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Abstract. Electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) are the two most commonly used non-
invasive methods for studying brain function, having different but
complementary strengths: high temporal resolution of the former
and high spatial resolution of the latter. Crucially, fMRI is vital for
studying subcortical areas, as those are practically out of reach for
EEG. At the same time, EEG is cost-effective and, thus, preferable to
fMRI if comparable information can be extracted. Here we present
an EEG-to-fMRI neural network with an interpretable module for
feature extraction. Using the EEG-fMRI dataset, we show that our
model allows us to predict the detailed resting state Blood Oxygena-
tion Level Dependent (BOLD) activity of seven bilaterally symmet-
ric subcortical structures solely from multichannel EEG data. Pre-
liminary results reported here show a performance level significantly
above chance and exceeding the state-of-the-art accuracy typically
reported for a single structure such as the amygdala or striatum.
These findings pave the road toward the creation of low-cost mobile
scanners of subcortical activity with improved usability, EEG-based
fMRI digital twin technology, with a broad range of applications –
from fundamental neuroscience through diagnostics to neurorehabil-
itation and affective neurointerfaces. The demo video is presented in
https://youtu.be/IOOwb7Wt2sY.

1 Introduction
Electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI) are the most popular and successfully used non-
invasive methods for measuring brain activity. Both have their
strengths and weaknesses. For example, EEG’s interpretability is
limited as it records mixed activity of spatially extended populations
of neurons. At the same time, the EEG achieves millisecond-scale
temporal resolution and opens a window for exploring rapid cortical
processes. On the other hand, fMRI measuring Blood Oxygenation
Level Dependent (BOLD) signal furnishes much higher spatial res-
olution as compared to EEG but is limited by the pace of the under-
lying hemodynamics with characteristic response times on the order
of a second when imaging the entire brain volume. These modali-
ties are also very different from both the researcher’s and subject’s
perspectives. EEG devices are cheap, compact, ecological, and af-
fordable even for everyday in-home use while fMRI scanners are
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bulky, expensive, and require a human to stay fixed in a horizontal
plane for extended periods to ensure the recordings are of reasonable
quality. Yet, despite these very clear limitations, the fMRI technol-
ogy is nowadays unique in its ability to reliably capture the activity
of deep cortical (e.g. hippocampus) and subcortical structures (e.g.
basal ganglia) in a non-invasive manner. Limited access to the fMRI
explains the fact that human subcortical structures remain the least
studied brain territories both structurally and functionally [17]. At
the same time, it is hard to overestimate their role in cognitive pro-
cesses including memory, attention, and reward mechanisms [4], mo-
tor functions [2], and affective cognition [12]. Also, the subcortical
structures increasingly become the main suspects whose deficiencies
in structure [6] and function [15] are implicated in a broad range
of neuropsychiatric disorders. Therefore, there is a pressing demand
for ecological and affordable tools for functional visualization of the
workings of subcortical brain regions such as basal ganglia, cerebel-
lum, and thalamus.

One possible approach is to use EEG and augment it with a ma-
chine learning model capable of predicting subcortical BOLD sig-
nals from the EEG data alone. The majority of studies attempted to
establish the similarity of EEG and fMRI based findings about the
underlying brain activity by directly correlating the two measures.
To align the EEG and BOLD signals a convolutional transformation
is applied to EEG-based source power profiles, e.g. [9], [7]. An in-
teresting heuristic was described in [5] proposing a non-linear model
stating that the increase in BOLD signal is correlated with the broad-
ening (expansion) of the EEG signal spectrum. Most such studies
were focused on the cortical BOLD activity [1] and the recovery
of subcortical BOLD (sBOLD) signal from EEG data remains elu-
sive, see, however [16] where the striatum BOLD activity is predicted
from EEG data in a task-based setting.

To fill this technological gap we are presenting a novel AI-powered
EEG-based fMRI digital twin technology capable of simultaneous
recovery of BOLD signals of several subcortical structures solely
based on the ecologically recorded EEG data. We capitalize on the
recent advances in deep contrastive learning and build individ-
ualized models capable of translating non-invasively recorded
EEG into the BOLD signal of functionally distinct cortical and
subcortical areas. Using concurrently recorded EEG-fMRI data we
train a deep neural network with convolutional and transformer lay-
ers on top of the interpretable feature extractor layers [10, 11]
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to capture the intricate hidden relations between head surface
EEG and subcortical BOLD signals measured with fMRI. Once
the model is built it is used to predict regional BOLD activity from
EEG alone therefore bypassing the use of the fMRI equipment when
operating in the inference mode. Figure 1 outlines the principles of
the developed technology. To the best of our knowledge, this is the
first-ever demonstration of successful and simultaneous recov-
ery of the BOLD signals reflecting the hemodynamics of multiple
subcortical nuclei and the hippocampus. Simultaneous recovery
of BOLD activity of several brain regions allows us to avoid the po-
tentially bogus results explained by the common-mode signal. In
addition to removing the global signal during BOLD preprocessing,
we focus on the variations of the regional BOLD signals with respect
to their mean activity computed over 14 selected regions.

Additionally, the interpretability of the front-end layers of our
network allows for the discovery of key EEG correlates pivotal for
solving the EEG to BOLD decoding task and answering the ques-
tions regarding the basic principles underlying the fundamental neu-
rophysiological mechanisms that link electrical activity of the brain
to the associated hemodynamics and match the obtained answers
against the existing theories.

Figure 1. EEG-based fMRI digital twin principle. Concurrently recorded
EEG-fMRI data are used to train a subject-specific ML model to predict

regional BOLD signals from the multichannel EEG data. Once the model is
built, EEG alone passed through the model predicts brain hemodynamics of

both cortical and subcortical regions.

2 Dataset
In this demonstration we used a publicly available EEG/fMRI dataset
[18]: multichannel EEG and fMRI-measured BOLD signals were
concurrently recorded. To reduce the amount of gradient artifacts in
the EEG data, the interference was picked up via Carbon Wire Loop
(CWL) and adaptively subtracted from the EEG signals. Resting-
state data was collected from 8 subjects, each recording lasting ap-
proximately 4.5 minutes. The EEG was recorded using a 30-channel
MR-compatible electrode cap with a native sampling frequency of
5000 Hz during the fMRI scan. Signals were corrected for gradient
artifacts and then downsampled to the sampling frequency of 1000
Hz by the authors of this dataset. The volumes of BOLD signal with
dimensions [61 × 72 × 61] and resolution of 3×3×3 mm were ac-
quired at TR 2000 ms, please refer for the detailed description to
[18]. The obtained data was normalized to the MNI space, slice-
timing corrected, and smoothed with a spatial Gaussian filter (5-mm
kernel). Confound regression with respect to the motion and global
signals including those from the white matter as regressors was used

to remove from BOLD activity the signals of non-neuronal origin.
Subsequently, we extracted BOLD activity of bilaterally symmetric
regions of interest (ROI) using Harvard-Oxford structural atlas [8].
We focused on 14 ROIs - 12 subcortical regions and 2 hippocampi,
see Figure 3. We focus on the CWL dataset because, to the best of
our knowledge, it is the only public dataset using the advanced CWL
technology to clean the EEG data from the gradient artifacts and con-
taining the data recorded with the helium pump switched off. Addi-
tionally, to avoid the influence of the common mode signal on the
obtained performance we computed the average region of interest
(ROI) activity BOLD signal and subtracted it from the regional ROI
BOLD time series. Our goal was then to recover this average (com-
mon mode) signal and the differential fluctuations around it charac-
terizing the specific activation of the individual ROIs.

3 Methods

Figure 2. Deep learning model for the EEG to BOLD prediction task. The
complete architecture is presented in (a). Custom modules are shown in

detail in their own boxes (b), (c), (d). Note: during inference we switch off
the BOLD Encoder block to prevent data leak. It is used only for training to

reduce the domain gap between EEG and BOLD embeddings.

The neural network architecture diagram is presented in Figure
2 (a). It consists of four major components: an interpretable Fea-
ture Extractor, an EEG Encoder, a Decoder, and a Post Decoder
Block. We also utilize a BOLD Encoder during training for con-
trastive learning.

The Feature Extractor shown in Figure 2 (b) is based on the factor-
ized and trainable spatial and temporal filters [10]. It applies spatial
and then temporal filtering to a raw EEG segment, with filters imple-
mented via pointwise and depthwise one-dimensional convolutions,
respectively. The filtered signal is transformed to absolute values
and then convolved with Hamming windows for temporal smooth-
ing. Overall, it extracts the envelopes of activity of the specific and
relevant to the decoding task neuronal populations. Subsequent in-
terpretation of the Feature Extractor weights allows for a query into
the geometric location and dynamics of the neuronal populations rel-
evant to the specific decoding task [11].

A series of resultant features is further fed to the EEG Encoder,
which maps it to a high-dimensional embedding space. The stem
of an Encoder is a stack of multiple hybrid blocks, each combin-
ing multi-head self-attention and convolutional layers (MHA-Conv
blocks similar to the Conformer blocks [3]). This core subpart is pre-
ceded by a small block that reduces sampling rate via a single-strided
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convolution and applies a 1D convolution in order to match the di-
mension of the embedding space (see Figure 2 (c)).

The stem of the Decoder consists of the same building blocks as
the EEG Encoder. In order to match the shapes of the predicted and
target BOLD signals, the stem is followed by a small block of tem-
poral upsampling and spatial reduction, achieved via linear interpo-
lation followed by convolutional layers (see Figure 2 (d)).

The Post Decoder Block aims to smooth Decoder’s output signal
and/or to allow some additional flexibility for temporal structure. In
our experiments, we used two point-wise convolutions with a layer
normalization and non-linearity in between as shown in Figure 2 (a).
A multichannel output of this module represents the predicted BOLD
activity of 14 + 1 subcortical ROIs.

In addition to the primary architectural components described
above and designed specifically for the EEG to BOLD prediction
task we introduced the BOLD Encoder. It mapped raw interpolated
time series of a BOLD signal into the same embedding space as the
EEG Encoder does for the EEG segments. The goal of having this
extra component is to turn the embedding space into a multimodal
one and to facilitate learning of more informative as well as gener-
alizable embeddings for the EEG. Except for the dimensionality of
an input we used the BOLD Encoder of the same architecture as the
EEG Encoder which is shown in Figure 2 (a). During the actual in-
ference, the BOLD Encoder is not used since the BOLD signal is
unknown and has to be predicted.

To train the model we utilized the loss function that consists of
multiple components. The first component is dedicated to measuring
the quality of predicting BOLD signal itself. This component is a
negative correlation value between a true BOLD signal and a BOLD
signal predicted from EEG by the model (output of the Post Decoder
Block). The second component we used is the CLIP contrastive loss
[14] aimed at reducing the modality gap by bringing embeddings of
EEG and BOLD closer. To compute it we take an output of the EEG
Encoder and of the BOLD Encoder. Then, we calculate the CLIP
loss between these embeddings. Both of these components and their
usage are shown in Figure 2 (a). Our final loss function is a weighted
sum of these two components: CLIP and negative correlation.

We trained our model using ≈34 minutes of data in total from 8
subjects. 7 subjects were only used for training. The final subject’s
data was split the following way: 68.7 initial seconds for training; the
next 60 seconds for validation; and the final 150 seconds for testing.

4 Results

Figure 3. The obtained correlation coefficient values along with the
standard deviation for 14 deep brain ROIs and the average common mode

signal.

As a meaningful measure of accuracy, we used the Pearson corre-
lation coefficient between the actual and the EEG-derived BOLD ac-
tivity. The correlation coefficients and the standard deviations for 14
deep brain ROIs and the average common mode signal are shown in
Figure 3. We can observe that the hemodynamic activity of most deep
brain regions can be recovered from EEG with accuracy that signifi-
cantly exceeds the chance level marked with the vertical dashed line.
We calculated the chance level as the performance of the surrogate
model with the same architecture but trained using temporally un-
related EEG and fMRI segments. Such pairs used from testing and
training comprised two different non-overlapping sets. Importantly,
despite the fact that we focused on the more difficult task of predict-
ing relative BOLD activity, for most of the subcortical structures we
observed significantly higher decoding accuracy values as compared
to those reported in the state-of-the-art study [16] for the striatum
within a task-based setting.

Figure 4. a) Temporal (shown in frequency domain) and b) spatial patterns
derived from feature extractor’s weights according to [10] and corresponding

to the sources that appeared pivotal to the decoding task.

In Figure 4 we show the results of interpretation of the feature
extractor’s weights for each of the 15 branches. The analysis of the
frequency (a) and spatial color-coded (b) patterns of each network’s
branch reveals pairs of nearly identical up to the sign (blue vs. red)
topographies (e.g. 0-10, 6-14, 7-12, etc.) with the corresponding dis-
tinct spectral curves having peaks over adjacent frequency bands.
This can be interpreted as the attempt of the network to measure the
“spectral expansion” in the activity of specific neuronal sources. This
is in agreement with the spectrum broadening hypothesis as a corre-
late of the BOLD increase described in [5]. Judging by the topogra-
phies, the electrical activity of both superficial somatosensory [13]
and deeply located sources appear pivotal to the subcortical BOLD
decoding task which is in line with the known presence of a strong
network of structural and functional links between several subcorti-
cal structures and cortical sensory-motor areas.

5 Conclusion
Our AI-powered EEG-based fMRI digital twin solution for the first
time yields simultaneous and consistent recovery of hemodynamics
in multiple subcortical structures based solely on the EEG data in
the task-free resting state setting. Our model uses only 10 seconds of
the most recent EEG time series data to estimate the corresponding
BOLD activity (that is typically available delayed by 5-7 seconds
later from the fMRI scanner). Therefore, the proposed EEG-based
sBOLD signal recovery furnishes latency-free access to the hemody-
namic activity of subcortical structures. Our results open up opportu-
nities for ecologically valid and accessible exploration of deep brain
activity. This will foster discoveries in the field of affective neuro-
science and neurointerfaces. The presented technology will become
instrumental in developing novel diagnostic solutions and unraveling
mechanisms of a range of neuropsychiatric disorders.
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