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Abstract. Despite the evident practical importance of license plate
recognition (LPR), corresponding research is limited by the volume
of publicly available datasets due to privacy regulations such as the
General Data Protection Regulation (GDPR). To address this chal-
lenge, synthetic data generation has emerged as a promising ap-
proach. In this paper, we propose to synthesize realistic license plates
(LPs) using diffusion models, inspired by recent advances in image
and video generation. In our experiments a diffusion model was suc-
cessfully trained on a Ukrainian LP dataset, and 1000 synthetic im-
ages were generated for detailed analysis. Through manual classifi-
cation and annotation of the generated images, we performed a thor-
ough study of the model output, such as success rate, character distri-
butions, and type of failures. Our contributions include experimental
validation of the efficacy of diffusion models for LP synthesis, along
with insights into the characteristics of the generated data. Further-
more, we have prepared a synthetic dataset consisting of 10,000 LP
images, publicly available at https://zenodo.org/doi/10.5281/zenodo.
13342102. Conducted experiments empirically confirm the useful-
ness of synthetic data for the LPR task. Despite the initial perfor-
mance gap between the model trained with real and synthetic data,
the expansion of the training data set with pseudolabeled synthetic
data leads to an improvement in LPR accuracy by 3% compared to
baseline.

1 Introduction

LPR plays important role in traffic management, automatic ticket-
ing, security and surveillance. For the last decade, the state-of-the-
art results in LPR have been achieved with deep learning methods
[12, 10, 15, 25, 31]. The unprecedented success of neural networks
(NN) in this and other computer vision tasks is based on the usage of
large datasets. However, privacy protection laws such as GDPR [19]
in European Union impose severe limitations on data collection, stor-
age, and usage. Consequently, only a limited number of open LPR
datasets are available, many of them including fewer than a thousand
images [26, 16, 14, 13, 20], particularly for those of European origin.

One viable solution to restricted data availability is synthetic data.
Template-based LP image generation [23] is a robust and control-
lable approach that, nevertheless, requires meticulously handcrafted
data augmentations to transform the template into a realistic image.
Furthermore, it is highly dependable on the template itself and can-
not be easily transferred to a similar problem. Generative adversarial
networks (GANs) have allowed researchers to automate the template-

to-real-image transformation [24, 27], and to achieve higher diversity
and real-life likeliness [22]. However, stability of GAN training re-
mains a challenge.

Inspired by recent advances of diffusion models for image and
video generation, we propose to use them to LP synthesis. To exper-
imentally validate this approach, we trained a Denoising Diffusion
Probabilistic Model (DDPM) [5] on a Ukrainian LP dataset consist-
ing of 78k images. Consequently, 1000 images were generated for
a detailed analysis. They were manually classified as success and
failure cases. Successfully generated LPs were annotated with the
corresponding LP text. Based on these annotations, a character dis-
tribution analysis was performed. Furthermore, synthetic LPs were
labeled for LPR task, and corresponding model was compared to the
baseline trained with a real LP dataset.

Our contributions in this research can be summarized as follows:

e we experimentally verify the viability of realistic LP synthesis
with diffusion models;

e we analyze the outputs of the generative model, particularly the
success rate, the character distribution, and the failure cases;

e we prepare a large synthetic dataset of 10,000 LP images that we
release [21] alongside this paper;

e we empirically confirm the usefulness of synthetic data for the
LPR task.

The rest of the paper is organized as follows: Section 2 discusses
the related work on LP generation and open LPR datasets. Section
3 provides details on the experiments methodology, results and their
analysis. Section briefly describes the dataset of synthetic Ukrainian
LPs publicly released as a result of this work. Finally, Section 5 con-
cludes the article.

2 Related work
2.1 License plate generation

Generating synthetic LP images has become a practical solution to
address the restrictions imposed by privacy protection laws on data
collection and usage. Over the past few years, researchers have been
investigating different methods to create realistic LP images for the
purpose of training deep learning models in LPR tasks.

In the early days, computer graphics techniques were employed to
generate LPs by creating artificial images using pre-designed tem-
plates and fonts. These methods are still being applied due to their
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robustness and controllability. Notably, Silvano et al. [23] have pro-
posed synthesizing Mersocur LP based on template and carefully de-
signed image augmentations. These methods, although successful in
producing significant amounts of data, frequently fell short in terms
of diversity and realism required for training resilient LPR models.
Moreover, they are difficult to extend due to their heavy dependence
on a specific template.

Researchers have been investigating the potential of GANSs in gen-
erating LP images that are more realistic. GAN-based approaches
have demonstrated great potential in capturing the diverse range of
factors present in real-world LPs, such as various fonts, lighting
conditions, and backgrounds. In particular, Wang et al. [24] have
proposed an improvement of the CycleGAN based model [30] that
learns the mapping between the synthetic images generated by a
script, and real images. Wu et al. [27] have adopted a similar ap-
proach and improve the image-to-image based Pix2Pix generative
architecture [7]. Nevertheless, the challenges of generating high-
quality images and ensuring a stable training process have been per-
sistent in these approaches.

In recent times, diffusion models have gained significant attention
as a compelling alternative for image generation tasks. Inspired by
their success in producing high-quality photos and videos, we pro-
pose using diffusion models for LP synthesis. Diffusion models have
numerous advantages, such as the capability to accurately model
complex data distributions and produce a wide range of high-quality
samples. Through this study, we explore the possibility of using dif-
fusion models to create realistic Ukrainian LP images and examine
their potential in tackling the challenge of limited data in LPR re-
search.

2.2 License plate datasets

Several LP datasets are openly available for research. They are com-
monly used for LP detection (LPD) or LPR tasks. We provide below
their short description, and list them in Table 1 with the information
on number of images, their origin region, and type of the annotation
available. Caltech Cars 1999 dataset [26] contains 126 images of
cars from the rear. These images were taken in the Caltech parking
lots. Caltech Cars 2001 [16] is a car dataset containing 526 images
of cars from the rear. They were taken on the freeways of southern
California.

AOLP dataset was composed by Hsu ez al. in [6] for LPD and LPR
tasks. This dataset is divided into three distinctive subsets, namely
access control (AC), law enforcement (LE), and road patrol (RP).
AOLP-AC contains 681 images, AOLP-LE consists of 757 images,
and AOLP-RP has 611 images. The origin of the data is Taiwan.

The Peking University LP dataset (PKU) contains in total 3,977
images split into five groups: G1, G2, G3, G4, G5 [29]. Bounding
boxes annotations for LP are also available, thus making it well suit-
able for LPD task.

OpenALPR [14] dataset has three subsets according to the data
origin: Europian Union (OpenALPR-EU), USA (OpenALPR-US)
and Brazil (OpenALPR-BR). OpenALPR-EU contains 108 images,
OpenALPR-US has 222 images, and OpenALPR-BR consists of 115
images. Annotations include LP bounding boxes, and LP texts, thus
making OpenALPR dataset suitable for LPD and LPR tasks.

SSIG benchmark dataset [2] was collected by Gongalves et al. It
is composed of 2,000 Brazilian LPs. The corresponding 14,000 al-
phanumeric characters come with bounding box annotations.

CCPD proposed by Xu et al. in [28] is a large dataset consisting of
over 300,000 Chinese LP images. It has rich annotations that contain

Table 1. Number of images, their origin and annotation type for some
commonly used LP datasets; bbox stands for bounding box.

Dataset name # of imag Origin  Annotations
Caltech 1999 [26] 126 USA None
Caltech 2001 [16] 526 USA None
AOLP-AC [6] 681 Taiwan  None
AOLP-LE [6] 757 Taiwan  None
AOLP-RP [6] 611 Taiwan  None
PKU-G1 [29] 810 China LP bboxes
PKU-G2 [29] 700 China LP bboxes
PKU-G3 [29] 743 China LP bboxes
PKU-G4 [29] 572 China LP bboxes
PKU-GS5 [29] 1,152 China LP bboxes

LP bboxes,
OpenALPR-EU [14] 108 EU LP text

LP bboxes,
OpenALPR-US [14] 222 USA LP text

. LP bboxes,

OpenALPR-BR [14] 115 Brazil LP text
SSIG [2] 2,000 Brazil LP characters bboxes

LP bboxes,
CCPD [28] >300,000 China LP text,

LP four vertices

MediaLab LPR None originally,

database [13] 181 Greece 1 b bboxes available in [17]
LP bboxes,
KarPlate Korea [3] 3,893 Korea LP characters bboxes,
LP text
University of Zagreb [20] 509 Croatia  None
- LP bboxes
GAP-LP [9] 9,175 Tunisia LP characters bboxes
. LP bboxes,
UFPR-ALPR [11] 4,500 Brazil LP characters bboxes,
LP text,
RodoSol-ALPR [12] 20,000 Brazil LP layout,
LP four vertices
IR-LPR-LPD [18] 20,967 Iran LP bbox
IR-LPR-LPR [18] 27,745 Iran LP characters bboxes

information on LP bounding box coordinates, LP text, LP four ver-
tices locations, LP area wrt the whole image, tilt degree, brightness
and blurriness of the LP region.

Medial.ab LPR database [13] consists of 181 Greek LP images.
The dataset is split into multiple categories (day color images, day
grayscale images, day images with blur, day images with shadows,
day images with close view, and night capture). In addition, some
difficult cases are presented, such as images with multiple vehicles,
dirt and shadow, shadows in the LP, truck LP captured during the day,
and truck LP captured during the night. Originally, no annotations
were available for this data set; however, currently the corresponding
LP bounding boxes can be found in the external source [17].

University of Zagreb LP dataset was collected and released in
course of License Plate Detection, Recognition and Automated Stor-
age students’ project in 2003 [20]. The image database has been pre-
pared by using OLYMPUS CAMEDIA C-2040ZOOM digital cam-
era. It contains over 500 images of the rear views of different vehicle
types (cars, trucks, buses), taken under various lighting conditions
(sunny, cloudy, rainy, twilight, night light).

GAP-LP is a Tunisian LP database presented by Kessentini et al.
in [9]. The dataset consists of 9,175 images that were acquired with
different quality cameras under different resolutions, view angles
and daylight lighting conditions. The images are available at a dedi-
cated website [8] together with LP bounding boxes and LP characters
bounding boxes annotations. Consequently, GAP-LP is straightfor-
ward to be used for LPD and LPR tasks.

UFPR-ALPR is a Brazilian LP dataset presented by Laroca et al.
in [11]. It contains 4,500 images with LP bounding boxes and LP
characters bounding boxes annotations, making it well suitable for
LPD and LPR tasks. The images were obtained from three different
cameras, 1,500 per each one. LPs in the UFPR-ALPR dataset belong
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to cars and motorcycles.

The RodoSol-ALPR dataset contains 20,000 images from static
cameras along the 67.5-kilometer ES-060 highway in Espirito Santo,
Brazil, operated by Rodovia do Sol (RodoSol). Detailed in paper by
Laroca et al. [12], it features various vehicle types captured under
diverse conditions, including day and night, different weather, and
varying distances from the camera. Every image has the following
information available in a text file: the vehicle type (car or motorcy-
cle), the LP layout (Brazilian or Mercosul), LP text, LP four vertices
coordinates (X,y).

IR-LPR is an Iranian LP dataset collected by Rahmani et al. [18].
It includes 20,967 car images with the LP bounding box annotations.
The total number of LP images with LP characters bounding boxes
is 27,745 images.

Although some of the datasets detailed above are quite large, e.g.
CCPD containing over 300,000 images, or RodoSol-ALPR contain-
ing 20,000 images, European datasets are small and few: MediaLab
LPR database of Greek LPs has only 181 images, OpenALRP-EU
contains 108 images, and the University of Zagreb dataset has 509
images. Such scarcity is explained by the strict legislation on data
privacy. To meet this challenge, we propose to generate synthetic LP
images with DDPMs. We hope that the availability of a large number
of realistic LP images will be beneficial for ANPR research.

3 Experiments, results and discussion

In this section, we detail the experimental setup and perform the anal-
ysis of the generated images.

3.1 Experimental Setup
3.1.1 Dataset

Standardization of Ukrainian Vehicle License Plate Codes. In
1995, Ukraine standardized its vehicle LP codes to include only 12
Ukrainian Cyrillic letters with Latin alphabet visual equivalents: A,
B,E, L K, M, H, O, P, C, T, X. Additionally, a two-digit regional
code was added to the LP.

In 2004, numerical regional codes were replaced with new letter
codes. In 2013, further modifications were made, replacing the initial
letters in existing codes as follows: A to K (except Crimea, where
AK became MA), B to H, and C to I. Table 2 presents the list of
LP prefixes introduced in 2004, along with their corresponding 2013
codes and associated regions.

Since 2015, a new design featuring a blue band on the left side
of the plate with the letters "UA" in white below the Ukrainian na-
tional flag was introduced. In 2021, Ukrainian regions were assigned
two additional letter codes, although these have not yet been widely
adopted. Furthermore, since 2020, vehicles powered by electric mo-
tors without internal combustion engines are designated with the
characters Y or Z in their LP numbers.

Currently, all LPs issued in Ukraine, including Soviet-era plates,
remain valid and can still be legally used on the country’s roads. For
this study, we will focus on one-line optimized plates of Type 1 (Reg-
ular vehicles) and Subtype 1-1-1 (Electric motor-powered vehicles),
with codes registered between 2004 and 2021 [1]. These specific
types of plates are the most commonly observed and used in Ukraine.

Dataset Details. Our study uses a private dataset of Ukrainian LP
images, each captured in different lighting conditions and angles. In
total, the dataset has 78,855 images (75,654 of Type 1, and 3,201 of
Subtype 1-1-1), offering a wide range of real-world scenarios. See
Figure 1 for more examples from the dataset.

Table 2. Correspondance of LP prefixes to regions of Ukraine.

2004 Prefix 2013 Prefix Region
AA KA Kyiv city
AB KB Vinnytsia
AC KC Volyn
AE KE Dnipropetrovsk
AH KH Donetsk
Al KI Kyiv
AK MA Crimea
AM KM Zhytomyr
AO KO Zakarpattia
AP KP Zaporizhzhia
AT KT Ivano-Frankivsk
AX KX Kharkiv
BA HA Kirovohrad
BB HB Luhansk
BC HC Lviv
BE HE Mykolaiv
BH HH Odesa
BI HI Poltava
BK HK Rivne
BM HM Sumy
BO HO Ternopil
BT HT Kherson
BX HX Khmelnytskyi
CA 1A Cherkasy
CB 1B Chernihiv
CE IE Chernivtsi
CH IH Sevastopol city

Type 1 Subtype 1-1-1

nz

EAA 1234 AB Aan AA 1234 ZE]

Dataset Samples

Figure 1. License Plate Formats and Dataset Samples. The top section
shows the format types of Ukrainian LPs used in this study, and the bottom
section provides corresponding sample images from the dataset.

3.1.2  Generative model training

For our experiments, we used the Denoising Diffusion Probabilis-
tic Model (DDPM), a class of generative models that iteratively re-
duce noise from a sample over a set number of steps. This process
progressively transforms a sample from a noise distribution to a data
distribution. We followed the training configuration proposed by the
authors in the original DDPM paper, with specific adjustments tai-
lored to our task.

Images were resized to 64x64 pixels without center cropping or
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flipping. For training, we used a batch size of 64. The chosen model
consists of five feature map resolutions, ranging from 64x64 to 4x4,
with dimensions [128, 128, 256, 256, 512]. The model includes two
convolutional residual blocks per resolution level and self-attention
blocks at the 16x16 and 8x8 resolutions between the convolutional
layers.

The learning rate was initially set to 107, and subsequently
changed using a cosine scheduler and a 5000-step warmup phase.
Higher learning rates led to unstable training convergence. We used
the AdamW optimizer with standard hyperparameters and applied
EMA with a decay rate of 0.9999 to stabilize training. A dropout rate
of 0.1 was applied to reduce overfitting.

The diffusion model was trained for a total of 100 epochs on a
Tesla T4 GPU with 15GB of VRAM, which took approximately 30
hours to complete. For inference, the generated images were initially
produced at a resolution of 64 x 64 pixels and later resized to 193 x
72 pixels to match the average aspect ratio of the training dataset.

Figure 2 provides visualization of generated LP images over var-
ious training steps. We can clearly observe the progression: in the
initial steps, the model learns the overall structure of the plates, and
in the later steps, it adapts the text to match the target distribution.

3.2 LP generation results

Successful Image Generation Criteria. For further analysis, we
established criteria for successful image generation. The criteria were
based on the images being fully readable and meeting the following
requirements:

° The LP pattern must adhere to the format "AAO000AA," which
is the standard LP format registered between 2004 and 2021.

e  The prefix must correspond to a valid region code as per the
Ukrainian regions listing (refer to Table 2).

° The suffix is limited to the characters A, B, C,E, I, K, M, H, O,
P T X,Y, and Z.

Images that do not meet these criteria were classified as failed im-
age generation.

Analysis of Image Generation Success and Failure Distribution.
For the detailed analysis, we generated a total of 1,000 synthetic
LP images using a trained diffusion model. Upon evaluation, 864
of these images were classified as successful (824 of Type 1 and 40
of Subtype 1-1-1), and 136 images were found to be unreadable or
contained incorrect elements (see Figure 3 for successful examples
and Figure 4 for failed examples).

Additionally, Figure 5 provides a graphical representation of the
distribution rates for Type 1, Subtype 1-1-1, and failure rates for both
synthetic and real images in the LP generative model.

Quantitative Generation Quality Metrics. To further assess the
performance of LP generative model, we calculated the Fréchet In-
ception Distance (FID) [4] scores for a generated synthetic dataset.
The FID score is a widely used metric for evaluating the similarity
between generated and real images. The FID score for a dataset of
15,864 synthetic images is 22.47.

3.3 Character Distribution Analysis

Symbol Distribution Analysis. We analyzed the distribution of
prefix, digit, and suffix symbols in synthetic and real LPs (see Figure
6). The distributions show that synthetic data closely replicates real
data, with only minor differences. For instance, the prefix symbol

A’ is highly frequent in both datasets, appearing in over 30% of
the images. The digit symbols are also similarly distributed, with "0’
being the most common at around 12% for both synthetic and real
plates. However, some inconsistencies were observed.

Specifically, the digit ’8” and the letter 'B’ show differences in
their frequencies. In synthetic LPs, ’8” appears slightly more fre-
quently than in real plates, and B’ is more common as a suffix in
generated LPs. This discrepancy could be due to the complexity in
accurately drawing these symbols. The symbol ’I,” represented as a
simple line, also appears more frequently in synthetic plates. This
suggests that the model may prefer simpler shapes, which are easier
to generate.

Interestingly, the variance in symbol distributions for prefix sym-
bols is minimal compared to digits and suffix symbols. This is likely
because there are fewer prefix combinations in the training data, lead-
ing to less variation in their synthetic representation.

Regional Distribution Analysis We also analyzed the regional dis-
tribution of LPs from different periods and types (synthetic and real)
as shown in Figure 7. Despite the complexity of regional data, the
synthetic models show a high degree of similarity to the real data.
However, some inconsistencies are present, which could be due to
the model’s difficulty in replicating the exact distribution of complex
regional data. These variations highlight areas where the model could
be refined for better accuracy.

Overall, despite these minor differences, the synthetic data gener-
ation process produces distributions that are largely similar to real-
world data.

3.4 LPR with synthetic data

Methodology for Training Character Detection Models. To
evaluate the usefulness of generated LP images for LPR task, we
adopted the OCR-by-character-detection method prevalent in this do-
main [18, 11, 12].

We initiated the process by manually labeling 864 successfully
generated synthetic LP images with bounding boxes. For a fair com-
parison, we also labeled 864 randomly sampled images from the
training dataset. We then trained the YOLOV9-c model, chosen for
character detection. The model trained on the real subset of images
served as a baseline for accuracy comparison.

The YOLOV9-c model was trained using the Adam optimizer with
a learning rate of 0.001 and a batch size of 16. We applied various
image enhancement techniques, such as HSV adjustment, rotation,
translation, scaling, shearing, and perspective transformation. To ad-
dress the challenge of unbalanced character distribution, the training
process incorporated image weights, allowing for image sampling
proportional to the number of targets per image and inversely pro-
portional to class frequency. The best model from this phase was se-
lected based on the highest validation loss observed over 30 epochs.
A dataset share of 10% was reserved for validation.

For the synthetic data, we trained several instances of the model
based on a gradual training dataset expansion with pseudolabeling.
Initially, 864 synthetic images were manually annotated and used for
training. Subsequently, an additional 5,000 synthetic images were
pseudolabeled using the model trained on the initial 864 synthetic
images, expanding the synthetic dataset to 5,864 images. In the fi-
nal phase, 10,000 more synthetic images were pseudolabeled using
the model trained on the 5,864-image dataset, bringing the total to
15,864 synthetic images.

To ensure high-quality image samples during pseudolabeling, we
set the confidence threshold to 0.8. Each pseudolabeled image was
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Figure 2. Visualization of the generated license plate images at different training stages.
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Figure 3. Examples of successful LP image generation.

Non-existent
region code

Not following
the template

Not readable

Figure 4. Examples of failed LP image generation.

selected based on the successful criteria described in Section 3.2.
Each synthetic dataset was used to train separate models under the
same setup as the baseline. It is important to note that pseudolabel-
ing models are sensitive to overfitting, as overfitting can lead to the
model ignoring failed parts of letters and focusing only on the main
symbol features and their placement.

Validation and Testing of LPR Models. Validation involved 200
real images to determine the optimal confidence threshold, maximiz-
ing LPR accuracy across the models. We considered the binary accu-
racy measure: 1 for a correctly read LP text and O for an incorrectly
read LP text, regardless of the number of errors in the LP text or their
type. The results of the validation experiments are shown in Table 3.

The test phase used 1,000 real LP images to evaluate the model
performance. The models were applied with the optimal confidence
thresholds found during the validation phase. The test results are
given in Table 4. The baseline model, trained with 864 manually la-
beled real images, resulted in 94.1% LPR accuracy. Its direct com-

Synthetic Images
Failed (136)

Real Images
Subtype 1-1-1 (3201)

Subtype 1-1-1 (40)

Type 1 (824)
Type 1 (75654)

Figure 5. Distribution of image categories for synthetic (left) and real
(right) LP images.

petitor, the model trained with 864 manually labeled synthetic im-
ages, showed a lower performance of 90.9%. However, as the num-
ber of synthetic images increased, the LPR accuracy improved sig-
nificantly. We observe that with equal manual labeling effort (of 864
images), generating and pseudolabeling more images significantly
improves the LPR accuracy. The accuracy reaches 96.3% with 5,864
synthetic images and further increases to 97.5% with 15,864 syn-
thetic images, both of which outperform the baseline accuracy of
94.1% achieved by the model trained on real images.

These results demonstrate the high potential of synthetic data for
enhancing LPR accuracy in scenarios with limited data availability,
with a clear benefit from increasing the volume of synthetic training
data.

4 Dataset Description

To address the challenge of data scarcity in LPR tasks and to fill the
gap in available Ukrainian LP datasets, we are releasing a dataset
of 10,000 synthetic Ukrainian vehicle LP images [21]. This dataset,
which was instrumental in the second step of our dataset expansion
process and contributed to training the highest-performing model in
our experiments, is intended to serve as a robust resource for the
training and validation of LPR models. By providing diverse con-
ditions, including variations in lighting and angles, this dataset sup-
ports the exploration of model performance in real-world scenarios,
ultimately aiding the development of more accurate and resilient LPR
systems.

Dataset Composition The dataset contains 10,000 images, each
with a resolution of 193 x 72 pixels. These images represent two
main types of Ukrainian LPs: regular vehicles and electric motor-
powered vehicles. The dataset covers a wide range of scenarios,
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Figure 7. Comparison of region prefix distribution between synthetic and real datasets.

including variations in lighting conditions, viewing angles, and re-
gional codes, ensuring coverage of the standard LP formats used in
Ukraine between 2004 and 2021. The sample images shown in Fig-
ure 8) highlight different scenarios and conditions, providing a better
sense of the dataset quality and variety.

Note: As the data samples are synthetically generated, there may
be slight inaccuracies in the representation of the intended distance
between the letters and the exact color of the LPs. While these as-
pects have been approximated to closely resemble real-world con-
ditions, they might not perfectly match the specifications of actual
LPs.

Data Annotation Each image in the dataset is annotated in the
YOLO Darknet format, which includes precise bounding box coor-
dinates for each character on the LP. The annotations follow the stan-
dard LP format "AAOO00AA," where:

e AA represents the regional code.

e 0000 represents the numerical sequence.
o AA represents the suffix, corresponding to specific Ukrainian
Cyrillic letters with Latin equivalents.

5 Conclusions

In this paper, we have proposed a novel approach for synthesizing
realistic LPs using diffusion models, addressing the challenge of lim-
ited data availability in LPR tasks. Through experimental validation,
we have demonstrated the efficacy of diffusion models in generating
synthetic LP images that closely resemble real-world data and their
usefulness for the LPR task. Our analysis of success rates, charac-
ter distributions, and failure cases provides valuable insights into the
capabilities and limitations of the proposed approach.

Furthermore, the creation of a synthetic dataset comprising 10,000
LP images adds to the existing resources available for LPR research,
offering researchers and practitioners access to a diverse set of data
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Table 3. Validation results showing LPR accuracy across different confidence thresholds for models trained on the datasets. The bolded accuracy value
represents the chosen optimal confidence threshold for each model, which was determined based on maximizing LPR accuracy.

Training Dataset Accuracy at Confidence Threshold
Size Type 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
864 Real 80.0% | 89.5% | 93.5% | 93.0% | 91.0% | 855% | 79.0% | 39.0% | 0.0%
864 Synthetic | 72.5% | 86.5% | 92.0% | 94.0% | 94.5% | 89.5% | 80.5% | 53.8% | 1.5%
5864 | Synthetic | 84.0% | 91.5% | 94.5% | 96.5% | 96.5% | 95.5% | 90.0% | 71.5% | 0.0%
15864 | Synthetic | 95.5% | 95.5% | 97.5% | 98.5% | 98.0% | 97.0% | 96.5% | 91.5% | 0.0%

Figure 8. Sample Images from the Synthetic Dataset. These images showcase the variety in lighting conditions, viewing angles, and regional codes present in
the dataset.

Table 4. Performance comparison of LPR models on a test set of 1,000
real LP images. The bolded accuracy indicates the highest performance
achieved among the models.

Tf‘ammg Dataset Test Accuracy
Size Type

864 Real 94.1%

864 Synthetic 90.9%
5864 | Synthetic 96.3%
15864 | Synthetic 97.5%

for training and evaluation purposes. By releasing this dataset along-
side the paper, we aim to contribute to the advancement of LPR tech-
nology and foster further research in this area.

Looking ahead, future research directions could explore enhance-
ments to the proposed synthesis approach, such as incorporating ad-
ditional sources of variability to generate more diverse LP images.
Additionally, investigating the generalization capabilities of models
trained on synthetic data to real-world scenarios would be a valuable
avenue for further exploration.

Overall, our work highlights the potential of synthetic data gener-
ation using diffusion models in augmenting data availability for LPR
tasks and lays the groundwork for future advancements in this field.
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