and δ value. After process-
ing the stream, the data structure D contains the elements and their
approximate counts.

Algorithm 1 Lossy Counting Algorithm
1: Input: Stream of elements S, error parameter ε, support s
2: Output: Approximate frequencies of items
3: b_current ← 1 � Current bucket number
4: n ← 0 � Total elements processed
5: w ← �1/ε� � Width of a bucket
6: Initialize empty data structure D
7: for each element e in stream S do

8: n ← n+ 1
9: if e is in D then

10: D[e].count ← D[e].count+ 1
11: else

12: D[e].count ← 1
13: D[e].δ ← b_current− 1
14: end if

15: if n mod w == 0 then

16: for each item i in D do

17: if D[i].count+D[i].δ ≤ b_current× s then
18: Remove i from D
19: end if

20: end for

21: b_current ← b_current+ 1
22: end if

23: end for

24: returnD

4 Federated Lossy Counting

This manuscript presents an enhanced implementation of the Lossy
Counting algorithm within a federated learning context. Our ap-
proach adopts a Horizontal Federated Learning architecture, wherein
each client node independently executes the probabilistic count-
ing process. The server’s role is to aggregate these counts from
client nodes. Notably, the server does not disseminate any updated
weights or parameters back to the clients in this implementation.

Server

Client A
W1

Wi

Wn
Sa

Client B
W1

Wi

Wn
Sb

Client C
W1

Wi

Wn
Sc

Client D
W1

Wi

Wn
Sd

Figure 1. Horizontal FL architecture

Lossy Counting inherently operates in a one-way pass mode, focus-
ing solely on aggregation without iterative model updates.

Figure 1 illustrates the architecture of a horizontal federated learn-
ing environment comprising one server and multiple clients (Client
A, Client B, Client C, Client D). Each client holds its subset of data,
denoted as Sa, Sb, Sc, and Sd for Clients A, B, C, and D respectively.
These clients independently process their data stream segmented into
buckets represented by w1 to wn, each containing w =

⌈
N
ε

⌉
trans-

actions. The server aggregates these summaries from all clients to
update the global counting for each data bucket.

Let D be a dataset represented where each row corresponds to an
observation with values of Id and DateT ime. Each client starts the
process by receiving the first bucket of streaming data. The bucket
is computed according to the ε parameter, and the number of rows
corresponds to �1/ε�. For example, if ε = 0.0005, the bucket size
will be 1000 rows. Then, each client runs the Algorithm 1 and returns
the top-k counting ranking. The server aggregates the rankings by the
sum of probabilistic counting according to the time interval.

Algorithm 2 Aggregate Bucket Ranking
1: Input: Dataset D consisting of tuples (idd, vd, td)
2: Input: Time interval [tbegin, tend], and integer k
3: Output: Top k entries from D based on summed values vd
4: Initialize an empty list V alidEntries
5: Initialize Agg to store sums of vd based on coded
6: ifD is not empty then

7: for all (idd, vd, td) ∈ D do

8: if tbegin ≤ td ≤ tend then
9: if idd in Agg then

10: Agg[idd] ← Agg[idd] + vd
11: else

12: Agg[idd] ← vd
13: end if

14: end if

15: end for

16: for all id, total_value in Agg do

17: Append (id, total_value) to V alidEntries
18: end for

19: Sort V alidEntries in descending order based on
total_value

20: R ← the first k elements of V alidEntries
21: else

22: R ← an empty list
23: end if

24: return R

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection 4691



Algorithm 2 processes a dataset D to find and rank entries based
on aggregated values within a specified time interval. The purpose of
this algorithm is to aggregate values (denoted as vd) from a dataset
D based on a standard id (idd) within a specified time range (tbegin
to tend). The algorithm sums these values and ranks the entries based
on these summed values, finally returning the top k entries. Initialize
an empty list V alidEntries to store the resulting tuples of id and
their aggregated values. Initialize a data structure Agg to store the
summed values for each unique id. The algorithm iterates over each
entry in the dataset D. If an entry’s timestamp td is within the spec-
ified time interval, it checks if the id idd already exists in the array
Agg. If it does, it updates the existing sum. If not, it initializes a new
sum for that code. After processing all entries, the algorithm iterates
over the arrayAgg and appends each code and its corresponding total
value to the list V alidEntries. Sort V alidEntries in descending
order based on the total value. The algorithm extracts the first k en-
tries from the sorted list to form the output R. If the dataset D is
empty, the algorithm returns an empty list.

The for-loop (Lines 8-13) processes each entry in D, yielding a
complexity ofO(n), with n denoting the number of entries inD. In-
serting and updating theAgg has an average-case time complexity of
O(1) per operation. Sorting the list V alidEntries has a time com-
plexity of O(m logm), where m is the number of unique codes in
D. The predominant time complexity isO(n)+O(m logm), where
m is less than or equal to n. The space complexity is O(m + n)
due to the storage requirements for the dictionary Agg and the list
V alidEntries. Regarding scalability, as the size of the dataset D
increases, the memory overhead of storing Agg and V alidEntries
could become significant, especially with many unique codes.

5 Interconnect Bypass Fraud Detection

Interconnect Bypass Fraud (IBF) detection algorithms typically con-
sume a stream S of events, where S contains information about the
origin number A_Number, the destination number B_Number,
the associated timestamp, and the status of the call. The expected
output is a set of potentially fraudulent A_Numbers. The telecom
operator can then further inspect this set to confirm or dismiss fraud-
ulent activity.

In IBF, we can observe three different types of abnormal be-
haviours: (i) the burst of calls, which are A_Numbers that pro-
duce enormous quantities of #calls (above the #calls of all
A_Numbers) during a specific time window W . The size of this
time window is typically tiny; (ii) repetitions, which are the repe-
tition of some pattern (#calls) produced by a A_Number during
consecutive time windowsW ; and (iii) mirror behaviours, which are
two distinct A_Numbers (typically these A_Numbers are from
the same country) that produce the same pattern of calls (#calls)
during a time window W . The utilization of Lossy Counting pro-
vides a sophisticated approach to rapidly identify and analyze abnor-
mal behaviours in telecommunications, thereby enhancing the detec-
tion and prevention of interconnected bypass fraud. In this experi-
ment, we apply a single-pass heavy-hitter algorithm to identify calls
to numerous destinations, from a single number to multiple receiving
numbers (B_number).

The experimental setup evaluates the differences between the cen-
tralized and federated versions of heavy hitter detection. As our base-
line algorithm, we used the approach proposed by [12].

5.1 Data

We evaluated our proposal with two anonymized telecommunication
data sets [5], which provides information about traffic flow (calls)
into/out of gateways. Each call contains the following attributes:

• A-Number: origin number
• B-Number: destination number
• Date-Time: date and time of the call

The A- and B-numbers are unique identifiers of respectively the
origin and destination of each call. Dataset A encompasses data
collected from July 24, 2018, to October 21, 2018, comprising
83366367 calls. Meanwhile, Dataset B, which includes 32879670
calls, was gathered within one month from June 1, 2019, to June
30, 2019.

5.2 Centralized Approach

The centralized application of the Lossy Counting algorithm was em-
ployed on Dataset A and Dataset B. We applied a similar methodol-
ogy proposed by Veloso et al. [17] using the two datasets and the
Lossy Counting implementation available in River [13]. In this im-
plementation, in addition to the support and epsilon parameters, a
fading factor can impose a decay on the statistics from window to
window. We set a fading_factor = 1 in our experiments, mean-
ing we did not retain statistics between buckets. The Lossy Count-
ing algorithm was configured in three different setups to identify the
most frequently occurring phone numbers, referred to as heavy hit-
ters, within these datasets.

The three different parameter configurations were chosen based on
the size of the bucket window (1/ε) to make the centralised approach
easily comparable with the federated approach regarding the number
of examples by the window. Are as follows:

• Configuration 1: epsilon = 0.0005 (bucket size 2000),
support = 0.0005

• Configuration 2: epsilon = 0.00025 (bucket size 4000),
support = 0.00025

• Configuration 3: epsilon = 0.000125 (bucket size 8000),
support = 0.000125

We applied the centralized Lossy Counting algorithm to each
dataset under the three configurations mentioned above. The progres-
sive reduction in the support and ε parameters lowers the frequency
threshold required for a phone number to qualify as a heavy hitter.
The adjustments in these configurations were designed to align with
the federated approach, where a centralized bucket size of 2000 cor-
responds to two clients, each handling buckets of 1000, thereby fa-
cilitating the comparison between the two approaches.

Despite applying three distinct configurations of Lossy Counting,
results regarding the identification of heavy hitters and the count of
a-numbers have shown remarkable consistency across different set-
tings. Table 1 highlights how slight variations in bucket size, from
2000 to 8000, primarily affect Dataset A, with a minimal impact
on the number of heavy hitters detected, thus underscoring the al-
gorithm’s stability.

Figure 2 displays the activity patterns of the top-5 A-numbers in
Dataset A over three months. This chart is crucial for identifying
trends, anomalies, or consistent behaviours among the most active
A-numbers, which could indicate heavy usage or potential misuse.
Observing these patterns helps understand the dynamic nature of

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection4692



Table 1. Number of A-numbers identified as heavy hitters with Centralized
Lossy Counting

Dataset Bucket Size

2000 4000 8000
A - 3 months 20 19 19
B - 1 month 22 20 20

Figure 2. Estimated absolute frequencies of the 5 most active A-numbers
over time for Dataset A. A-numbers are suffixed with -1 for configuration 1
(dash lines), -2 for configuration 2 (solid lines), and -3 for configuration 3

(dot lines)

Figure 3. Estimated absolute frequencies of the 5 most active A-numbers
over time for Dataset B. A-numbers are suffixed with -1 for configuration 1
(dash lines), -2 for configuration 2 (solid lines), and -3 for configuration 3

(dot lines)

telecommunications traffic and can be vital for anomaly detection
systems designed to flag fraudulent activities.

Similarly, Figure 3 presents the activity of the top-5 A-numbers in
Dataset B. Given that Dataset B covers a shorter period (one month),
the visualization can provide insights into more condensed activity
patterns. Comparing these patterns against those observed in Dataset
A might reveal significant differences in usage or highlight specific

numbers that consistently exhibit high activity, which could be sub-
ject to further investigation for fraud or other anomalous behaviours.

Both figures are instrumental in assessing the efficacy of the heavy
hitter detection system in real-world applications, especially in iden-
tifying potential fraudulent activities within the telecommunications
sector. The visualization helps stakeholders quickly grasp significant
trends and anomalies without delving into more complex data anal-
ysis, facilitating faster decision-making and response times to poten-
tial threats.

5.3 Federated Approach

In the federated approach, Datasets A and B were partitioned to
simulate a multi-client environment. We used random distribution,
whereby each row from the complete dataset is randomly allocated
to a specific client.

Following the implementation of the multi-client environment in
Flower, we implemented the federated Lossy Counting approach as
detailed in Section 4. Each client executes the Lossy Counting algo-
rithm, and the server aggregates the rankings from each client. We
also apply three parameter configurations:

• Configuration 1: epsilon = 0.001, support = 0.0005
• Configuration 2: epsilon = 0.001, support = 0.00025
• Configuration 3: epsilon = 0.001, support = 0.000125

In all configurations, we consistently used a bucket size of 1000 ex-
amples, adjusting the minimum support to match the corresponding
settings of the centralized approach. This standardization allows for
a direct comparison between the centralized and federated method-
ologies within a controlled experimental framework.

When attempting to achieve similar counting results between cen-
tralized and federated approaches, it is important to consider the pa-
rameters’ aggregate impact across all federated system nodes. Here
are some considerations for aligning the parameters:

• Bucket Size and ε: The bucket size is inversely proportional to
epsilon. If the federated approach sums results from two clients,
to approximate the bucket size used in the centralized approach,
we would need to adjust the epsilon in the federated approach to
be half of that in the centralized system.

• Support: The support threshold determines the minimum fre-
quency an item must have to be considered a heavy hitter. In a
federated system, if the data is evenly split and we are summing
the results, we might keep the support value the same as the cen-
tralized approach because the summed frequencies from the fed-
erated nodes would theoretically equal the total frequency in the
centralized system.

Given these considerations, we wanted that the federated approach
to have a similar sensitivity as the centralized approach with an ini-
tial bucket size of 2000 (assuming ε = 0.0005), so we adjusted the
parameters of the federated system so that when combined, they mir-
ror the centralized system’s settings. For each of the two clients, we
used epsilon = 0.001 – i.e. twice the centralized ε since each client
sees half the data – and support = 0.0005 – same as centralized be-
cause the frequencies summed will be equivalent to the centralized
dataset. Additionally, the data distribution, while statistically similar
over time, may not be identical in each partition, leading to differ-
ences in the heavy hitters identified by the federated approach.

As illustrated in Table 2, the federated approach identified a num-
ber of distinct numbers very similar to the centralized method. The

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection 4693



Table 2. Number of A-numbers identified as heavy hitters with Federated
Lossy Counting

Dataset Number of clients

2 4 8
A - 3 months 23 22 22
B - 1 month 22 20 20

percentage of common numbers in Dataset A is, on average, 86.36%,
while the percentage of common numbers in Dataset B is, on av-
erage, 100%. These slight variations might include unique heavy
hitters specific to the data subsets but do not appear as significant
when the entire dataset is considered collectively in the centralized
method. The federated approach operates on smaller samples in each
client, potentially making it more sensitive to minor fluctuations in
data. These fluctuations might be averaged out or obscured in the
larger dataset used in the centralized approach. This dilution effect
can cause the number of detected heavy hitters to decrease as the
anomaly or heavy hitter’s signal strength is not strong enough across
smaller datasets.

Figure 4 shows the comparison between the frequencies of phone
calls of a centralized approach (denoted as -C) and a federated ap-
proach (denoted as -F) of Dataset A, and Figure 5 illustrates the same
for Dataset B. In both plots, we constructed a subset of the results
for the Configuration 1 of both approaches, comprising the top-5 A-
numbers identified by the centralized version over buckets. The main
observation is that, the federated version estimates the same frequen-
cies as the centralized version for the same top-k A-numbers.

In Figure 4, the results reveal notable differences between the
two implementations regarding frequency estimations. The central-
ized version, depicted by solid lines, consistently shows higher and
more stable frequency estimations. In contrast, the federated version,
represented by dashed lines, exhibits variations in growth patterns
and sometimes lower frequency counts. These discrepancies suggest
that the federated Lossy Counting implementation may exhibit dif-
ferent behaviour in frequency tracking compared to the centralized

Figure 4. Estimated frequencies of the top-5 A-numbers (as identified by
the centralized version) in Dataset A. Frequencies of A-numbers are suffixed
with -C (solid lines) for the centralized version, and suffixed with -F (dash

lines)for the federated version. Note that since we pick the numbers
identified by the centralized Lossy Counting, all 5 A-numbers are not always

within those identified by the federated version.

Figure 5. Estimated frequencies of the top-5 A-numbers (as identified by
the centralized version) in Dataset B. Frequencies of A-numbers are suffixed
with -C (solid lines) for the centralized version, and suffixed with -F (dash

lines) for the federated version. Note that since we pick the numbers
identified by the centralized Lossy Counting, all 5 A-numbers are not always

within those identified by the federated version.

approach, particularly when capturing the most frequent items. This
comparison highlights the potential variations in frequency estima-
tion outcomes between federated and centralized implementations of
the Lossy Counting algorithm, emphasizing decentralization’s im-
pact on identifying high-frequency elements. It is important to note
that this consistent behaviour is observed not only in Configuration
1 but also in Configurations 2 and 3.

In Figure 5, one notable aspect of the results is that the centralized
and federated approaches achieve the same frequency estimations for
the top five A-numbers in Dataset B. The solid lines representing
the centralized version and the dashed lines representing the feder-
ated version overlap precisely, indicating that both approaches yield
identical results in estimating the frequencies of these A-numbers.
Across all configurations, the centralized and federated implementa-
tions demonstrate the same frequency estimations, underscoring the
robustness of the federated approach in Dataset B.

Given the characteristics of Lossy Counting and the context of
the centralized versus federated approaches, several factors could ex-
plain why the federated version identified top-k numbers with lower
frequencies in Dataset A but achieved the identical frequency esti-
mations as the centralized version in the Dataset B:

• Partitioned Data: Since the federated approach divides the dataset
into n parts, each data node operates on a smaller subset of the
total data. This partitioning could identify heavy hitters that might
not appear as frequently in the combined dataset but are significant
within their local subsets.

• Data Distribution Sensitivity: Even though data distribution is the-
oretically the same – given the random distribution –, in practice,
slight changes in each node’s distinct subset of data could lead to
identifying different top-k items. The Lossy Counting algorithm is
sensitive to the data distribution in each subset, which may cause
certain items to appear as heavy hitters locally, even if they are not
in the overall dataset.

• Error Bound and Frequency Threshold: The error in the counts
from the Lossy Counting algorithm is within a certain threshold

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection4694



related to the window size. In a federated setup, each node oper-
ates with its local data, potentially resulting in different error mar-
gins that can affect the detection of top-k items. Smaller datasets
(as in each federated node) could have a smaller error bound, al-
lowing the detection of items with lower global frequencies but
which are significant on a local level.

• Combining Results: In the federated approach, when counts from
individual nodes are aggregated, it is possible for items that are
less frequent globally but frequent in a partition to make it to the
combined top-k list, especially if they appear just below the fre-
quency threshold.

The nature of the federated approach could capture a more diverse
set of top-k items because it accounts for local variations that are
not visible in the centralized dataset. The federated approach’s ca-
pacity to detect local patterns of significance that may not emerge
in a centralized analysis can be advantageous in distributed data en-
vironments. It allows for a finer-grained understanding of the data,
revealing patterns specific to subsets within the whole.

The code is available in the repository 1.

6 Conclusions and Future Works

This manuscript has explored the application of the Lossy Count-
ing algorithm within both centralized and federated learning frame-
works for detecting heavy hitters in telecommunications data. Our
investigation revealed that while both approaches effectively iden-
tify significant patterns within data streams, the federated approach
demonstrates notable strengths in scenarios requiring heightened pri-
vacy and data security. Our findings indicate that the federated sys-
tem identifies a broader array of heavy hitters thanks to its localized
data processing. This approach captures data variations that could be
overlooked or diminished in a centralized system.

The federated version of Lossy Counting, by processing data lo-
cally at each node and only sharing aggregated information, poten-
tially enhances data privacy and security, making it suitable for sen-
sitive data environments. While beneficial, the federated approach
presents challenges, such as the complexity of managing and syn-
chronizing multiple clients and ensuring consistent detection thresh-
olds across diverse data segments. The detection sensitivity varied
significantly across different configurations and setups, indicating
that parameter tuning is critical for optimizing performance in di-
verse operational scenarios.

Future research could focus on refining the Lossy Counting al-
gorithm’s parameterization within a federated framework to enhance
consistency and reliability of heavy hitter detection across varied net-
work conditions. Extending the application of federated heavy hit-
ter detection to other domains such as finance, healthcare, and e-
commerce could provide deeper insights into its versatility and ef-
ficiency. Developing more sophisticated data aggregation methods
could mitigate the challenges of variability and enhance the overall
accuracy of the federated learning models.

Acknowledgements

This research supported by the Fundação para a Ciência e Tecnologia
(FCT), Portugal for the PhD Grant 2022.12896.BD.

1 https://github.com/paularaissa/FederatedHeavyHitterDetection

References

[1] U. Ahmed, G. Srivastava, and J. C. Lin. A federated learning approach
to frequent itemset mining in cyber-physical systems. J. Netw. Syst.
Manag., 29(4):42, 2021.

[2] S. Bagui and R. P. Stanley. Mining frequent itemsets from streaming
transaction data using genetic algorithms. J. Big Data, 7(1):54, 2020.

[3] N. R. Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and
E. Martínez-Cámara. Survey on federated learning threats: Concepts,
taxonomy on attacks and defences, experimental study and challenges.
Inf. Fusion, 90:148–173, 2023.

[4] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal, G. Bovet,
M. G. Pérez, G. M. Pérez, and A. H. Celdrán. Decentralized federated
learning: Fundamentals, state of the art, frameworks, trends, and chal-
lenges. IEEE Commun. Surv. Tutorials, 25(4):2983–3013, 2023.

[5] V. Bruno, M. Carlos, E. Raphael, S. Paula Raissa, A. Raul, and G. João.
Anonymised Phone Call Dataset for Anomaly Detection, Aug. 2024.
URL https://doi.org/10.5281/zenodo.13254389.

[6] Y. Chen, W. Gan, Y. Wu, and P. S. Yu. Privacy-preserving federated
mining of frequent itemsets. Inf. Sci., 625:504–520, 2023.

[7] G. Cormode and M. Hadjieleftheriou. Finding the frequent items in
streams of data. Commun. ACM, 52(10):97–105, 2009.

[8] X. A. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic lossy count-
ing: an efficient algorithm for finding heavy hitters. Comput. Commun.
Rev., 38(1):5, 2008.

[9] P. Goyal, J. S. Challa, S. Shrivastava, and N. Goyal. Anytime frequent
itemset mining of transactional data streams. Big Data Res., 21:100146,
2020.

[10] X. Hei, X. Yin, Y. Wang, J. Ren, and L. Zhu. A trusted feature ag-
gregator federated learning for distributed malicious attack detection.
Comput. Secur., 99:102033, 2020.

[11] J. Li, W. Gan, Y. Gui, Y. Wu, and P. S. Yu. Frequent itemset mining with
local differential privacy. In CIKM, pages 1146–1155. ACM, 2022.

[12] G. S. Manku and R. Motwani. Approximate frequency counts over data
streams. Proc. VLDB Endow., 5(12):1699, 2012.

[13] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and
A. Bifet. River: machine learning for streaming data in python. Jour-
nal of Machine Learning Research, 22(110):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1380.html.

[14] A. Moon, S. W. Son, H. Kim, and M. Kim. Lossy predictive models for
accurate classification algorithms. In IEEE Big Data, pages 4576–4582.
IEEE, 2022.

[15] B. Veloso, J. Gama, C. Martins, R. Espanha, and R. Azevedo. A
case study on using heavy-hitters in interconnect bypass fraud. ACM
SIGAPP Applied Computing Review, 20(3):47–57, 2020.

[16] B. Veloso, C. Martins, R. Espanha, R. Azevedo, and J. Gama. Fraud
detection using heavy hitters: a case study. Proceedings of the 35th
Annual ACM Symposium on Applied Computing, 2020. doi: 10.1145/
3341105.3373842.

[17] B. Veloso, S. Tabassum, C. Martins, R. Espanha, R. Azevedo, and
J. Gama. Interconnect bypass fraud detection: a case study. Ann. des
Télécommunications, 75(9-10):583–596, 2020.

[18] S. Wang, G. Zhang, P. C. Sheu, M. Hayakawa, H. Shigematsu, and
A. Kitazawa. Lossy graph data reduction. Int. J. Semantic Comput.,
12(3):425–456, 2018.

[19] Z. Wang, Y. Zhu, D. Wang, and Z. Han. Fedfpm: A unified federated
analytics framework for collaborative frequent pattern mining. In IN-
FOCOM, pages 61–70. IEEE, 2022.

[20] J. M. Wu, Q. Teng, S. Huda, Y. Chen, and C. Chen. A privacy fre-
quent itemsets mining framework for collaboration in iot using feder-
ated learning. ACM Trans. Sens. Networks, 19(2):27:1–27:15, 2023.

[21] O. Wu, Y. S. Koh, G. Dobbie, and T. Lacombe. PEARL: probabilis-
tic exact adaptive random forest with lossy counting for data streams.
In PAKDD (2), volume 12085 of Lecture Notes in Computer Science,
pages 17–30. Springer, 2020.

[22] W. Xiao and J. Hu. Sweclat: a frequent itemset mining algorithm over
streaming data using spark streaming. J. Supercomput., 76(10):7619–
7634, 2020.

P. Silva et al. / Federated Online Learning for Heavy Hitter Detection 4695


