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Abstract. In this paper, we introduce a novel tool for speech emo-
tion recognition, CA-SER, that borrows self-supervised learning to
extract semantic speech representations from a pre-trained wav2vec
2.0 model and combine them with spectral audio features to improve
speech emotion recognition. Our approach involves a self-attention
encoder on MFCC features to capture meaningful patterns in audio
sequences. These MFCC features are combined with high-level rep-
resentations using a multi-head cross-attention mechanism. Evalua-
tion of speech emotion recognition on the IEMOCAP dataset shows
that our system achieves a weighted accuracy of 74.6%, outperform-
ing most existing techniques.

1 Introduction

Emotions are complex psychological states encompassing various
subjective experiences, physiological changes, and behavioral re-
sponses [21]. They are crucial in human interactions, influencing our
thoughts, actions, and well-being. Understanding emotions is funda-
mental to human communication and has garnered significant inter-
est in various scientific disciplines [33, 37]. Emotions can be recog-
nized from many modalities, e.g., audio, body, psychological signals,
and faces [10, 12, 27, 29, 30]. One of the most practically important
tasks is Speech Emotion Recognition (SER) [7, 32, 35], in which it
is required to predict emotions conveyed in human speech (sadness,
anger, fear, happiness..) [2]. Its importance stems from numerous ap-
plications, including Human-Machine interaction systems, virtual as-
sistants, mental health surveillance, etc. [18, 19, 28, 31].

Nowadays, many successful techniques for speech processing are
based on Self-Supervised Learning (SSL) [25]. Unfortunately, one
major challenge of using SSL models is that they are trained on
clean audio data, spoken passively without intonations [9]. In con-
trast, emotional datasets contain audio signals with various intona-
tion, pitch, and intensity.

To mitigate this problem, in this paper, we introduce a novel
pipeline that includes a feature fusion layout of spectral features and
SSL representations using a cross-attention mechanism. We enhance
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the spectral feature representations by allowing them to attend to
the representation of SSL models. The source code is publicly avail-
able to reproduce our experiments1. The demonstration video for our
framework is available at 2.

2 Related Works

In the SER task, predicting the emotion label for each speech signal
from the test set V = {v1, v2, ..., vM} of M new utterances is re-
quired. We assume the speech training dataset U = {u1, u2, ..., uN}
is available. It contains N labeled utterances. Each utterance ui ∈
R

ti is associated with an emotion label ei.
Conventional approach [15, 20, 40] extracts emotional labels from

Spectral features such as spectrograms and Mel-Frequency Cepstral
Coefficients (MFCC) to obtain good performance. These features are
considered domain-agnostic because they contain information about
audio itself, regardless of the underlying task. In [15], they used a
Convolutional Neural Network (CNN) architecture to process audio
spectrograms, followed by a pooling method to identify the emotion
of each utterance. In [40], they devised an attention-based bidirec-
tional long short-term memory for SER. The model’s input is speech
spectrograms, and the model shows good accuracy. An attention-
based bidirectional long short-term memory (BLSTM) neural net-
work was combined in [40] with a connectionist temporal classi-
fication (CTC) objective function. Finally, transformers have been
widely used nowadays. For example, a transformer encoder with an
added focus score was implemented in [13].

It is well-known that remarkable performance in Automatic
Speech Recognition (ASR) is achieved by SSL [3, 11, 16, 22] tech-
niques such as wav2vec. They are pre-trained on extensive audio data
to capture contextualized representations from raw audio inputs. A
transfer learning method for SER was proposed in [25], where fea-
tures extracted from pre-trained wav2vec 2.0 models are modeled
using simple neural networks. SSL was used for SER [38] to repre-
sent speech utterance for classification, but it has not provided high
accuracy compared to existing state-of-the-art models. In our paper,
we try to fill the gap between SER and SSL.
1 https://github.com/BasharBetta7/SER
2 https://youtu.be/vOREtCpDBwE
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3 Proposed Model

Fig. 1 illustrates the proposed Cross-Attention Speech Emotion
Recognition (CA-SER) architecture. At first, the raw audio of each
utterance is segmented into sequences of fixed length. These se-
quences are fed into the wav2vec 2.0 model, followed by a pre-
processing module, which extracts contextualized representation of
each sequence [4]. Meanwhile, MFCC features are extracted and
fed into the feature encoder module to enhance the semantic feature
representations. Then, we obtain fused representations using cross-
attention fusion module [34]. The final classifier performs global av-
erage pooling across sequences, followed by a linear layer to gener-
ate a probability distribution over emotional labels.

Figure 1. Proposed CA-SER architecture.

SSL representation. Wav2vec 2.0 [4] is a framework for self-
supervised learning of audio representations. The model expects raw
audio as an input, which is transformed into audio embedding using
the CNN feature extraction layer. Audio embeddings are then passed
through a contextualized encoder consisting of several self-attention
transformer encoders. The base model uses 12 transformer encoders
with 8 attention heads each. Each encoder outputs a representation
of the original audio. Previous studies show that the first transformer
encoders capture low-level information about the audio [23], while
the last encoder captures high-level semantic relations in the audio.
Since we are interested in capturing the emotional context of the ut-
terance ui, we suspect that we need to use representations from the
middle encoders. We followed study [23] in capturing information
from the ninth encoder as our speech representations xw ∈ R

tw×dw ,
which tends to give a good balance between low-level and high-level
relations within the utterance. Here, dw = 768 is the feature dimen-
sion of each output sequence obtained from the pre-trained wav2vec
2.0 base model. We apply tanh activation to re-scale the values of
representations, followed by Linear layer to transform the utterance
representation into x′

w ∈ R
tw×d.

Feature Extractor. In addition to wav2vec representations, a well-
known feature representation for audio signals, MFCC, is used. It
involves converting the audio signal into the frequency domain using
the Fourier Transform, applying a filter-bank based on the Mel scale,
taking the logarithm of the filter-bank energies, and applying the Dis-
crete Cosine Transform (DCT) to obtain the final coefficients [1]. We
extract 40 coefficients for each 10-millisecond sequence of the utter-
ance, which results in feature representation xm ∈ R

tm×dm where
dm = 40.

Feature Encoder Module (FEM). The objective of FEM is to en-
hance the descriptiveness of utterance’s feature representations by
allowing them to attend to each other. The module consists of two
sub-modules: Bidirectional Long Short-Term Memory (BiLSTM )
with a hidden size 256, followed by the self-attention encoder to cap-
ture short and long semantic relations among different sequences.
The output of the feature encoder is represented as x′

m ∈ R
tm×d.

Feature Fusion Module (FFM). We propose implementing
a multi-head cross-attention mechanism from a transformer de-
coder [34, 36] to fuse MFCC feature representations x′

m with
wav2vec representations x′

w. Cross-attention is a dynamic weighted
average between two types of sequences:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (1)

It consists of queries Q ∈ R
tq×dk taken from the first type, while

keys K ∈ R
tk×dk and values V ∈ R

tv×dv are extracted from the
other type. We implement multi-head cross-attention [36] with n to-
tal heads, allowing the model to attend to information from different
representation subspaces, thus enhancing the contextual representa-
tion of the output. We then apply a feed-forward network with two
fully connected layers, separated by a Gaussian Error Linear Unit
(GeLU ) activation. As a result, we obtain a fused representation of
the utterance r ∈ R

tm×d.

Classifier. Fused representations r are converted into a probability
distribution over emotion labels. Our model has 108 M parameters.
We train it to minimize categorical cross-entropy loss between pre-
dictions and targets over all dataset samples.

4 Demo System

We develop a special demo system to implement the CA-SER model.
Fig. 2 shows the pipeline of our tool. It consists of the pre-processing
unit, followed by the model. Our software can classify recorded
speech utterances into one of four emotional labels: angry, happy,
sad, and neutral. The audio can be specified by its file path or
recorded directly using an internal microphone. The system can also
accept multiple audio files at once. The CA-SER model performs
preprocessing of an input signal, including resampling scaling and
extracting MFCC features. After that, an emotional label for audio
is obtained by calling the method (predict_emotion). In addition, the
utterance representation can be extracted and used for Downstream
audio tasks. We have trained the model on the IEMOCAP (Interac-
tive Emotional Dyadic Motion Capture) dataset [5]. Until now, we
have released our best pre-trained checkpoint of the model, which is
called (caser). In addition to the tool, our released repository includes
instructions on training, evaluating, and reproducing our results. We
supply a Jupyter notebook (package_test) for testing SER.
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Figure 2. CA-SER demo system pipeline

5 Experimental Results

This section describes the setup and datasets we used to evaluate the
model’s performance.

Dataset. We train and evaluate our model on one of the most
widely used emotion recognition datasets, IEMOCAP. It contains
about 12 hours of audiovisual data, recorded from ten actors (5 fe-
males and 5 males) with audio, video, transcriptions, and motion-
capture information [5]. The final dataset contains 5531 utterances,
classified into one of five labels (happy, angry, sad, neutral, and ex-
cited). For consistent comparison with previous works, we merge
“happy” and “excited” into the category of “happy”, and we consider
the 5531 acoustic utterances from 4 emotion labels: (1636 happy,
1084 sad, 1103 angry, and 1708 neutral). To evaluate the perfor-
mance of the model, we implemented cross-validation in two con-
figurations that are used in existing papers that work with the IEMO-
CAP dataset, namely, 5-fold leave-one-session-out cross-validation
(CV-5) and 10-fold leave-one-actor-out cross-validation (CV-10). In
each configuration, we use the average value of the metric across all
folds as our final result.

Metrics. We evaluate the model using two metrics: Unweighted
accuracy (UA) takes the average of the class-wise accuracy without
weighting by class size. Weighted accuracy (WA) accounts for class
imbalances by assigning weights to each class based on their relative
sizes. In addition, we compare our best-performing model with the
IEMOCAP benchmark on Weighted F1 score.

Training details. All audio files are sampled with a sampling rate
of 16kHz. Audio files with over 8 seconds are clipped to fit into
available memory. Also, short audio files (less than 3 seconds) are
extended by concatenating the audio until it reaches 3 seconds. 40
MFCC features are calculated using a hop length of 10 milliseconds,
which means that each 10-millisecond window is treated as one se-
quence of the utterance. We train the model with a batch size of 2 and
update the gradients after every four batches. This approach com-
pensated for the small batch size because of the GPU memory bot-
tleneck. Each fold was trained for 20 epochs with early stopping on
the weighted accuracy. We used the AdamW optimizer with learning
rate 4e−5.

Performance evaluation. We compared our model with several
SER techniques including previous attempts [25, 38] that used SSL

Table 1. Weighted Accuracy [WA] and Unweighted Accuracy [UA]
metrics with 5-fold-cross-validation.

Model WA UA Modality
TDNN-LSTM-Attention [25] 66.3 60.3 A
CTC+Attention [40] 67.0 69.0 A
wav2vec 2.0-PT [25] 67.2 - A
HuBERT Base [38] 68.9 - A
CNN TF Att.pooling [15] 71.75 68.06 A
CNN-DARTS [26] 72.55 69.36 A
MPT-HCL [41] 72.83 - A+T+V
SDT [17] 73.95 - A+T+V
HuBERT Large + SN [6] 74.2 - A
CA-SER [OURS] 72.34 71.53 A

Table 2. Weighted Accuracy [WA] and Unweighted Accuracy [UA]
metrics of audio-only models, 10-fold-cross-validation.

Model WA UA
audio-BRE [39] 64.60 65.20
Audio-CNN-xvector [24] 66.60 68.40
MHSA-FACA [13] 72.01 72.83
CA-SER [OURS] 74.60 73.50

for this task. The experimental results are presented in Tables 1,2.
Our technique reached a weighted accuracy of 72.34% in 5-fold
cross-validation, which is better than most attention-based models.
The model from [6] achieved the highest accuracy by using a much
larger HuBERT model and adding the Speaker Normalization task.
The HuBERT Large model has 317 million parameters [8], which
is three times larger than our model. Our unweighted accuracy is the
highest among the recorded baselines. In Table 2, the proposed model
achieved the highest evaluation metrics among audio-only models,
with 2.59% improvement on WA and 0.67% on UA.

6 Conclusion and Future Work

In this study, we introduced a novel SSL-based SER model (Fig. 1)
and its demo system (Fig. 2). Our approach involved the implementa-
tion of a feature encoder, followed by a multi-head cross-attention fu-
sion module. The proposed model demonstrated competitiveness and
achieved high recognition accuracy when compared to other audio-
only models (Tables 1,2).

Our system can be applied in various domains. For instance, within
Human-Machine Interaction Systems, it can serve as a sub-module,
enabling virtual assistants to generate responses based on the emo-
tional state of customers. This capability enhances the overall user
experience by allowing the system to respond appropriately and em-
pathetically, leading to more effective and engaging interactions.
Our approach can assess the mental health of patients and aid them
in improving their emotional well-being. Furthermore, researchers
can leverage our model’s speech representation as an intermediate
step for other downstream tasks. By providing a reliable and robust
speech representation, our model opens up avenues for further re-
search and advancements in related fields.

In the future, we plan to add a real-time SER to the software,
which will track the dynamical change of emotional state in ongo-
ing conversation via microphone and export them into output files
for evaluation. Moreover, it is necessary to study how generalizable
our model is to other languages [14], considering that the IEMOCAP
dataset was recorded in English.
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