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Abstract. Effectively estimating the arrival day of a shipment is an
important capability for an express courier company to ensure both
customer satisfaction and internal operations efficiency. This paper
studies predicting the estimated time of arrival (ETA) of a package,
shortly denoted by PETAP, under a collaboration with an industrial
partner. Our approach employs machine learning (ML) techniques:
CatBoost, multi-layer perceptrons (MLPs) with categorical embed-
dings, and Transformer neural networks, to predict delivery dates
based on shipment locations and status. Challenges such as com-
plex inter-modal networks and high-cardinality categorical features
are addressed. Our paper contributes to the literature by formalizing
the PETAP problem in the context of express shipping: the proposed
models outperform the current business baseline accuracy by more
than 25%. In our experimentation with a dataset including millions of
data-points we propose a tabular vs sequence to sequence approach
observing the superiority of the former. Future research directions
include explicit modeling of transportation networks and exploring
alternative ML approaches for improved prediction accuracy.

1 Introduction
Knowing when a shipment is likely to be delivered to the customer is
a key piece of information an express courier business should know
at all times about all shipments. In [7] several hundred respondents
highlighted how reliability is the most important service quality fac-
tor when it comes to courier, this includes sub-factors such as suc-
cessful and timely delivery which are both highly connected to esti-
mated time of arrival (ETA) prediction. This knowledge is needed for
two main reasons: (i) effective communication with the receiver on
the delivery date, and (ii) effective internal tracking of shipments that
are likely to be late, providing concrete input for dealing with ship-
ment delays. An accurate communication with the consignee was
measured to reduce the number of re-delivery attempts by at least
10%, reducing last mile costs greatly. Moreover it was measured that
correct communication about ETA can reduce the number or cus-
tomer service calls by more than 30%.

To our knowledge the relevant literature contains two main groups
of approaches for finding the ETA of a shipment. First one explicitly
models the underlying transportation network [2] and one other one
does not explicitly model it, often referred to as ’data-based’ as they
can leverage patterns contained in large datasets to implicitly learn
the underlying system [10]. The most advanced techniques to follow
the latter approach belong to the field of Machine learning (ML), a
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field focusing on the development of algorithms enabling computers
to learn patterns from data without explicit programming.

The application under consideration of this paper is to predict the
delivery date of a shipment transported by our industrial partner, we
refer to this problem as PETAP (Predicting the Estimated Time of Ar-
rival of a Package). This application includes multiple data analytics
challenges. First, an international shipment typically travels through
several facilities of an international network and a supervised learn-
ing approach has to deal with data duplication, sequences, noisy tra-
jectories, embedded in environments following different rules. Sec-
ond, the data includes a set of categorical features of high-cardinality,
and continuous features. Even advanced machine learning models
face challenges when dealing with categorical features and their re-
lation to continuous features.

The goal of this paper is to explore potential Machine Learning
approaches to make reliable predictions concerning the arrival day
of a shipment at any intermediate location on its route. For this pur-
pose, the paper discusses the relevant features for the modeling of the
problem and considers a number of machine learning algorithms of
different representation complexity. Specifically, in our study, con-
cerning tabular data, we compare CatBoost [5], with multi-layer per-
ceptrons using categorical embeddings (following a categorical em-
bedding schema [17] ) and, by adapting the data to be sequential, we
also use a Transformer neural networks [14]. Other Advanced deep
learning methods, often used when road networks are involved ([4],
[3], [19]) are not easily adaptable to our problem given the temporal
nature of the air cargo network utilized by the express courier, and
given the fact that the network in which the PETAP shipments travel
is of multi-modal nature, sometimes involving a combination of road
networks with air cargo networks.

The ETA prediction problem has two main challenges. First it is
a high-precision regression problem in hours / minutes. Second, it
requires developing advanced ML models to learn highly complex
shipment processing patterns in depth. This is too complex to handle
at once, hence in this paper we settled to define a prediction prob-
lem to estimate the delivery day of the shipment and we developed
a hierarchical approach to tackle it. In our opinion, only later it is
reasonably possible to estimate the exact arrival time. ([16]).

The contribution of this paper is twofold. First, obtaining more
than 25% improvement in the ETA prediction accuracy of a large ex-
press courier by developing advanced Machine Learning models to
benchmark the current business practice. Second, to the our knowl-
edge our work is the first attempt for creating a first formalization of
the features and data structures needed for this application that, in the
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context of express shipping, particularly concerning evaluating daily
precision.

The rest of this paper is organized as follows: Section 2 discusses
related work, Section 3 describes the PETAP problem and its busi-
ness relevance, Section 4 discusses the different techniques used to
solve the problem and address its many challenges, Section 5 de-
scribes the various experiments we conducted in order to chose the
best methodology to solve the problem, Section 6 discusses the ex-
periment results and, last Section 7 highlights our conclusions and
suggestions for future work.

2 Related Work

ETA prediction using ML techniques was explored in several differ-
ent transportation types (air, ground, sea) and contexts, thanks to its
high relevance for transportation planning and customer satisfaction.
Depending on the specific problem context, sometimes an explicit
modeling of the underlying system is necessary. In [2] for exam-
ple this is modeled directly and, a combination of ML and business
driven logic is used to drive the ETA calculation. On the other hand
systems such as the one developed at Google([4]) or in [19] highly
leverage state of the art Deep Learning techniques rather than manu-
ally crafted business logic to drive the ETA calculation.

Unimodal Transportation The paper [9] attempts to estimate the
arrival of ships at the destination port using a combination of in-
ternal historical and traffic data, helping in managing resources in
the downstream supply chain. ETA prediction of aircrafts using ad-
vanced geo-temporal modelling is considered by [15] and the trained
model considers both historical and traffic data.

Work from Google Maps [4] shows how in the context of street
traffic using Graph Neural Networks can help improve ETA predic-
tion by several percentage points when compared with more simple
model types; knowing this became relevant to our work during per-
formance improvement iterations.

The above mentioned contributions predict ETA of a certain vehi-
cle based on its current position and destination. The problem in our
application on the other hand is to predict ETA of a package being
transported by one or more vehicles in a heterogeneous and interna-
tional network. Nonetheless it is relevant to compare our work also
with these works for two main reasons, (i) these works focus on a
subset of the problem we try to solve and, (ii) their advanced us-
age of geo-spatial features as well as traffic related features could be
adapted to our work. As a matter of fact, this work was influenced
by the above mentioned studies, as some of the aggregated features
defined in this contribution aim precisely at representing properties
of the subsystems composing the network in which the shipments
travel.

Shipping Most of the related work on ETA in Express shipping
focuses on predicting the arrival time of a shipment assuming the
day of delivery is known, this is mainly a function of the courier’s
route. Multiple papers ([3] [19][16]) showed that models account-
ing for (courier) route information are superior to the ones ignoring
it. The contribution in [16] analyzes different ways of predicting the
route and ETA in a two-step approach in which first, a courier route
is calculated and then an ETA is predicted for the packages to de-
liver (or pick-up) based on that route. In order to calculate the most
likely route of a courier both search (Vehicle Routing Problem of the
courier van) and deep learning techniques are tested showing the su-
periority of the second over the first. This is due to two main reasons:

(i) computational performance of the optimization methods is infe-
rior to that of (pre-trained) deep learning models due to the NP-hard
nature of the Vehicle Routing Problem and, (ii) low accuracy of ar-
rival time prediction due to the (too simple) linear function used after
the route calculation step.

While the above mentioned papers provide interesting insights into
which methodologies are best suited to solve the prediction of the
time at which a courier will reach a certain location, our work prob-
lem requires us to predict which day the said courier will receive each
package. Despite this difference important findings such as the high
relevance of the traveled route could be incorporated in the solution
to the PETAP.

Our paper has remarkable similarity to the study in [2] as it aims to
predict ETA of shipments in a complex inter-modal network. While
this network is made of ships and trains, the network we will use
is made mainly of aircrafts and trucks. Moreover the authors model
the transportation network explicitly such that the consequence of a
possible delay is incorporated by taking lately scheduled transporta-
tion event. This results in obtaining a set of scenarios, each having a
corresponding probability distribution of the delivery.

3 Problem Definition

Predicting the day a certain shipment will be delivered is a task de-
pendent on several factors which can be divided into two main cate-
gories; transportation network and the nature of shipment.

The transportation network (of the courier company) entails the
locations and the connections between them for the successive move-
ments of a shipment. The movement among these connections does
not only depend on geographical distance, but also the transport
channels of the courier company. For example, two locations might
be very close in terms of geo-distance but if there is no way to trans-
port goods between them due to a lack of flights / trucks, shipments
will have to wait to be transported until a way to transport them is
available.

The nature of a shipment is also an important factor if it will be
prioritized or not. Certain medical shipments for example are more
urgent than other shipment types, this causes them to usually have
shorter transit times. Heavier shipments being harder to handle might
be transported differently than lighter shipments which are easier to
handle.

The partner courier company transports millions of packages ev-
ery month globally. Each of these packages receives dozens of check-
points (also called ’events’) during it’s journey from origin to desti-
nation. The prediction can be needed at any point in time during the
course of the shipment journey to ensure not only clear and accurate
communication with the customer but also real-time internal tracking
of a shipment’s status.

Our approach does not explicitly consider the routing of the pack-
age in transportation network, hence it solves the PETAP without
involving the highly complex combinatorial challenges that have
stochastic nature. Figure 1 shows examples of such routes for a few
shipments.

Predicting ETA can be stated both as a classification and a regres-
sion problem, since the target feature, i.e. the number of days till
the delivery, is of numerical type with discrete values. In our com-
putational experimentation, we benchmarked the classification and
regression models by converting the prediction results from one type
to another.
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Figure 1. Example of routes taken by multiple international shipments

4 Predictive Modeling Approach
This section will describe how an effective ML system for solving
the PETAP was developed starting from the proprietary dataset of
the courier business we partnered with.

4.1 Historical Data

Data descriptives The data analysed in this study has been ex-
tracted from the IT system of our industrial partner. An instance of
our dataset is a progress scan of a shipment during its journey be-
tween the pickup at the origin and the delivery at the destination. A
shipment usually has between 20 and 50 data points, i.e. progress
scans in the transport network on its route. The data size for one
month time span reaches the magnitude of billions for several mil-
lions of shipments.

Since the shipment flow volume can vary significantly at different
origins and destinations, data sampling should be carefully done to
prevent some classes of features from getting under-represented. A
high amount of features are of categorical type and have a class set
of high cardinality, e.g. "shipment type" (with classes ’slow’, ’fast’,
’international’...), and "scan type" (with classes ’arrival’, ’departure’,
’security’, ’customs’...).

For the sake of efficiency in the data content, we define statistical
features that contain statistical summary of transport characteristics
of each shipment type in the last three-week period before the start
of the time span of training data, taken as 10 days in our experimen-
tation. Including aggregated features is useful for covering the infor-
mation of much longer time than only the training period. In Section
5 we will further discuss the impact of aggregated features.

The test data time span is the following 10 days after training time
period. Since the data has time-series aspect, we split the training and
test data such that no shipment has progress scans in both training
and test data, hence no leaks are allowed between training and test
data.

Features There are three main groups of features:

• Shipment features describe the static properties of a shipment, e.g.
weight, price, and product code.

• State features include the dynamic information of the shipment at
the time point of the progress scan, like its location and its process
phase there, e.g. arrived or processed at a facility.

• Statistical features are aggregations from past data about the gen-
eral behaviour of a shipment given its state in the network (e.g. av-
erage, minimum, and maximum time to get from current location
to delivery). These features are calculated aggregating historical
data by different subsets of features, in our work 8 possible com-
binations of grouping columns are used. This is done to cope with
the very diverse shipment states present in our dataset as, for cer-
tain data-points a given aggregation level might be too general (as
this is a common type of data-point) while for other data-points it
might be too specific (as this type of data-point is not very com-
mon hence an historical mean might not describe historical behav-
ior accurately due to small sample size).
An example of historical aggregation states are :

– Current Facility, Destination Facility, Event Code: This is a
very specific grouping helping the model by providing it fea-
tures of historical behavior for shipments in the same facility,
receiving a specific scan as well as with the same destination as
our current data-point.

– Current Country, Destination Country, Event Weekday:
This is a general grouping helping the model by providing it
features of historical behavior for shipments in the same coun-
try, on the same weekday, as well as with the same destination
country as our current data-point.

A complete list of the features used and their nature can be found
in Table 1. All the statistical features listed in this table are available
for each of the 8 different state definitions.

Figure 2. High level representation of the data flow
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Table 1. Feature description, type, and number of classes

Feature Type # Classes
Shipment features
Package Weight (KG)/Value (EUR) Continuous -
Package Dutiable Categorical 2
Package Urgent Categorical 3
Package Domestic Categorical 3
Package Weight (> 30KG) Categorical 2
Shipment Type Categorical 33
Origin Country Categorical 200
Destination Latitude/Longitude Continuous -
Shipment Destination Region Categorical 5
Shipment Destination Country Categorical 200
Shipment Destination Facility Categorical 970
Shipment Destination Remote Area Categorical 2
Shipment Destination Facility Type Categorical 5
Key Account Shipment Categorical 2
State features
Event Code Categorical 64
Event Type Categorical 3
Event UTC Hour/Weekday Continuous -
Event Location Latitude/Longitude Continuous -
Event Location Facility Categorical 970
Event Location Country Categorical 200
Event Location Region Categorical 5
Event Location Facility Type Categorical 5
Event Location is Destination Categorical 2
Event Location is Transit Categorical 2
Time to Delivery Deadline Continuous -
Statistical features (8 groups)
Min/Mean/Max Time To Arrive Continuous -
STD Time To Arrive/Deadline Continuous -
Min/Mean/Max Time To Deadline Continuous -
Mean Ratio Time to (Arrive / Deadline) Continuous -
Max Ratio Time to (Arrive / Deadline) Continuous -
Min Ratio Time to (Arrive / Deadline) Continuous -
STD Ratio Time to (Arrive / Deadline) Continuous -

Target The target feature is the number of days needed for deliv-
ery from the prediction moment on. The range of the target value is
{0, 1, . . . , 7} where 0 means the same day when prediction is done
and 7 the out-of-range class as define business requirements.

In Figure 3 the fractions of data available for each class in our test
and train period used for the experiments are shown. It is important
to notice that the distributions of target values are often not stable
week by week, making the prediction problem more complex due to
a lack of the stationarity property. This therefore causes a frequent
re-training of the ML models to be needed in order to ensure sta-
ble performance. This work will only cover one period training and
testing data.

Figure 3. Proportion of data in each class during train and test period
when framing the problem as a classification task

4.2 Model development

This section explains the Machine Learning models that are trained
and benchmarked to find the one with the best performance in solv-
ing the PETAP. In the rest of this section these models are briefly
discussed. In our experimentation it is observed that classification
models outperformed regression models. Therefore, in the following
the explained models are classifiers, unless otherwise specified.

Baseline Model The baseline model is the set of business rules
that are defined by our business partner with service quality need (to
make competitive offers) and time-zone related limitations.

CatBoost Boosted Decision Tree (BDT) algorithms have been
shown to be superior to Artificial Neural Networks (ANN) in an ex-
tensive experimentation by [11] using 36 datasets of tabular nature.
Additionally an advantage of BDTs is the ease with which they can
represent categorical features; these can often just be ordinally en-
coded to be used by these models with acceptable performance. After
testing multiple different implementations of BDTs, CatBoost ( for
more details we refer to [5]) was chosen due to its superiority when
dealing with high dimensional categorical features as well as for its
speed during training given by GPU acceleration which enables fast
hyperparameters search on large datasets.

Neural Networks with Cat2Vec Deep Learning models are pow-
erful due to their capability of dealing with structured and unstruc-
tured data. They are superior to BDTs in prediction tasks with un-
structured data, e.g. image, text, speech and so on. These models can
be trained in batches without requiring loading the complete dataset
(in memory) which turns out to be a great advantage for the ETA
prediction task of this paper.

These models, due to their nature, have difficulty representing
discrete (categorical) features and hence, leverage these features to
make meaningful predictions. Many alternatives ways to represent
categorical features can be used ([8] gives a good overview) each
having its pros and cons; it is almost always true that these different
representations increase the dimensionality of the problem by many
times, increasing its complexity.

One technique to represent categorical features in Deep Learning
models is Cat2Vec [18]. Cat2Vec employs an unsupervised pairwise
interaction embedding strategy aimed at understanding the represen-
tation of multi-field categorical data. Analogously to Word2Vec in
natural language processing, Cat2Vec generates embedding vectors
for individual categorical values. Its innovation consists in calculat-
ing these embeddings by learning the latent relationships between
pairwise categorical features.

Cat2Vec draws inspiration from Word2Vec, but it is not trained
with a sliding window, instead Cat2Vec incorporates intermediate
layers to capture pairwise interactions, succeeded by pooling lay-
ers, culminating in a fully connected layer to perform a classification
task. Consequently, the intermediate layers capture the categorical
feature embeddings. Similarly to Word2Vec, Cat2Vec has reduced
performance with unseen categories. In the context of PETAP, these
unseen categories typically manifest as infrequent combinations of
origins and destinations or seldom-encountered products or shipment
types.

Transformers for Sequence Classification and Seq2Seq Trans-
formers [13] are a type of Deep ANN architecture capable of reach-
ing high levels of performance in complex tasks such as Natural Lan-
guage Processing (and Understanding). This type of model is becom-
ing highly popular thanks to the recent advances it brings to conver-
sational agents such as ChatGPT [20].
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This type of architecture is particularly powerful when sequence-
like data is involved. Our specific dataset when ordered is such a
way that all the checkpoints for each package are ordered by time
can also be viewed as a dataset of sequences. Each of these would
represent the step by step process a package went through from its
origin to its destination in chronological order. For the purpose of this
paper, we used the same architecture presented in [13], with multi-
head attention.

Given the recent developments of this technology we considered
relevant to experiment with it, in case the additional information pro-
vided by the sequence data could improve the overall predictive per-
formance on the PETAP. Two main ways to use transformers were
considered and compared in this work:

• Classification, is a sequence to class task, in which the model re-
ceives as an input the checkpoints a package received until the
current moment and returns the predicted delivery date. In this
modeling strategy the relationship between the current state of the
shipment and its ETA is only implicitly modeled, hence the model
does not have to explicitly show an understanding for the underly-
ing process allowing a package to go from its current state to the
predicted ETA state.

• Seq2Seq, is a sequence to sequence task, in which the model re-
ceives as an input the checkpoints a package received until the
current moment and predicts the next most likely checkpoints un-
til delivery. In this strategy, the relationship between the current
state and ETA is explicitly modeled. As the model is forced to
predict the full checkpoints sequence between the current state
and ETA, a deeper understanding of the underlying process might
be required, hence a more powerful model could potentially be
obtained.

We use two main loss functions; the categorical cross-entropy
(CCE) loss function and its ordinal version, since it is commonly
used in multi-class classification problems. The CCE loss function
quantifies the difference between the true target value and predicted
value of data points, and it penalizes incorrect predictions, whereas
correct ones are encouraged.

The ordinal categorical cross-entropy (OCCE) loss function is
used in ordinal predictive tasks where the target variable has ordered
categories (such as how many day will a package be travelling until
its delivery).

CE (y, ŷ) = −
K∑
i=1

yi log(ŷi) (1)

w (y, ŷ) =
|argmaxi y − argmaxi ŷ|

K − 1
(2)

OCCE = (w (y, ŷ) + 1)CE (y, ŷ) (3)

where yi denotes the portion of data points under the target class
of i, ŷi the data points with predicted target class i, K the number
of classes, and CE the cross-entropy loss function. The re-weighting
of categorical cross-entropy happens by means of weight w, that is
a balancing factor that penalizes misclassification based on the dif-
ference between the indices of the maximum elements in y and ŷ,
normalised by the maximum value of the index (K − 1). If the in-
dex of the prediction is coincident with the actual target, then this
formula will just behave like categorical cross-entropy. Otherwise
the categorical cross entropy loss is reweighed, depending on how
far the prediction is from the real target. The rationale of this loss,
for the case of PETAP, is that a prediction that misses the target for
many days is worse than a prediction that is closer to the target.

5 Experiments and Results
Numerical experiments involved training the different ML models
mentioned above on a global train dataset of 2 million samples and
testing the obtained model on a (global) test set (from a later time
period) made of 10 million data points. Different train and test sets
were obtained from the same period by uniformly sampling the orig-
inal dataset made of 1.2 billion lines (30 days of data) in order to
cross-validate the numerical results. The accuracy metric was used
as the main way to evaluate model performance. For completeness
more metrics such as precision and recall will also be presented in
the results tables. A detailed review of different classification met-
rics can be found in [6].

The train and test set size were chosen via numerical experiments
aimed at verifying that:

• Model performance does not substantially change by increasing
the train set size

• Performance on a (large enough) test set remains within +- 1% of
real performance, measured on the full test dataset ( 300 million
lines).

• Experiment execution time is minimized, ensuring a higher num-
ber of numerical experiments can be run in a short time.

Hyper-parameters optimization experiments were conducted by
using the hyper-parameter optimization suite Optuna [1], allowing
for efficient search for optimal model hyper-parameters.

CatBoost In this work hyperparameter search of CatBoost clas-
sifier entailed finding the optimized values of number of trees, tree
max-depth, learning rate, and L2 regularization weights. Learning
rate parameter controls the weight of each tree added in training pro-
cess, and L2 regularization weights work for generalizability by pre-
venting over-fitting via discouraging of complex trees.

Numerical experiments show that the tree max-depth and num-
ber of trees are the most influential parameters for performance. In
particular, the number of trees needs to be high enough to ensure
the whole problem space is covered and modelled by the ensemble.
Moreover the depth of the trees has to be kept small to avoid over-
fitting behavior. As these two parameters are related as they both con-
trol the complexity of the model, it is also possible to see in Table 2
that inverting the above statements (hence using less trees which are
deeper) can sometimes bring to similarly (good) performance. In this
contribution, CatBoost was also used to test (i) whether framing the
problem as regression could help in improving accuracy as well as
(ii) what is the impact of the historical aggregate features on perfor-
mance. Results for these experiments can be found in Table 3.

Num. Trees Max Depth Learning Rate L2 Reg Accuracy
(300;2500) (1;9) (0;1) (0;1)

2000 3 0.31 0.07 0.781
1200 5 0.17 0.28 0.774
1050 7 0.19 0.69 0.770
505 3 0.10 0.23 0.766
900 4 0.01 0.01 0.751

Table 2. Selected explanatory experiment instances for CatBoost Model
Hyperparameters Tuning

Cat2Vec Artificial Neural Networks were tested in order to verify
whether any performance improvements could be gained. The cate-
gorical features were replaced with their corresponding embeddings
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calculated using a Cat2Vec network, resulting in a 600 dimensional
vector for the categorical features and an additional 119 for the nu-
merical features. Dimensions of all layers in the network are shown
in Figure 4, a dropout layer was also used to avoid over-fitting. The
Ordinal Categorical Cross Entropy loss function was used to train the
model.

Figure 4. Architecture of Cat2Vec MLP

Transformers The original dataset is extended with the partial
route information for each data point. A sequence is defined for ev-
ery data point and it includes all progress scans from the pickup lo-
cation till the current one. The initial datasets were expanded to in-
clude for each data-point (checkpoint of a shipment), all the previous
checkpoints the specific shipment received. This creates a vector of
features of size n_features ∗ n_previous_checkpoints for each
original data-point, generating new datasets for this experiment.

The finetuned Transformer architecture consists of 2 encoder and
decoder layers, a hidden dimension of 1024 and 8 attention heads.
Finally, as with the Cat2Vec MLP, the Ordinal Categorical Cross En-
tropy loss function was used to train the model. When adding past
history of the shipment we noticed no accuracy improvement is ob-
tained when compared to a tabular data representation. Basic trans-
formers architecture are hence not suitable to solve this problem due
to its complex spatial-temporal nature.

prec recall f1 roc_auc acc

Catboost Classifier 0.513 0.490 0.496 0.728 0.781
Catboost Regressor 0.422 0.417 0.416 0.685 0.697
Catboost No Agg. Features 0.512 0.481 0.489 0.722 0.770
MLPCat2Vec Classifier 0.510 0.490 0.495 0.728 0.786
Transformer Seq2Class 0.406 0.206 0.181 0.555 0.452
Transformer Seq2Seq 0.372 0.170 0.127 0.531 0.389
Baseline 0.333 0.362 0.311 0.644 0.436

Table 3. Performance of the baseline and developed models across all
relevant metrics

5.1 Results

Above described experiments show how models capable of predict-
ing data in tabular format are superior to sequence based models in

Figure 5. Performance of the baseline and developed models across on
different classes on all relevant metrics

this problem. In particular both CatBoost and MLP reach a very sim-
ilar performance above 78% accuracy. Table 3 summarizes the per-
formance of the different models tested.
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When using a regression problem setting (rather than classifica-
tion) the obtained accuracy on predicting the delivery date is inferior.
This is explainable due to the discrete nature of business context, in
which events (such as package deliveries) happen in a defined time
window rather than continuously. When using aggregate features an
accuracy gain is obtained.

Figure 5 shows the performance of different models on each class
of the problem. We can notice how CatBoost is capable of predict-
ing more accurately than MLP in the most under-represented classes,
while MLP is better at predicting dates closer to delivery. Due to
the nature of the business problem classes are highly unbalanced, in
particular classes ’4 days’ and above are mainly made of ’outlier’
shipments that are either (i) traveling between very poorly connected
locations (e.g. remote islands) or (ii) experience some unexpected de-
lay in their transportation. This is why performance on these classes
is less relevant than for the [0;3] classes.

Due to the very close accuracy performance these models have,
a statistical comparison using the Wilcoxon statistical test (as de-
scribed in [12]) was performed on these two best performing models
(CatBoost and MLPCat2Vec). The test was executed on a dataset of
accuracy scores obtained by predicting 500 samples of 20 thousand
shipments taken from the test dataset. The statistical test results in
a very low p-value indicating a significant difference in the perfor-
mance of the obtained models on the data samples. This indicates
that it could be possible to combine these two ML models into a su-
perior one with techniques such as ensemble learning. Last, Table 4
shows the training and inference speed of each algorithm on Azure
Kubernetes Service pods with 64GB of RAM and 4 CPU cores, GPU
compute was not available on the side of the business partner due to
cost constraints. The results show that CatBoost, thanks to the usage
of BDTs, has a very quick training time and inference speed even
on CPU, whereas, ANNs have a slow training time and their infer-
ence time is several magnitude slower than CatBoost. Albeit it is true
that ANNs inference and training time can be improved when us-
ing GPUs, the cost associated with constantly running GPUs would
not be justified in face of the small performance improvement with
respect to ETA that ANNs bring with respect to CatBoost.

Model Train (min) Inference Time (sec)

Catboost 39 0.06
MLPCat2Vec 2971 10.49
Transformer Seq2Class 3392 39.67
Transformer Seq2Seq 2998 42.84

Table 4. Summary of model training & inference times, training is
measured on a 2 million data-points training set and, inference on a 10

thousand data-points test set.

6 Discussion

We observed that when representing the problem in tabular format,
both ANNs and BDTs achieve a comparable performance, but fail
to produce an accurate prediction beyond five days. This seems to
suggest that it is possible to calculate a distribution of the behaviour
the shipment per product and facility, but also that shipments taking
more than five days are more rare, and most of these shipments could
potentially have hidden issues (e.g. missing the customs paperwork)
not easily included in the model. Transformer models, despite using
the additional information concerning the checkpoints and sequence

of locations visited by the shipment, do not improve over the perfor-
mance of ANNs or BTDs. This suggests that the nature of the prob-
lem at hand is not completely autoregressive, or at least it is not au-
toregressive with respect to the previous events a shipment received.
Hence the journey of a package may have less relevance if compared
to independently scheduled (future) events, such as available flights
or trucks at a certain location. The result also seems to suggest that
the sequence of locations visited by the shipments is only part of the
information needed by the transformer. To completely represent the
route of the shipment, it would be necessary to consider the times in
which a shipment reaches each of the facilities on its route, in ad-
dition to information concerning the status of the current and future
locations, requiring therefore a deep learning model with an attention
mechanism that can tackle spatio-temporal dependencies.

We observe that the sequence representation should be multi-
modal in order to enhance the prediction model such that it can pre-
dict the timing of arrivals to intermediate steps in its route, besides to
which location to move next. We believe that designing such a model
will be highly challenging and a potential good venue for future re-
search.

The approach used is capable of learning patterns from the pro-
vided dataset despite the high complexity of the underlying system
which is not being explicitly modeled.

The fact that treating the problem as a regression task produces
worse results than treating it as a classification task, suggests that
the task at hand has a strongly discrete nature. This aspect seems to
be supported by how the network operates. As a matter of fact, the
network has a quite synchronous behaviour in its operation, defining
specific time slots in which each shipments can depart and origin
to leave towards the next step of its travel towards the destination.
For example, referring to figure 1 consider a shipment that has to
travel between Amsterdam and Recife. Its first flight leg to Miami
might only be available every other day, forcing the shipment to wait
for at least 24 hours before moving towards its first transit location.
Similarly in Miami the shipment might arrive too late to catch a daily
flight towards Recife, having to wait yet another day before being
moved.

7 Conclusions and Future Work

In this work we developed advanced Machine Learning models to
predict the ETA of an express shipment. The problem has several
challenging aspects. The most interesting challenges are (i) a very
large unbalanced dataset for which the correct sampling size had to
be found and, (ii) high cardinality categorical features for which the
correct representation strategy had to be used. Several types of ML
models were benchmarked, in particular the performance of Multi
Layer Perceptron ANNs with category to vector encoding was shown
to be slightly superior to that of Boosted Decision Trees (CatBoost)
in terms of evaluation metrics but inferior when it comes to train-
ing and inference time. Transformers were shown to have an inferior
performance to their tabular counterparts on this predictive task when
framed as a sequence to class or sequence to sequence task.

Future work on this problem will try to explicitly model the under-
lying transportation network, ensuring that the ML model predictions
are feasible and realistic, especially in transportation cases taking
longer than 3 days. Different ways to do this can be explored such
as Graph Neural Networks as used in Google Maps [4], Sequence to
Sequence models such as [16] or, transport network based modeling
such as presented in [2].
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