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Abstract. Effective incident management is pivotal for the smooth
operation of Microsoft cloud services. In order to expedite inci-
dent mitigation, service teams gather troubleshooting knowledge into
Troubleshooting Guides (TSGs) accessible to On-Call Engineers
(OCEs). While automated pipelines are enabled to resolve the most
frequent and easy incidents, there still exist complex incidents that
require OCEs’ intervention. In addition, TSGs are often unstructured
and incomplete, which requires manual interpretation by OCEs, lead-
ing to on-call fatigue and decreased productivity, especially among
new-hire OCEs. In this work, we propose Nissist which leverages
unstructured TSGs and incident mitigation history to provide proac-
tive incident mitigation suggestions, reducing human intervention.
Leveraging Large Language Models (LLM), Nissist extracts knowl-
edge from unstructured TSGs and incident mitigation history, form-
ing a comprehensive knowledge base. Its multi-agent system design
enhances proficiency in precisely discerning OCE intents, retrieving
relevant information, and delivering systematic plans consecutively.
Through our user experiments, we demonstrate that Nissist signifi-
cantly reduce Time to Mitigate (TTM) in incident mitigation, allevi-
ating operational burdens on OCEs and improving service reliability.
Our webpage is available at https://aka.ms/nissist.

1 Introduction

In the rapidly evolving landscape of cloud operation, incident man-
agement stands as a pivotal challenge for enterprise-level cloud ser-
vice providers [13, 3, 17] such as Microsoft, Google, and Amazon.
The profound impact of incidents, exemplified by notable events such
as the Amazon outage [15], underscores the need for a robust incident
management system. Incidents can range from minor operational in-
terruptions to severe system failures, with potential consequences in-
cluding financial loss, operational disruption, reputational harm, and
legal complications. Swiftly identifying, troubleshooting, and resolv-
ing system incidents is essential for maintaining service reliability
and operational continuity [12, 11]. While automated pipelines can
handle low-severity incidents due to their simplicity and commonal-
ity, high-severity incidents require immediate and hands-on interven-
tion by On-Call Engineers (OCEs), beyond the capabilities of auto-
mated systems. Service teams address this challenge by documenting
frequent troubleshooting steps in Troubleshooting Guides (TSGs),
empowering OCEs to efficiently resolve incidents [8, 6].
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To investigate the effect of TSGs on incident mitigation, we ana-
lyze around 1000 high-severity incidents in the recent twelve months
that demand immediate intervention from OCEs. Consistent with
findings from prior studies [8, 18, 9], which demonstrate the efficacy
of TSGs in incident mitigation. We found that incidents paired with
TSGs exhibit a 60% shorter average time-to-mitigate (TTM) com-
pared to those without TSGs, emphasizing the pivotal role played
by TSGs. This trend is consistent across various companies, as ev-
idenced by research [14, 10], even among those employing differ-
ent forms of TSGs. However, despite their utility, as highlighted by
[18, 2], the unstructured format, varying quantity, and propensity for
internal use purpose of TSGs, impede their optimal utilization. Par-
ticularly, such unstructured TSGs pose challenges for new hires and
contribute to the complexity of the incident mitigation process, espe-
cially in scenarios requiring coordination across multiple teams. In
addition, some TSGs are outdated, lacking the most recent knowl-
edge of incident mitigation. The incident mitigation history provided
by OCEs in the internal incident management platform serves as an-
other valuable resource for extracting incident mitigation knowledge.

Recent works have focused on leveraging TSGs to facilitate inci-
dent mitigation process. [18] fine-tunes models to extract knowledge
from TSGs, while [9, 2] identify relevant TSGs in root cause anal-
ysis. However, the prevalent unstructured nature of existing TSGs
limits the effectiveness of fine-tuning procedures, and the complex-
ity of high-severity incidents still require human interventions. In this
work, we propose Nissist, aiming to reduce OCE workload and as-
sist incident mitigation processes. Firstly, we establish a set of rigor-
ous TSG criteria to convert unstructured TSGs into structured, high-
quality formats leveraging Large Language Models (LLMs), while
also providing guidelines for OCEs when documenting new TSGs.
Subsequently, we propose a novel structure of knowledge base com-
prising discrete executable nodes extracted from TSGs and incident
mitigation history. Moreover, we introduce an advanced multi-agent
system [24] designed to proficiently interpret queries, retrieve rel-
evant knowledge nodes, and formulate actionable plans in a semi-
automated manner. By interacting with Nissist, the incident mitiga-
tion trajectories are optimized, allowing OCEs to focus on challeng-
ing mitigation steps not covered by TSGs and mitigation history, thus
significantly reducing direct human intervention.
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Figure 1: The Semi-Automated Incident Mitigation Framework with Nissist. When incidents exceed automation capabilities, OCEs engage
in iterative interactions with Nissist. Nissist interprets OCE intents, retrieves knowledge from the knowledge base, and formulates actions.
Executable action is conducted with the execution engine, generating insights for the next round node retrieval and action planning in an
automative iteration manner (purple dashed box). Actions that cannot be carried out by the execution engines are then delegated to OCEs for
manual execution. The knowledge base is built offline with LLM-extracted knowledge from unstructured TSGs and mitigation history.

2 System Overview

As illustrated in Figure 1, OCEs engage in iterative interactions with
Nissist when automation tools are insufficient to address an inci-
dent. Initially, Nissist constructs Knowledge Base offline by parsing
knowledge from unstructured TSGs and enhances it with knowledge
from incident mitigation history not covered in TSGs. Subsequently,
it iteratively processes OCE queries. Nissist is designed to mitigate
incidents in a fully automated manner. However, due to the complex
nature of incidents, not all actions suggested by Nissist can be au-
tomatically executed due to the lack of related execution functions
in the execution engine. Thus, the non-executable actions are dele-
gated to OCEs for manual execution, while those executable actions
are passed to the execution engine, generating insights to trigger the
next step of mitigation, automating the mitigation iteration (purple
dashed box in Figure 1). Each module, powered by LLMs, serves
as an agent responsible for specific tasks, including interpreting in-
tents, selecting the most relevant knowledge (nodes from knowledge
base), suggesting actions, etc. These modules concurrently commu-
nicate with each other to efficiently mitigate incidents.

2.1 Constructing the Knowledge Base

The primary source of knowledge is derived from unstructured
TSGs, which typically encompass information on investigating and
mitigating incidents. However, their unstructured nature poses chal-
lenges for traditional data retrieval methods, as the appropriate action
may not always exhibit semantic or lexical similarity to the query
due to unstructured nature. Additionally, incident mitigation often
requires a sequential steps of actions. Chunking TSGs in retrieval
methods can result in the disruption of this sequence, particularly
when certain steps are spread across multiple TSGs and collectively
represent the entire flow of steps. To address this, we develop quality
criteria and use LLMs to reformat original TSGs into structured ones,
including background, terminology, FAQ (frequently asked ques-
tions), flow, and appendix. In particular, “flow” represents sequen-
tial steps of actions. We then construct a knowledge base compris-
ing knowledge nodes. Each node is formated in JSON consisting of
type, intent, action, and linker. “Intent” describes the purpose of the
node, and it is used as the indexing context [4] which is later used

to retrieve the entire node. “Linker” connects the outcomes of taking
current actions to the intents of next step nodes.

Parsing the structured TSGs with LLMs yields this knowledge
base that facilitates easy retrieval of relevant nodes for actionable
plans. Additionally, the node-level granularity enables discovery
of new connections among TSGs, including cross-team mitigation
flows not presented in any raw TSGs (refer to Cross-TSG case in
Section 3). Microsoft maintains an incident management platform
where OCEs can document and collaborate during incident mitiga-
tion. Beyond unstructured TSGs, incident mitigation history serves
as an additional source of knowledge. To complement any outdated
or missing steps in TSGs, we have designed an enhancer that captures
the latest solutions from these discussions on mitigation history.

2.2 Muti-Agent System

Intent Interpreter. This module is crucial for understanding OCE’s
intent and determining whether Nissist’s intervention is necessary
during the conversation. It guides OCEs to incident troubleshooting
topics and helps refine and clarify their input. If needed, it seeks con-
firmation from OCEs for intent clarification.
Node Retriever & Selector. The node retriever module retrieves rel-
evant nodes from the knowledge base concerning the clarified intent.
Unlike traditional retrievers [5], which index documents or chunks,
we use the clarified intent as the query to retrieve top-k nodes by
comparing with indexed “Intent” of each node. To enhance fault tol-
erance, the node selector selects the most relevant ones from retrieved
top-k nodes. This is crucial as semantic discrepancies may exist de-
spite specific matched keywords. By sourcing information from mul-
tiple nodes, Nissist enriches the knowledge context for subsequent
actions. If no relevant node is found, it indicates current incident ex-
ceeds Nissist’s scope and informs OCEs for intervention.
Action Planner. This module serves as the central and critical com-
ponent within Nissist, recommending appropriate actions based on
the selected nodes and memory. Unlike SOTA LLM planners that
automate reasoning, actions, and observations in an interleaved man-
ner [26, 21, 7], our domain finds this planning style unsuitable. Fully
automated plugins or tools cannot handle all incidents due to their
complexity, risking wrong plugin invocation or omission of execu-
tion steps by the planning module. Hence, a semi-automated miti-

K. An et al. / Nissist: An Incident Mitigation Copilot based on Troubleshooting Guides4472



Figure 2: A use case demonstrates that Nissist mitigates the connection lost incident between Service A and Service B. For simplicity, only the
first three iterations are presented. 3a & 3b show two different mitigate paths due to two different execution results. In particular, 3b indicates
that Nissist can leverage knowledge cross TSG (the blue-colored node is extracted from another TSG).

gation process occasionally requiring human intervention is neces-
sary for the security purpose. Action planner generates steps based
on incident complexity and plugin availability. For incidents can be
covered in TSGs, exhaustive step-by-step and manual planning is un-
necessary. Instead, Nissist suggests sequential steps automatable by
execution engine, thereby bypassing the need for OCE input. The ex-
ecution engine should be able to execute the action and analyze the
execution outcomes in order to give insights. The execution engine
could be available plugins, APIs or LLM-based code generator [16].
Post Processor. In open-domain planning scenarios, self-reflection
of planned strategies against actual observations with LLMs is prac-
tical and efficient [19, 25]. However, its utility is somewhat lim-
ited in incident mitigation due to the potential for hallucinations re-
sulting from the lack of domain-specific knowledge in pre-trained
LLMs [23, 22], such as GPT-4 [1]. To address this limitation, we
integrate a pre-trained LLaMA2 model [20] as the expert model
that has undergone supervised fine-tuning (SFT) on a corpus of Mi-
crosoft Cloud documentation [23]. The expert model enhances the
post-processing procedure by providing informed corrections rooted
in cloud domain expertise.

3 User Experiments and Case Study

To validate the advantages of Nissist, we conducted a human eval-
uation involving twenty OCEs1 and five2 incidents. These incidents
are categorized as simple or hard based on their mitigation history.
Note that simple incidents here are not easy ones that can be handled
with automated mitigation tools. Each OCE is tasked with mitigating
all five incidents. To ensure a fair comparison, only one mitigation
approach is assigned to each incident, either with Nissist or man-
ual mitigation. We distribute the incidents to ensure each incident
gets an equal number of Nissist mitigation and manual mitigation.
We demonstrate the effectiveness of Nissist and report several met-
rics including Success Rate (SR): whether the incident can be mit-
igated without human intervention; Human Intervention (IR): steps
need human intervention; Turns: numebr of mitigation turns; TTM
reduction (TTM ↓) compared with manual mitigation.

Table 1 shows a significant improvement in TTM reduction com-
pared to manual mitigation which either requires substantial miti-
gation experience or involve navigating through unstructured TSGs.
Specifically, Nissist achieves a TTM reduction of 98.93% for simple

1 Varying across new-hire and experienced OCEs.
2 Controlling time to each experiment around 30 mins to 1 hour per OCE

ensures consistency, engagement, and ethical treatment.

Table 1: User experiment results on metrics.

Category SR IR Turns TTM ↓
Simple 77.19% 11.28% 2.56 98.93%
Hard 52.63% 15.79% 5.74 94.85%

incidents and 94.85% for hard ones. Hard incidents requires addi-
tional turns for mitigation due to their complex nature. Nissist shows
a 77.19% full automation SR for simple incidents and 52.63% SR
for hard ones, demonstrating a notable reduction of manual efforts.
With some minor human intervention (11.28% for simple incidents
and 15.79% for hard ones), incidents can be effectively mitigated.

Figure 2 illustrates a use case demonstrating industrial practices
with Nissist. Given an OCE query “Service A to Service B connec-
tion is lost”, Nissist interprets the query, identifies the intent, and uses
it to retrieve and select the most relevant node. The action planner
then fills the given parameters, such as service information, into the
code block, i.e., a Kusto query with parameter placeholders in this
use case. After the action is passed to the execution engine, the out-
come indicates “the network monitor values are mostly zeros in the
last 30 mins”. Nissist correlates this outcome with the “Linker” in the
retrieved node, where this outcome indicates “a genuine problem and
should check if other clusters are affected”. Then Nissist generates a
new intent “How to determine if this issue is affecting other clusters”
for the next round of interaction automatically. This interaction con-
tinues until the incident is mitigated or requires human intervention.
Additionally, Nissist digests all TSGs into knowledge base, making
it possible to discover connections between nodes located in different
TSGs. For example, 3b in Figure 2 demonstrates another execution
result which requires knowledge from a different TSG. Previously, it
requires OCEs to take great efforts searching for the knowledge in
other TSGs, which often did not list such knowledge in their titles.

4 Conclusion

We address the incident mitigation challenges in Microsoft by opti-
mizing TSG usage and reducing human effort. We introduce Nissist,
which leverages LLMs to digest TSGs and incident mitigation his-
tory into a knowledge database. We establish a multi-agent system
with semi-automation to precisely detect OCE intents, retrieve rel-
evant nodes, and provide stepwise actions. Our experiments show
reduced TTM and significantly alleviated OCE workload.
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