
Constrained LLM-Based Query Generation
for Question Answering on Official Statistics

Jonas Kouwenhoven a, Lucas Lageweg b and Benno Kruit c

ajonaskouwenhoven@live.nl
bl.lageweg@cbs.nl

cb.b.kruit@vu.nl

Abstract. This research explores the development of a knowledge
graph statistical question answering system for Statistics Netherlands.
Aimed at efficiently retrieving single statistical values from their
extensive database, which encompasses over a billion values across
more than 4,000 tables, we propose a comprehensive three-component
framework consisting of: (1) a data augmentation method to generate
synthetic data, (2) an entity retrieval system that leverages various en-
coder networks along with different hard negative mining techniques
for the effective retrieval of tables, measures, and dimensions, and (3)
an innovative large language model-based query generator. A central
innovation of our research is the introduction of a dynamic prompting
technique for query generation, which creates prompts specifically for
a certain phase of the token generation. This approach ensures that the
model is supplied with information relevant for generating specific
tokens in a symbolic query. With this approach, we propose a novel
system that can help find relevant information in official statistics and
similar systems, which is vital for governmental decision making and
all fields of research utilising and relying on these statistics.

1 Introduction

Statistics Netherlands (Centraal Bureau voor de Statistiek; CBS) is
an independent administrative body of the Dutch government tasked
with the creation of statistics over a broad spectrum of social topics,
and the responsibility to make them accessible to the general public.
However, in-house studies have shown that users struggle to find the
correct tables for their needs in the vast amount of data available.
This research aims to develop a Question Answering (QA) system to
provide specific statistical observations from this data as responses to
natural-language user questions.

QA systems can take several forms, with most recently free-form
generative Large Language Models (LLMs) like ChatGPT [18] and
GPT4 [19] getting much attention. Due to the nature of these mod-
els, they are able to generalize very well on a large range of topics,
but have shown to be prone to ‘hallucinations’, where plausible but
incorrect or even nonsensical answers are generated [27]. Especially
for official data like governmental statistics, this is highly undesirable
behaviour.

Knowledge Graph Question Answering (KGQA) is a field where
knowledge graphs (KGs) containing real-world facts and relations
in structured form are used as a basis for QA systems. Answers of
such systems should always adhere to the KG. Therefore, assuming it
contains correct information, answering by returning parts of the KG,

or reasoning over it, cannot lead to nonsensical answers. In this paper,
we introduce an end-to-end pipeline for a generation-based KGQA
system of CBS data. Our approach introduces a data augmentation
process for enhancing model training, explores various encoder ar-
chitectures for entity retrieval and proposes a new query generator
mechanism enhanced by Low Rank Adaptation (LoRA). Additionally,
we propose a new prompting technique that utilizes dynamic prompts,
constructing specific prompts based on the generation phase. These
improvements help the process of generating symbolic expressions
for querying a KG, and thereby enhancing the overall performance of
the QA system.

In this research we focus on the retrieval of a single table cell based
on a given input query. In practice, this means that the system is able
to answer questions that have an answer in a single cell of a table that
is available in the KG. For our investigation, we assume only Dutch
input questions, and focus on the top 500 most consulted tables on
the CBS website. In short, our contributions are as follows:

• a data augmentation method for diverse, realistic question genera-
tion that can be used for training (Sections 3.3 & 4.1);

• the adaptation and evaluation of several state of the art approaches
for entity retrieval in official statistics (Sections 3.4 & 5.1);

• a novel method for query generation based on low-rank adaptation
of LLMs using dynamic prompting (Section 3.6.2);

• improvements upon strong QA-baselines, on both in-domain and
out-of-domain data (Section 5);

• we discuss the current state of deployment and potential future
impact of the KGQA system for official statistics (Section 7).

2 Related Work

Query Generation Systems mostly related to our approach are
query generation-based QA systems, in particular text-to-SQL. In
their survey, Qin et al. [20] explain several approaches on learning
input and table schema representations (encoding), in order to later
generate and parse SQL statements (decoding).

Generative models are also considered for the task of generating
logical forms to retrieve and reason over KGs themselves. However,
adapting these models still provides a problem when it comes to pro-
ducing queries/expressions that are faithful to the KG (i.e. to prevent
querying non-existing triples). Current state-of-the-art methods for
KGQA use KG grounding for constraining queries that adhere to the
KG, as is shown by Gu et al. [4], Yu et al. [26] and Shu et al. [23]. All
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(a) Overview
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(b) Example Table Fragment
Figure 1: (a) Overview of our pipeline from query to answer. Candidate table nodes (green) are retrieved for the query, after which the measure
and dimension filter candidates are retrieved (blue), resulting in a complete subgraph for the table candidates. The subgraph is used as input for
the constrained S-expression decoding by either the baseline method or trained model. (b) Example CBS table fragment (from 7425eng),
showing one dimension (time periods) and two measures.

three examples take roughly the same overall approach, and serve as
the main source of inspiration for this current research.

In their work, Schneider et al. [22] investigate the performance
of different LLMs for query generation in text-to-SPARQL tasks.
They evaluated one- and few-shot prompting on multiple LLMs. They
found that zero-shot prompting in combination with a trained LoRA
on LLaMA2 performed best based on the different benchmarks. Nan
et al. [13] propose prompt design techniques to enhance Text-to-SQL
systems. Their approach leverages example SQL structures and inte-
grates KGs, achieving significant performance boosts on the Spider
dataset.

Data Augmentation Similar to the approach we implemented for
data augmentation, Bonifacio et al. [1] introduced InPars, a method-
ology aimed at creating synthetic training datasets for Information
Retrieval (IR) tasks. Utilizing a document and multiple pairs of ques-
tions as input, their technique leverages language models to generate
a question that aligns with said document. They assessed the efficacy
of this method by evaluating 10,000 synthetically generated questions
with the GPT-3 Curie language model across various IR benchmarks.
The results showcased a notable improvement over traditional unsu-
pervised sparse methods like BM25 [1]. Jeronymo et al. [9] employed
a reranker as a filtering mechanism to select only the best synthetically
generated examples.

Entity Retriever The Entity Retriever (ER) in QA systems plays a
critical role, selecting the first answer candidates that function as input
for the rest of a QA pipeline. Methods for ER are broadly categorized
into sparse and dense approaches [6]. While sparse methods rely on
word co-occurrences, dense methods use high-dimensional vector
spaces to capture the nuanced relationships between queries and
documents. When using sparse methods, a challenge arises due to
the terminology gap between CBS and its users. Non-frequent users
often formulate queries using language dissimilar to CBS’ jargon. For
instance, a user might ask “How many buildings are in Amsterdam?”,
whereas CBS would phrase it as “Stock of immovable properties
in Amsterdam”. This difference in wording can lead to mismatches

during exact word-based query-to-table comparisons. This research
will therefore focus on dense retrieval methods as they tend to capture
more contextual similarities.

Significant advancements in dense retrieval have been achieved
through the development of architectures like DPR (Dense Passage
Retrieval) and ColBERT [11, 12]. Both methods operate on a Bi-
Encoder architecture, independently processing queries and docu-
ments before comparing their vector embeddings for similarity. This
method has demonstrated substantial improvements over traditional
retrieval models [11]. ColBERT, leveraging a late interaction model,
offers refined term-level matching capabilities, enhancing the retrieval
process further [12].

3 Methodology

This section outlines the methodology for the proposed end-to-end
KGQA pipeline (see Figure 1). The end-to-end pipeline consists of
four parts. The first step is table retrieval based on the query to
determine the relevant tables (Section 3.4.1), which is followed by
filters retrieval, which selects the relevant measures and dimension
within the table (Section 3.4.2). Then, the retrieved entities (i.e., tables,
measures and dimensions) are passed on to the query generator (Sec-
tion 3.6), which utilizes the entities to formulate the final S-expression
(Section 3.2). Finally the S-expression is converted into a OData4
query that retrieves the table cell deemed most relevant for the input
query.

3.1 Public Data of Statistics Netherlands

For this research, to narrow the scope, we will use CBS data that
is publicly available and, more specifically, will use the 500 most
consulted tables on the CBS website. All data is made available via
the ISO/IEC approved Open Data Version 4.01 protocol (OData4)
[14, 8], which is the API that will be queried to return observations to
user questions. Each table observation consists of a single measure
value (i.e. a statistic being measured) and values for all dimensions
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available in that table (i.e. filtering characteristics or properties for
said measures). CBS maintains a public vocabulary of concepts1, in
which every unique measure and dimension has an identifier. In the
editorial process of publishing statistics, all measures and dimensions
are standardised as much as possible in an attempt to maintain consis-
tency between tables. In this work, we make use of a subset of this
vocabulary encoded as RDF in our KG, corresponding to the schema
descriptions of the tables in our target sample. In Fig. 1b, a fragment
of an example table is shown, with one dimension (time periods) and
two measures).

3.2 Query Syntax: S-expressions

S-expressions are symbolic expressions which contain atoms and ex-
pressions (which are always S-expressions themselves) in a tree-like
structure as nested lists. For our purpose, Gu et al. [4] propose a
format where the expression comprises of functions (AND, COUNT,
JOIN, etc.) and entities (i.e. the atoms). The S-expressions always
denote operations over the KG. ArcaneQA [3] extends their definition
with functions for general and temporal constraints but follows the
same principle. The benefit of using S-expressions is that they are
compact and concise, human-readable and machine-interpretable and,
most importantly, easily converted to other types of querying formats
like SPARQL or OData4. An expression will always start with an
aggregation/operator function to indicate the operation needed to be
done over the values denoted in the expression that follows. Two spe-
cial atom placeholders exist for the time and geographical constraint
functions (TC and GC).

3.3 Data Annotation

CBS has developed a method for manual data annotation. This method
involves annotators writing queries that can be answered by a specific
table cell. Annotators were instructed to write their questions both
as full sentences and in a more casual style, aiming to simulate the
formulation of questions posed by users in a search engine. The data
obtained from this manual annotation process contains queries and
their corresponding S-expression, resulting in 2300 annotated pairs.

The annotated queries were distributed over random tables from the
CBS datapool, and contained a strong class imbalance towards tables
that were more easily annotated. This class imbalance and random
distribution motivates extending this study with data augmentation. In
this extension, annotated S-expressions and their associated queries
are used to fine-tune a GPT-3.5 model through the OpenAI fine-
tuning services [17]. The query-expression pairs were transformed
into prompts using the descriptions of the IDs for various measures,
dimensions, and table IDs, as illustrated by Example 1. Training such
a model reduces the need for additional manual annotation, while also
significantly increasing the amount of annotated data.

Example 1. Automatic data annotation
Original S-expression:

(VALUE (83822NED (MSR M001191_2 (WHERE (DIM Bedrijfs-
grootte WP19114) (DIM TC 2015JJ00)))))
Entities:

83822NED: Fitness Centers; customers, subscription prices, and
facilities

M001191_2: Total Customers (x 1000)
WP19114: 0 to 3 employees
2015JJ00: 2015

1 https://vocabs.cbs.nl/en/ (Accessed: 26-04-2024)

Prompt Transformation:

Think of a question for the table ‘Fitness Centers; customers, sub-
scription prices, and facilities’, with columns ‘Total Customers (x
1000)’ and rows ‘0 to 3 employees’, ‘2015’
Query Generated by the Fine-tuned Model:

How many customers did a fitness center with 0 to 3 employees
have in 2015?

3.4 Entity Retrieval

The entity retriever component within the overall QA pipeline is
tasked with identifying the most relevant entities (i.e., tables, mea-
sures, and dimensions) based on an input query. In this research, we
split the entity retriever into two components. First, we aim to identify
the most relevant tables (Section 3.4.1). Following that, we aim to
identify the most relevant table filters (Section 3.4.2).

For table and filters retrieval, several baselines, both sparse and
dense, and two Bi-Encoder network architectures were investigated:
a simple Dual-Encoder architecture and the more sophisticated Col-
BERT model.

3.4.1 Table Retrieval

The first stage of the retriever focuses on fetching the most relevant
tables given an input query. Both sparse and dense methods are evalu-
ated for this task. Dense methods utilize pre-computed embeddings
to calculate similarity scores. Sentence Transformers [21] can be
used with a variety of pre-trained models that transform input queries
into high-dimensional vectors. The final similarity score between a
table and a query is then calculated using the cosine similarity of
these vectors. Here, we used a Dutch language GroNLP BERT sen-
tence transformer [2] for creating the embeddings. However, GroNLP
has a significant limitation: a maximum token length of 75. While
the queries in our datasets typically adhere to this length, the table
summaries and descriptions that are embedded often exceed this limit.

Additionally, table titles lack descriptiveness, hindering the capture
of table information through the title embeddings exclusively. To
address this, an automated augmentation process was implemented
using the OpenAI GPT-3.5-turbo model. A prompt was created using
the table title, summary, description, and a random sample of its
measures. The model was tasked to generate a summary of no more
than 75 tokens based on the provided information. These generated
summaries were used throughout the rest of the research.

Baselines For the entity retriever, three different baseline algo-
rithms are considered: a sparse TF-IDF-based BM25-method, the
GroNLP embeddings of the generated summaries, and the OpenAI
text-embedding-ada-002 model. As a Dutch governmental
instutition, however, CBS is strictly advised to not send user data to
any of the OpenAI services [16], and therefore this baseline is only
used for reverence to performance of the models.

Dual-Encoder Following the approach by Karpukhin et al. [11],
we implemented and evaluated a Dual-Encoder architecture. The
architecture takes as input the GroNLP embedings of the generated
table summaries and the query. The model uses the input structure
〈a, p, n〉, where a is the anchor or query embedding, p is the positive
table embedding, and n represents a negative table embedding (i.e.
a table that does not contain the answer to the query). The model
aims to minimize the distance between a and p, while maximizing
the distance between a and n. To achieve this, a triplet loss function
was implemented [25]. To effectively train the Dual-Encoder we need

J. Kouwenhoven et al. / Constrained LLM-Based Query Generation for Question Answering on Official Statistics4588

https://vocabs.cbs.nl/en/


to sample multiple samples that challenge the network; instances that
are similar to the query but do not contain the actual answer. This
task of sampling is usually referred to as hard negative mining. In
our research we use cosine similarity to select the top-k most and
least similar tables (p and n respectively) relative to a, resulting in 2k
negatives examples per query in the train set. This approach is similar
to that presented by Smirnov et al. [24].

ColBERT Introduced by Khattab and Zaharia [12], ColBERT is a
state-of-the-art retrieval model that generates embeddings for each
term in a document separately. This allows for a more fine-grained
matching between the query and the document compared to single
vector representations. Instead of directly comparing single terms,
ColBERT uses a late interaction approach. Here, it calculates a sim-
ilarity score between a query and a document by finding how well
the meaning of each query term aligns with the most relevant parts of
the document. This could greatly improve the ability of the model to
connect specific parts of queries to specific parts of table descriptions,
and thereby capturing more nuanced relationsships. In our implemen-
tation, an adaptation to the original ColBERT was made, utilising the
aforementioned GroNLP embeddings.

3.4.2 Filters Retrieval

As described in Section 3.1, a single table cell consists of at least one
measure and one or more dimensions, i.e. the table filters. Doing this,
entity retrieval can be decomposed into two subtasks: identifying the
relevant measure within a table that corresponds to the user query
(measure retrieval), and finding the appropriate dimension(s) associ-
ated with the retrieved table (dimension retrieval). For both sub-tasks
we leverage a weighted average of BM25+ scores and cosine similar-
ity on GroNLP embeddings of entity descriptions to retrieve the most
relevant entities for each subtask.

3.5 Low-Rank Adaptation

While LLMs revolutionized the field of natural language processing,
fine-tuning them for specific tasks becomes increasingly difficult due
to the massive computational resources required for full fine-tuning.
This has driven the development of alternative, more efficient fine-
tuning approaches.

Hu et al. [5] propose a solution to the challenge of fine-tuning LLMs
by freezing the pre-trained model weights and introducing a trainable
low-rank matrix in each layer of the architecture. This technique,
known as Low-Rank Adaptation (LoRA), significantly reduces the
number of parameters that needs to be trained. In a traditional fine-
tuning procedure, adjustments are made to all the model weights to
suit a new task. This process involves modifying the original weight
matrix W , denoted as ΔW , resulting in updated weights W +ΔW .
Instead of modifying the W matrix directly, the aim of LoRA is
to decompose the ΔW matrix. LoRA achieves the decomposition
of ΔW by representing it as the product of two smaller matrices,
A and B. The updated weight matrix W ′ becomes: W ′ = W +
BA. In this equation, W remains fixed, while A and B have lower
dimensionality, with their product B · A representing a low-rank
estimation of ΔW . By selecting matrices A and B to have a lower
rank r, the number of trainable parameters is significantly reduced. To
demonstrate the decrease in trainable parameters, consider a scenario
where W represents a d × d matrix. Typically, updating W would
require updating d2 parameters. However, if both B and A are reduced
to dimensions d × r and r × d respectively, the overall number

of parameters to be trained reduces to 2dr, which is a significant
reduction when r is less than d.

3.6 Query Generation

3.6.1 Baseline

An initial rule-based greedy baseline is used to generate the aforemen-
tioned S-expressions. By creating an S-expressions token by token,
the generation is constrained to ensure that at each step admissible
tokens are retrieved based on a given subgraph generated from the
retrieved candidate entities. The greedy baselines utilise the scores
from the retrieval step (Section 3.4) in a deterministic selection pro-
cess. The graph nodes with the highest similarity scores to the query
are selected for use in the generated S-expression, resulting in the
best-scoring table, measure, and dimensions to be selected.

3.6.2 Decoder-Only Approach (LLM-based)

The second method for constrained generation of S-expression is a
novel method for using a decoder-only model architecture. In this
method, the generation is contrained on a sequence of tokens in-
stead of a single token as propossed in earlier encoder-decoder-based
models like ArcaneQA [3]. When embedding the graph identifiers,
occuring in generated prompts and S-expressions, all identifiers need
to be added to the models’ tokenizer vocabularies, and their embed-
dings must be pre-trained to be able to embed their contextualized
meaning (i.e. without any extra context, the model will not be able to
create a relevant embedding for the identifier 7425eng by default).
This results in scalability issues when using a larger KGs, as is the
case here, sometimes leading to the doubling of its vocabulary. In
this decoder-only approach, however, when generating a token at a
given timestep, the model evaluates the sequences in the list of ad-
missible/constrained tokens and selects the sequence with the highest
assigned score. This process is described by the following formula:

Yi,next sequence = argmax
S∈S

(∑
y∈S

logP (y|X,Yi)

)

In this formula, Ynext sequence represents the next sequence of tokens
to be selected from a set of possible (sub)tokens. The selection is
made by identifying the sequence S that maximizes the log proba-
bility of its tokens. Here,

∑
y∈S logP (y|X,Yi) computes the total

log probability of the next tokens y within the set of sequences S,
given the input prompt X and the current output sequence up to the
i-th position, denoted by Yi. For example, when 7425eng is given
to the decoder as one of the admissible next tokens, but only a de-
composition of sub-tokens can be embedded by the model (e.g. 7425
followed by ##eng), the summed log probability for these subto-
kens will determine the total probability of selecting this identifier for
generation.

Dynamic prompting The novelty in this constraining method is
the introduction of dynamic prompting, which, instead of calculating
the likelihood of a token sequence based on a static prompt, adjusts
the prompts according to the generation phase. For example, when
generating a table ID, the prompt is altered to only include the most
relevant table IDs and their descriptions. Similarly, when measures
are generated in the next phase, it retrieves the measures related to
the previously generated table ID, and using those to construct a new
prompt. This method applies to the different dimension groups as well.
Figure 2 contains a schematic overview of the dynamic prompting
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Figure 2: Schematic overview of dynamic promting for a decoder-only
model architecture. If there are multiple tokens that can be generated,
a custom prompt is given to the decoder with labels for all the possible
options, as detailed in Section 3.6.2.

technique. This approach tackles the scalability issues compared to
encoder-decoder methods. Static prompts, when including all relevant
tables, measures, and dimensions, quickly reach the context limit of
the current LLMs considered. Dynamic prompting, however, allows
for a much larger initial set of tables, measures, and dimensions by
focusing on the information relevant to the current generation step.
This maximizes the efficiency of the LLM’s context length. This
technique could theoretically be applied to any open-source large
language model (LLM) without fine-tuning. However, computational
limitations restrict the research to models with 7 billion parameters.
Due to the limited representation capabilities of these models and the
success of LoRA in query generation as shown in Schneider et al.
[22], the decision was made to train a LoRA model (See Section 3.5)
on this task using dynamic prompting. The training involved creating
a dynamic dataset mirroring the prompts in the final generation phase.

3.6.3 Observation Validation

The observation validator converts generated S-expressions into
OData4 queries, incorporating several validation steps. Initially, it
verifies that all necessary dimension groups are specified in the S-
expression (i.e. a value is specified for all possible filters of the corre-
sponding table of the S-expression). Missing dimensions are identified
using the table subgraph. For missing dimensions, if applicable, de-
fault assumptions are made:

TimeDimension - the latest period is assumed;
GeoDimension - the largest geographical aggregate (usually the
Netherlands) is assumed;
Other - a dimension denoting a total is assumed (if available).

If assumptions cannot be made, the validation fails, prompting the user
to specify the missing information. The final step involves executing
the OData4 query to retrieve observations and formulating the final
answer.

4 Experimental Setup

4.1 Benchmark Datasets

Leveraging the ability to generate synthetic annotated data, as detailed
in Section 3.3, a total number of 18686 queries were obtained, from
which 2296 instances were manually annotated, and 16390 generated
using the finetuned GPT-3.5 model. Using these queries the research
was conducted using two datasets:

1. T500: a larger dataset comprising question-answer pairs for the
top 500 most consulted tables on the CBS website.

2. Out-of-domain (OOD) dataset: manually annotated instances that
are not present within the T500 dataset. An additional filtering
mechanism was developed as detailed in Section 4.2 to filter out
any semi-in domain instances for this dataset. This dataset is used
to evaluate the model’s performance on generalizing to unseen
tables, and contains 203 question-answer pairs from 24 tables.

Diversity Index For the T500 dataset, a deliberate class imbalance is
implemented. This imbalance is based on the idea that tables capable
of answering a more diverse array of questions require more samples
in the training data. To evaluate the diversity of a table, the number of
unique terms in the description of the measures and dimensions of a
table is plotted against the total number of values (observations), as
shown in Figure 3. The diversity index relies unique terms instead of
the total number of dimensions and measure combinations for a table,
as some dimensions such as age ranges (e.g. 15 to 25 years old, 25 to
35 years old) are very similar and do not contribute significantly to
question diversity. After obtaining the number of unique terms across
all measures and dimensions in a table and its number of unique
observations, the diversity index is calculated by dividing the number
of terms by the number of observations. All tables are then sorted into
five classes representing the percentile in which their diversity index
falls. If a table is in class 5, it means it belongs to the class with the
most diverse tables. When sampling queries for the train-test split,
this diversity index is then multiplied by 5 to obtain the final number
of queries in the train-test split for a table. This diverse sampling
technique creates a final training dataset of 5,988 queries and a test set
of 1,497 queries, omitting a significant portion of the data for training
the entity retrievers.

4.2 Cleaning the Out-of-Domain dataset

Originally, OOD dataset was created by using queries that were man-
nually annotated but did not belong to any of the tables in the T500
dataset. However, this method results in a limitation. Some tables
in the constructed OOD dataset are near-duplicates of tables in the
T500 dataset, making them in-domain rather than truly out-of-domain
questions. For example, the table with the title: “Population 15 to
75 years; education level, districts and neighbourhoods, 2013”, com-
pared to “Population 15 to 75 years; education level, districts and
neighbourhoods, 2021” present in the OOD and T500 datasets re-
spectively. Therefore, this example cannot be considered an OOD
table instance. To overcome this limitation, a cosine similarity is ap-
plied to the GroNLP embeddings of the table titles in the OOD and
T500 datasets. If an OOD table instance had a similarity score higher
than 75% compared to a table in the T500 dataset, it is omitted from
the dataset. This filtering procedure ensured that all instances in the
OOD dataset can truly be considered out-of-domain, rather than semi
in-domain data.

4.3 Query Generator

From the entity retrieval step, the query generator obtains the 10 most
relevant tables. From each of these tables, it also obtains the five most
relevant measures. Finally, a total of 15 dimension IDs are obtained,
spread over the different dimension groups. For instance, if a table
has 3 different dimension groups, the 5 most relevant dimension IDs
for each dimension group are obtained.

The query generator’s performance is evaluated using various re-
trieval configurations. To demonstrate the effectiveness of Low-Rank
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Figure 3: The diversity index of the the T500 dataset plotted with
percentile class distribution labels colored. Each point is one table t,
with its number of values v on the y-axis and the number of unique
words w in the table and its filter descriptions on the x-axis, and the
diversity index is calculated as Dt = w/v. Additional benchmark
questions are included in the training set for tables containing more
words per value (Section 4.1).

Adaptation (LoRA) training, the model is assessed with and with-
out a trained LoRA. The employed LoRA is trained on a quantized
Mistral-7B model [10]. The specific training configuration uses a
LoRA rank of 16, the Adam optimizer for 80 epochs, and a learning
rate of 0.0002.

4.4 Evaluation Metrics

For the table and measure codes within the generated S-expressions,
accuracy (Acc) is used as a metric since only one of each type can exist
in a valid expression. Dimension IDs, on the other hand, can appear
multiple times, so the harmonic mean for the recall and precision of
the dimensions is calculated (F1). A relevancy score (RS) is assessed
using an scoring method leveraging GPT-3.5-turbo to evaluate the
generated S-expression based on the input query with a score ranging
from 0 to 1. This accounts for the possibility of multiple table cells
corresponding to a single query. To determine the corectness of these
generated relevancy scores, 100 answers were annotated manually
and compared with the GPT-generated scores, yielding an average
scoring difference of -0.067 (indicating the GPT model considers
answers slightly more relevant than the annotators); this we consider
acceptable for our purposes of determining the RS metric.

5 Results and Discussion

5.1 Entity Retriever

Table 1 showcases the performance of various baselines and Bi-
Encoder models on the table retrieval task. As indicated in the table,
both Bi-Encoder architectures achieve the highest top-k recall for
different values of k. Specifically, they both yield a top-1 accuracy of
0.6. The top-performing baseline algorithm is the one that employs
cosine similarity on the embeddings produced by the OpenAI-ada
model. However, it is important to note that CBS is strongly advised

against using OpenAI models in a pipeline environment. Therefore,
this model serves solely for demonstration purposes, as it is consid-
ered state-of-the-art for generating embeddings. With the introduction
of our proposed Bi-Encoder architectures, we have managed to out-
perform this state-of-the-art model. This allows CBS to eliminate the
need for the OpenAI model but also provides an improved, smaller
and overall more simplistic retrieval model.

Entity Retriever Top 1 Top 5 Top 10

BM25+ 0.44 0.74 0.83
GroNLP Cosine 0.36 0.64 0.74
ColBERT 0.60 0.88 0.94
Dual-Encoder 0.60 0.90 0.94
OpenAI-ada Cosine 0.53 0.83 0.91

Table 1: The Top-k recall of table retrieval for the various encoders
and baselines on the T500 dataset.

5.2 T500 Benchmark

Table 2 presents the performance of the proposed LLM-based query
generator and baseline models on the T500 dataset. The table presents
various configurations of the table retriever and the query generator.
The approach to filters retrieval, including measure and dimension
retrieval, is consistent across all configurations, as is detailed in Sec-
tion 3.4.2. As can be seen in the table, the best results are achieved by
combining the proposed model solution with either of the Bi-Encoders.
Specifically, it yields a table accuracy of 0.61 with the DualEncoder
and 0.63 for ColBERT. The results indicate the effectiveness of train-
ing LoRA parameters for this task. When comparing models with and
without LoRA, we see a performance boost with LoRA parameters.
For example, ColBERT’s table accuracy increased from 0.58 to 0.63.
This improvement is even more prominent when examining the Dual-
Encoder with the Mistral configurations; the implementation of LoRA
parameters boosted table accuracy from 0.40 to 0.61. The relevance
score (RS) indicates that the models can retrieve relevant table cells
to input queries. This suggests that a single query can in many cases
be answered by multiple table cells, and that relying solely on the
accuracy and F1 metrics may not capture the model’s capabilities and
overall performance.

Table
Retriever

Query
Generator

TAB
Acc

MSR
Acc

DIM
F1 RS

BM25+ Baseline 0.45 0.31 0.41 0.63
GroNLP Cosine 0.33 0.24 0.35 0.59
Dual-Encoder 0.55 0.35 0.46 0.65
ColBERT 0.58 0.39 0.51 0.67
OpenAI-ada Cosine 0.51 0.35 0.45 0.64

Dual-Encoder Mistral - 7B 0.61 0.42 0.53 0.69
ColBERT (LoRA) 0.63 0.41 0.51 0.71
BM25+ 0.51 0.34 0.45 0.67

Dual-Encoder Mistral - 7B 0.40 0.25 0.37 0.61

Table 2: The results for the different Table Retrievers and Query
Generators on the test set of the T500 dataset. The Mistral model in
combination with the Dual-Encoder yield the highest results.

5.3 Out-of-Domain Benchmark

The results on the OOD dataset are presented in Table 3. From these
results, we observe that the proposed Dual-Encoder model, combined
with the baseline method, struggles with OOD data, achieving only
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a table accuracy of 0.10. This indicates overfitting to the in-domain
dataset. A similar performance decrease is seen with the ColBERT
configuration and the baseline, obtaining a table accuracy of 0.47.
While this decrease is less significant compared to the Dual-Encoder,
it still highlights the posibility of Bi-Encoders to overfit on in-domain
data. The Sparse BM25+ method, however, when combined with the
trained model configuration, yields the best performance on the OOD
dataset, with a table accuracy of 0.60. Furthermore, the results again
portray the effectiveness of the model-based approach. For instance,
the table accuracy of the dual encoder improved significantly from
0.10 to 0.33 when combined with a fine-tuned Mistral model. Finally,
for this dataset, instead of combining the Dual-Encoder with the
untrained Mistral (Section 5.2), we combined it with ColBERT for
table retrieval. ColBERT significantly outperformed the Dual-Encoder
on this task utilizing the baseline query generator. The results for
this combination also highlight the necessity of training the LoRA
parameters, as a table accuracy improvement of 0.12 can be observed.

Table
Retriever

Query
Generator

TAB
Acc

MSR
Acc

DIM
F1 RS

BM25+ Baseline 0.53 0.49 0.38 0.46
GroNLP Cosine 0.18 0.18 0.23 0.21
Dual-Encoder 0.10 0.11 0.17 0.25
ColBERT 0.47 0.44 0.34 0.48
OpenAI-ada Cosine 0.52 0.45 0.39 0.47

BM25+ Mistral - 7B 0.60 0.53 0.36 0.47
Dual-Encoder (LoRA) 0.33 0.27 0.27 0.32
ColBERT 0.56 0.50 0.37 0.51

ColBERT Mistral - 7B 0.44 0.35 0.29 0.43

Table 3: The results for the different Table Retrievers and Query
Generators on the OOD dataset. The Mistral model in combination
with the BM25+ yield the highest results.

6 Conclusions

The research presented in this paper investigates the development of
an end-to-end, knowledge-graph QA system for official statistics. The
system aims to tackle the challenge of retrieving a single statistical
value from the vast CBS data pool based on a natural language query.
The proposed approach consists of three components. First, a data
augmentation method generates synthetic data based on manual pre-
annotated samples. The obtained data from this step makes it possible
to develop a query generator on a wider ranger of tables than relying
on manually annotated data only. Secondly, a newly designed entity
retrieval system has been implemented. This system retrieves the most
relevant tables, measures, and dimensions in response to user queries.
The results in Section 5.1 showcase the effectiveness of the proposed
table retrieval models on in-domain tables, outperforming state-of-
the-art embedding models from OpenAI. However, as presented in
Section 5.3, these Bi-Encoder models, particularly the Dual-Encoder,
struggle to generalize to unseen tables. For out-of-domain data, a
traditional sparse BM25+ method is preferred. Finally, an innovative
LLM-based constrained query generator is introduced. This parser
utilizes retrieved entities to construct a logical expression in the form
of an S-expression, which is then used to query the knowledge graph.
The results in Sections 5.3 and 5.2 highlight the benefits of training
LoRA parameters for this task, with significant performance improve-
ments across all metrics compared to an untrained Mistral model and
the baselines.

One overall discussion point to be made is the fact that a single

query can be answered by multiple table cells, as hinted by comparing
accuracy and F1 scores with the relevance scores in Section 5.2.
This suggests that the other metrics might not effectively capture
the capabilities of the different model configurations. Future work
could explore developing a better evaluation metric for this task;
one that more accurately showcases its performance in a real-life
scenario. Furthermore, due to computational limitations, the Mistral-
based query generator could only process up to 10 table IDs for each
query. It would be interesting to see if improvements can be made
when processing up to 20 tables for each query.

One limitation of the current system is that it always attempts to
returns a single table cell, even for nonsensical questions or for those
which CBS does not have information about. To address this, future
work could explore a system for determining answerability to a given
question. This would allow the model to assess its ability to answer a
question as given and make suggestions to alter a question based on
the available data.

Lastly, the proposed end-to-end KGQA pipeline was trained and
evaluated solely on the CBS dataset presented in this paper. To effec-
tively assess its performance, future work could explore applying the
proposed pipeline to various benchmarks in this field, and/or other
system implementating datacubes that can be represented using a
measure-dimension like structure.

7 Impact and deployment

For reproducibility, the code and data for this paper are available
online2. As a proof of concept, our system shows that it is possible to
create a question answering system that is faithful to the CBS data and
will not hallucinate, regardless of the discussed expression decoding
methods used. Incorporating this system as part of a search engine
can help a user get to a desired answer significantly faster.

In order to create a production-ready system that could be integrated
as a search page functionality, a few steps need to be taken. First of
all, used in its current form, an answer is always attempted based on
a best effort, regardless of the input question. Albeit KG-faithful, it
would still be undesirable to return a nonsensical answer to a question.
Therefore, the system must be finetuned and incorporate a confidence
threshold that can determine whether it is appropriate to return a
generated answer.

Secondly, we would recommend the greedy baselines as a viable
option to continue optimizing for the current form of generating
single-value S-expression functions. Compared to the machine learn-
ing models, the baselines require significantly less processing power
and complexity. The models can also be considered as ‘black boxes’,
where using the baselines improve the explainability of the system.
Looking forward to the upcoming registry for algorithms3 and the
act for algorithm transparency at Dutch governmental institutions, as
announced by the secretary of state for digitization [15], the impor-
tance of this aspect cannot be understated. When considering more
complex S-expression functions, however, the current greedy baseline
would need to be altered such that multiple aggregation functions can
be considered by the model.

Finally, as stated in Section 6, this system is made to be easily
adoptable on other (statistical) datasets, as well as different formats
like the industry-wide standard for statistical metadata, SDMX [7].
This would enable CBS as well as other institutes to make their reliable
data more accessible and provide factual information to governments,
citizens and the scientific community.

2 https://github.com/Jonaskouwenhoven/Thesis-Enhancing-Graph-QA
3 https://algoritmes.overheid.nl/en (Accessed: 26-04-2024)
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