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Abstract. Genomic testing is becoming increasingly used within
the UK National Health Service (NHS) in an effort to deliver preci-
sion medicine that can directly benefit patient management and care.
Typically, in hospital settings clinical scientists interpret genomic re-
sults and store the output in reports (unstructured format). Recent
advances in the field of Natural Language Processing (NLP) tech-
niques have significant advantage over the common time-consuming
and laborious manual extraction of the relevant information from the
reports. There are a plethora of open-source NLP models available,
but limited evidence of their performance on real-world healthcare
tasks, specifically for paediatric data. In this paper, we describe the
development of an automated pipeline that uses a hybrid approach of
combining rules and pretrained NLP models to extract gene variants,
related information of these variants and any gene panel informa-
tion present within the genomic test reports. We evaluated the perfor-
mance of the pipeline against a manually-curated, expert-annotated,
in-house data containing 372 reports. Our results and evaluation
highlights the advantages and limitations of using existing pretrained
models in a real-world setting, and in particular, when there are com-
putation and resource constraints within the hospital setting.

1 Introduction

Genomic medicine has the potential to offer a greater understand-
ing of how our genetic makeup impacts on our health and to change
the way disease is managed and treated1. In England, genomic tests
are sequenced by Genomic Laboratory Hubs (GLHs) who receive
samples from multiple healthcare organisations (HCOs) across the
country. Genomic test reports contain information about a patient’s
health status and genetic variants, as well as implicit information
about close family members. The reports support clinicians in mak-
ing better decisions on diagnoses, risk stratification, treatments, and
patients’ suitability for clinical trials. In the future, the information
embedded within genomic reports may inform disease prognosis,
pharmacogenomics, population health studies, drug discovery and
significant advance research efforts. The results are interpreted by
clinical scientist, who generate a genomic report that is stored as a
PDF. Currently, there is an ongoing effort to harmonise to a small
number of genomic report types. However, a lot of heterogeneity
still exists across the GLHs due to local practices, variation in test-
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ing methodology and reporting of variant types. In addition, historic
genomic reports vary significantly in both structure and content.

In this paper, we describe an automated pipeline developed for ex-
tracting clinically relevant data from the reports (see Figure. 1) and
provision the data in a structured format along with our standardised
structured data (curated structured data from different Electronic Pa-
tient Record (EPR) systems within the hospital) for researchers and
clinicians. The outcome of the pipeline will enhance our current stan-
dard structured data extraction with additional genomic information,
which will aid clinical staff and researchers to access pertinent data
at scale for research, better care and planning purposes.

Our contributions are given below:

1. We evidence the potential capability of the developed automated
pipeline on the extraction of clinically relevant genomic informa-
tion in real-world paediatric healthcare settings. This is illustrated
through our transition from a Proof-of-Concept with limited com-
pute and data to a deployed solution within our secure on-premise
environment. The deployed solution was run on a large volume of
26,464 documents.

2. Our results and evaluation of the automated pipeline was com-
pared with a manually-curated expert annotated data and show
the overall potential advantage of using existing pre-trained NLP
models for significantly improving a rule-based approach.

3. We also highlight on the limitations of pretrained NLP models
trained using open-source datasets on our in-house data, especially
in certain diseases areas.

2 Related Work

Extracting information from unstructured data is a time-consuming
task when performed manually within the clinical setting. An alterna-
tive to manual extraction would be the use of automated approaches
underpinned by artificial intelligence and machine learning methods,
specifically, natural language processing (NLP). The essence of NLP
is in programming a computer to understand the morphology, syntax,
semantics and pragmatics of written human language. In the context
of genomic reports and this paper, this would be applied for the pur-
poses of information extraction (IE). Developing NLP tools for ge-
nomic information represents a historical challenge and prior work
has focused on more traditional linguistic approaches by leveraging
n-grams from the text [4]. Specifically, an algorithmic, programmatic
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automated approach that takes unstructured (or semi-structured) text
as an input and converts it into structured data as an output, with
high levels of accuracy, remains elusive in clinical practice. There
are three main approaches that could be applied to tackling auto-
matic extraction of structured information from unstructured reports,
and in our case, the genomic information. This can follow in isolation
or combination of the following approaches: (1) Rule-based, (2) su-
pervised machine learning (ML) and (3) unsupervised ML [1]. Rule-
based NLP is interpretable, domain-specific and allows fine tuning
of the output, but it requires manual time-consuming rule creation
and has difficulty handling ambiguity. Supervised machine learning
(ML) methods are more adaptable, but depend on the availability of
labelled data that is often lacking in a clinical setting. Although un-
supervised models do not require labelled data, they have a blackbox
nature, which is not desirable in a clinical setting.

In recent years, efforts have begun to focus on applying NLP
methods to genomic information within PubMed extracts to unlock
valuable scientific insights ( [2], [3]). More specifically, Botsis et
al. [2] developed a platform that uses a rule-based system with lex-
ical resources from various databases. Although these results show
promise, the use of NLP approaches in a clinical setting applied to
genomic reports, has not been extensively evaluated. Chen et al. [3]
found that a hybrid approach of ML fine-tuned with rule-based ex-
traction worked best in extracting genomic information from Chinese
medical records. To date, there is no English equivalent real-world
study in genomic reports.

3 Data Description

3.1 Input Data

An automated data extraction process was carried out to extract ret-
rospective documents stored within the hospital’s different EPR sys-
tems ranging from August 2018 to August 2023 respectively. A SQL
Query QD based on a specific set of Internal Classification of Dis-
eases (ICD) codes represented by D is used for this purpose. Here,
di ∈ D represents a specific disease area. In our case, we chose the
following: epilepsy, spinal muscular atrophy, muscular dystrophy,
cystic fibrosis, neuroblastomas and tumours respectively.

This provided us with a total of 26,982 documents, out of which,
2894 were genomic reports. A subset of 372 genomic reports were
used for producing a manually expert-curated ground-truth dataset,
which is used for evaluation purposes. This dataset contains struc-
tured information extracted manually by an expert annotator based
on a set of annotation guidelines provided and using the RedCap
tool. 2

Table. 1 provides the total number of reports used per diagnosis
for the ground truth dataset.

3.2 Output Data

The structured information is extracted from the reports are as fol-
lows:

• Given a variant name, the final classification outcome or the con-
clusion of the result. This is either positive or negative.

• Given a variant name, it’s corresponding information (if applica-
ble) such as Transcript Reference ID, DNA Change ID, Amino
Change ID, Inheritance, Zygosity.

2 www.project-redcap.org

• List of genes tested. In a report, the information on the different
genes tested is provided as a list of genes or sometimes linked to
a panelapp version present in the PanelApp Genomics England
database. For example, in Figure. 1, the example report lists out
all the genes tested within the test methodology. In such cases,
full list of genes is extracted.

Table 1. Total number of reports per diagnosis that is used for preparing
the ground truth dataset.

Diagnosis Count of Reports

Epilepsy 65
Spinal Muscular Atrophy 38
Muscular Dystrophy 43
Cystic Fibrosis 111
Tumours 86
Neuroblastomas 29

4 Proposed Approach

Our proposed approach uses an automated pipeline P , the outcomes
of which in combination with a set of expert-curated rules R is used
for extracting the relevant structured information. The main steps are
described below.

4.1 Document Filtering

In this step, we automatically filter relevant documents that are
specifically genomic reports representing a predefined subset of di-
agnosis. From these filtered documents, the tables and text content
are extracted separately.

4.2 Table and Section Classification

In this step, each of the detected table within a genomic report is
classified based on the table header information. This information
can either be present horizontally or vertically. We make use of the
header titles provided within a predefined knowledge base to identify
whether the titles are present horizontally or vertically. A distant-
supervision based approach is used for classifying the table headers.
Here, within the knowledge base, each table type is mapped to a set
of predefined header titles which is used in the classification process.

Similarly, using a knowledge base that maps a set of predefined
section headers to a standard section title is used for classifying sen-
tences as section headers.

4.3 Gene Variant and Classification Outcome

In this step, gene variant names are detected automatically using a
Named Entity Recognition (NER) tool, using these variant name pre-
dictions, corresponding information (see Section. 3.2) and final out-
comes or classification information is extracted using a rule-based
approach using the rules present in R.

The implementation details for the different steps are described in
detail below.

5 Implementation Details

5.1 Document Filtering

Figure. 2 shows a detailed flow diagram of the different steps per-
formed for document filtering. Documents are automatically filtered
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Figure 1. Example dummy report created using our hospital template and a sample output from the proposed automated pipeline.

as machine-readable or not, and whether they are genomic reports
or not. Here, since most of our prospective reports are machine-
readable documents, we do not focus on scanned reports. To classify
whether a report is machine-readable or not, we use the open-source
Python package, PdfPlumber 3. Next, we create a knowledge base,
mapping unique keyphrases relevant to a predefined set of diagno-
sis and a set of unique keyphrases from genomic reports. We use
a rule-based NLP classification algorithm that identifies these pre-
defined keyphrases present in documents to distinguish between the
genomic reports and other documents (e.g., referral letters).

These keyphrases identified for this purpose were extracted using
the following steps:

1. Extracting a random set of 68,508 text entries including RTF-
formatted texts from lab documents including genomic reports
such that it does not overlap with our ground-truth data,

2. using an open-sourced pretrained NER model (HunFlair) trained
for detecting gene variants to detect gene variants within the text
entries,

3. filtering entries with gene variants mentioned more than once and,
4. a manual approach where an annotator picked potential key

phrases, mainly subtitles and titles from the filtered entries.
3 https://pypi.org/project/pdfplumber/

Due to computation limitations, we chose to use a rule-based NLP
algorithm using the keyphrases picked in (4) for the classification
purpose.

5.2 Table and Section Classification

The open-source Python package, PDFPlumber, is used for extract-
ing the raw text and tables separately. Given a document gi ∈ G
such that gi represents the i − th genomic report within a set of
genomic reports, G, a rule-based NLP algorithm is used for classi-
fying k number of tables in a report represented as tk ∈ Tgi . This
classification is based on the header information and the outputs of
the classification is from the following classes: patient information,
variant information, report and authorisation information, panel and
coverage information or not relevant.

The raw text content Cgi for a corresponding genomic report gi
is tokenized into a list of sentences Sgi . Each sentence sj ∈ Sgi , if
is a potential section header, is then mapped to a standardised sec-
tion header, using a distant supervision approach that fuzzy-matches
it with a list of section headers within a predefined knowledge base.
The knowledge base is populated with section titles and sub-titles
collected from different genomic report templates that are provided
by our hospital organisation, as well as other organisations. An
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Figure 2. Flowchart diagram representing the different steps described in Section. 5.1 that includes classification of each document as machine-readable
(MR) or not, and whether the document is a genomic report or not. Additional metadata information such as the diagnosis present and organisation title is also

extracted. The final output is a JSON.

Figure 3. Flowchart diagram representing the different steps described in Sections. 5.2 and 5.3. This includes processing and classifying tables, sections, and
identifying variant details and the final classification outcome. Different outputs from the different steps shown are stored as an intermediate output in a JSON

and the final output is a JSON with the final structured results.

overview of this approach specific to the genomic reports is as fol-
lows and outlined in Figure, 3:

• Identify whether there is any section title related to referral reason
present within the introductory section

• Ensure that the section title related to result is identified before
retrieving the title related to testing or follow-up.

• The final search is to identify any section titles related to test in-

formation and in some cases, gene information.

5.3 Gene Variant and Classification Outcome

This subsection explains the use of different pretrained NLP models
for (1) identifying gene variants and, (2) the classification outcome.
Both these information are present either in tables or in the text con-
tent.
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For identifying any gene variants present in a report, we use the
pretrained state-of-the-art NER tagger, HunFlair [8], a neural
model trained on a character-level language model with around 24
million biomedical abstracts and roughly around 3 million biomed-
ical texts. The model further integrates 31 biomedical NER datasets
for identifying different entity types. Any information relevant to the
corresponding gene variant are then picked using the sentences in the
which the gene variant occurs and expert-curated rules R. For exam-
ple, we can extract its corresponding DNA change ID and Protein
change ID. In addition, based on the gene variant name, the gene in-
formation, if present, in the test information section is extracted. This
can also help us to extract the transcript ID if present.

There are two ways to identify the classification outcome: (1) from
a table containing the gene variant results and (2) from the text con-
tent present in the results and interpretation section. For a given set
of classification labels, a knowledge base containing sentences for
each corresponding classification label is collected with the help of
an expert annotator.

A set of pretrained sentence-transformers [5] NLP models were
investigated as part of an Exploratory Data Analysis (EDA) to chose
the best retriever model. The retriever model is used for identifying
whether there exists a sentence within the table or within the text
content which is semantically closest to one of the sentences within
the knowledge base.

A knowledge base with few example sentences mapped to a vari-
ant classification outcome is created with the help of an expert an-
notator. Here, we are interested in two different outcomes namely,
whether the reported variant is positive or negative. Since we do not
have a large volume of such labelled data, we use this in a few-shot
setting [6], where we use a retriever model to pick the best sentence
from the knowledge base that is closest to the information present
within the report. This is done by computing the embedding vectors
for both (a) sentences present in the knowledge base and (b) sen-
tences present in the result and interpretation section and comparing
the cosine similarity between the embedding vectors. The best sen-
tence chosen in the knowledge base based on the cosine similarity
score is then used and its corresponding label is considered as the fi-
nal classification outcome. In order to reduce errors, we use a thresh-
old value of 0.50 after conducting various experiments to ignore the
classification outcome, if the cosine similarity measure computed is
less than the threshold value.

6 Real-World Deployment

Our in-house, secure, on-premise environment (GRID) has two
servers – (1) development server with internet access and no ac-
cess to patient data and, (2) staging server with access to secure data
and no internet access and limited to restricted users. Our automated
pipeline is developed, tested and containerised using the open-source
solution, Podman 4 within our development server which is a secure
on-premise Linux environment. Here, all the pretrained models and
required packages are downloaded into the container image since the
secure environment does not have access to internet. The container
image is then deployed moved into the staging server and run on
patient identifiable 26,464 documents. The outputs are stored in a se-
cured shared drive that is accessible to restricted users. This deploy-
ment was run as a pilot study and the results were evaluated based
on a subset of data, i.e. ground-truth data. All the source code 5 are

4 https://podman.io/
5 https://github.com/gosh-dre/genomics_nlp_pipeline

version-controlled and managed within our internal GitLab reposi-
tory.

7 Results and Evaluation

In this section, we present the overall results and evaluation on the
experiments carried out for several steps within the pipeline as dis-
cussed below.

Figure 4. Comparison of the outputs from the document filtering approach
and using HunFlair [8] model with the ground-truth data. Here, we present

the recall rate.

7.1 Document Filtering

Given the large volume of documents, we were interested in under-
standing whether the distant-supervision based approach provided
significant filtering. Thus, we compared the document filtering ap-
proach on the ground-truth and based on using the HunFlair model.
Figure 4 provides the recall rate based on each diagnosis. Upon in-
vestigation, there are a number of older templates of epilepsy that
do not have any proper sub-sections and hence, a lower performance
based on the distant-supervision approach.

7.2 Gene Variant detection

Our experiments were carried out using the HunFlair model for de-
tecting variant names and using the expert-curated rules R in com-
bination with the detected variant names for identifying other related
information. Table. 2 provides the F1-scores and the results, specif-
ically, related information that reports the performance of using the
automatically identified variants in combination with the rules in R,
and indicate a clear dependency on the detection of variants. Our er-
ror analysis showed the following observations:

• Most of the variants that were not identified were from reports on
diagnosis Muscular Dystrophy and Spinal Muscular Atrophy.

• Variants identified from reports on diagnosis Cystic Fibrosis
showed that variants were incorrectly identified without distin-
guishing whether the reported variant was referring to someone
else (e.g., patient’s partner or parent).

• Information that required more contextual understanding for map-
ping to the relevant information (e.g., chromosomes, methyla-
tions, exons etc.) were not captured.
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Table 2. Comparing the automatically detected variants and corresponding
related information identified with the ground-truth data. F1 scores are

reported.

Diagnosis Variants Identified Related Information

Epilepsy 89.23% 93.84%
Spinal Muscular Atrophy 84.21% 78.94%
Muscular Dystrophy 81.39% 76.74%
Cystic Fibrosis 94.59% 93.69%
Tumours 88.09% 88.37%
Neuroblastomas 75.86% 79.30%
Grand Total 91.12% 87.90%

7.3 Classification Outcome

In this task, we chose different pretrained sentence-transformer mod-
els [5], both domain-specific and generic ones, and a pretrained In-
structor model [7]. The models used are described below.

BioBERT-NLI Sentence-transformer model fine-tuned on SNLI
and mutliNLI datasets.

multi-qa-miniLM-L6-cos-v1 Sentence-transformer model trained
to perform well in semantic search tasks, this model was trained
on diverse Question-Answering data; output is a 384 dimensional
vector.

multi-qa-mpnet-base-cos-v1 Similar to the above model but out-
puts 768 dimensional vector.

Instructor-Large Instruction fine-tuned text embedding model that
provides embedding vectors based on task instruction provided as
a prompt.

Figure 5. Embedding vectors computed using the different models and
mapped to a 2-dimensional vector space using TSNE method. NSP, NLS,
PSP and PLS represent negative short phrases, negative long sentences,

positive short phrases and positive long sentences respectively.

To understand the semantic relatedness among the examples for
each classification outcome present within the knowledge base, we
computed the embedding vectors for each of the model and used T-
Distributed Stochastic Neighbour Embedding (TSNE) dimensional-
reduction method for visualising the vectors in a 2-dimensional
space. Figure. 5 visualises the vectors obtained using the different
models. From the visualisations, we can observe that the Instructor-
Large model has the best separation between the positive and nega-
tive outcome examples.

We experimented on 275 sentences extracted from the ground-
truth dataset labelled with the classification outcome to understand
whether the models show similar performance. Results are present in
Table. 4 which show us that the Instructor-Large model performed
poorly while the domain-specific model BioBERT-NLI was able to
retrieve correct labels with the best performance. This indicates the
need to have more examples with more variability in the text content
as found within the 275 sentences for a better performance.

We use the BIOBERT-NLI as our finalised retriever model and
compared the results with the ground-truth data (Table. 3). From the
results, we can observe that epilepsy reports have the best classifica-
tion outcome results. Overall, using pretrained NLP models provided
good results, given that, these models were not trained on paediatric
data.

Table 3. Comparing the automatically detected classification outcome with
the ground-truth data. F1 score are reported.

Diagnosis Classification Outcome

epilepsy 86.15%

Spinal Muscular Atrophy 78.94%
Muscular Dystrophy 76.31%
Cystic Fibrosis 76.75%
tumours 73.25%
neuroblastomas 48.27%
Grand Total 74.46%

Table 4. Comparing the performance of the retriever models with the
ground-truth labels on 275 sentences. F1 scores are reported.

Retriever Model F1-Score

BioBERT-NLI 81%

multi-qa-miniLM-L6-cos-v1 64%
multi-qa-mpnet-base-dot-v1 65%
Instructor-Large 68%

8 Error Analysis

Based on our error analysis on the predictions made on the ground
truth data, we observed the following:

• Variants identified: Spinal Muscular Atrophy and Muscular Dys-
trophy therapeutic areas posed the biggest challenge regarding
missed variants. Incorrect variants were mostly from reports men-
tioning the partner or parent;

• Related information: All information corresponding to a variant
was not captured when the missed information required more un-
derstanding of the text (e.g. chromosomes, exons, methylation).

9 Limitations and Future Work

The current pipeline was built using existing pretrained models that
were not fine-tuned to our data. Further, the pipeline has not been
tested across other types of reports (e.g. radiology reports). As an
immediate future work, we would like to validate the results of the
pipeline on a larger volume of data to understand the limitations of
the current pipeline and focus on enhancing it. The current pipeline is
also tested on a limited set of diagnosis and requires further work to
assess on the different types of genomic reports that may also provide
additional variant information.

The continuance of integrating and improving different compo-
nents and ensuring the components are developed in a customisable
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and modularised manner. There are several challenges that are re-
quired to be addressed in our future work, after which we would
like to deploy and use the pipeline on prospective genomic reports;
not just historic that is currently deployed for. For example, improv-
ing section detection by automatically classifying sections by fine-
tuning pretrained NLP models with annotated data. We aim to link
the structured information to clinical decision support tools, to pro-
vide actionable information in a timely manner to Health Care Pro-
fessionals. As more and more Large Language Models (LLMs) are
being developed and open-sourced, we aim to explore their use and
effectiveness as part of this pipeline. In particular, we want to explore
the use of compact LLMs that can run efficiently on our infrastruc-
ture.

10 Conclusion

Genomic reports represent a reservoir of data in the EHR systems
of the NHS, which is not yet used to its full potential. Whilst the
NHS holds one of the largest resources of genetic information on a
population level, this information cannot currently be fed into data
analytics tools, as it is not digitally integrated. We have developed
an NLP pipeline that classifies genomic reports from the EHR and
unlocks meaningful information. In this work, we demonstrated the
potential capability of using an NLP-based approach for automat-
ically extracting data from genomic reports. This pipeline is de-
ployed within our on-premise environment and run on a large vol-
ume of 26,464 documents. We have also addressed the limitations of
the current work and our future plan to enhance this pipeline to be
able to use it for prospective reports, and thereby linking the data
with our standard structured data for integrating with clinical de-
cision making tools. We make our code open-source and available
(https://github.com/gosh-dre/genomics_nlp_pipeline) and interested
to engage with other hospitals that may be interested in evaluating it
with their genomic reports.
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